CN113402277A - 一种FeSe1-xTex靶材的制备工艺 - Google Patents

一种FeSe1-xTex靶材的制备工艺 Download PDF

Info

Publication number
CN113402277A
CN113402277A CN202110665675.8A CN202110665675A CN113402277A CN 113402277 A CN113402277 A CN 113402277A CN 202110665675 A CN202110665675 A CN 202110665675A CN 113402277 A CN113402277 A CN 113402277A
Authority
CN
China
Prior art keywords
target
fese
powder
temperature
keeping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110665675.8A
Other languages
English (en)
Inventor
葛军饴
张含芳
姜琬琰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202110665675.8A priority Critical patent/CN113402277A/zh
Publication of CN113402277A publication Critical patent/CN113402277A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种FeSe1‑xTex靶材的制备工艺,在热压烧结时,对烧结炉腔体以氩气抽洗三次,真空度保持在10‑2Pa,对模具中的粉胚施加27MPa的压强,在整个烧结过程中保持该压强,以30%的输出功率经由30min升温至400℃,再以50%的输出功率经由30min升温至目标温度400℃‑700℃,最终在400℃‑700℃保温12小时。本技术工艺制备的FeSe1‑xTex靶材相比于现有工艺所制备的靶材,其致密性得到了较大的提高,并且可以通过改变烧结目标温度连续调控FeSe1‑xTex靶材的致密性,同时制得的FeSe1‑xTex靶材成相好;解决了现有工艺制备的FeSe1‑xTex靶材不够致密,经脉冲激光多次轰击后易粉化的问题;本制备工艺易于实现工业化,可用于百米、千米级FeSe1‑xTex长带涂层导体的制备,具有良好的应用前景。

Description

一种FeSe1-xTex靶材的制备工艺
技术领域
本发明属于靶材制备技术领域,特别是涉及一种FeSe1-xTex靶材的制备工艺。
背景技术
FeSe1-xTex材料凭借其高临界磁场、高临界电流密度和小的各向异性在下一代高场磁体的设计中具有重要的应用前景。绕制高场磁体要解决的首要问题是制备出高性能的FeSe1-xTex长带涂层导体。脉冲激光沉积(PLD)是当前FeSe1-xTex涂层导体制备的最主要方法。在FeSe1-xTex长带涂层导体的制备中,FeSe1-xTex靶材是通过PLD激光的轰击不断产生等离子体羽辉的溅射源。而现在通过传统的固相反应法制备得到的FeSe1-xTex靶材,其致密性都普遍不高。这样的靶材在PLD产生的高能量密度以及高频率的激光的轰击下,易粉化,致使后续的成膜不平整且均匀性不佳,无法实现长带涂层导体的制备。
发明内容
为了克服上述的问题,本发明提供了一种高质量、致密度可调控的FeSe1-xTex靶材的制备工艺。
本发明所采用的技术方案是:
一种FeSe1-xTex靶材的制备工艺,包括如下步骤:
步骤一:对原材料进行配比称量:铁粉为100目、硒粉为200目、碲粉为100目;
步骤二:称量后的粉末放置于玛瑙研钵中充分研磨30min,随后将研磨好的混合粉末以400Mpa的压强保持10min压制成片,封装在真空石英管中,进行第一次固相反应;
步骤三:以5℃/min的升温速率升至400℃,预反应24小时,再以5℃/min的速率升温至700℃,保温3天,随后降至室温;
步骤四:对片状混合粉末进行碾碎,研磨60min,再以400Mpa的压强保持10min压制成片,封装在真空石英管中,进行第二次固相反应;
步骤五:以2℃/min的速率升温至700℃,保温3天,随后降至室温;
步骤六:对片状混合粉末进行碾碎,研磨60min,再以400Mpa的压强保持10min压制成片,封装在真空石英管中,进行第三次固相反应;
步骤七:以2℃/min的速率升温至700℃,保温3天,随后降至室温。保证粉胚的反应充分;
步骤八:对片状混合粉末再进行碾碎,研磨60min,最后将三次烧结完成的粉胚预压成靶,用石墨纸包裹,放置在一个直径为20mm的石墨模具中;
步骤九:热压烧结:对烧结炉腔体以氩气抽洗三次,真空度保持在10-2Pa,避免靶材与氧气较多的接触而影响最终靶材的质量,对模具中的粉胚施加27MPa的压强,在整个烧结过程中保持该压强,以30%的输出功率经由30min升温至400℃,再以50%的输出功率经由30min升温至目标温度400℃-700℃,最终在400℃-700℃保温12小时,使预压靶材内部致密化,提高成品靶材的密度,与传统的只进行固相反应的靶材相比,热压后使得靶材能够在高能量的激光轰击下不至于粉末化,避免了成膜的不均匀性以及保证了薄膜在微观尺度仍然具有良好的平整度;
步骤十:靶材的修整:将靶材表面以1500目、2000目、2500目的砂纸依次打磨,最后以型号为DNW0.5的水溶金刚石研磨膏进行抛光处理,得到一个平整光滑的靶材表面。
其中,步骤一中铁粉的纯度为99.95%,硒粉、碲粉的纯度均为99.99%。
其中,步骤二、四、六、八中研磨过程都在一个充满氩气保护的、水值小于0.1ppm、氧值小于0.1ppm的手套箱中进行,确保原料与氧气较少的接触,避免对成品靶材的不利影响。
本发明的优点如下:
本技术工艺制备的FeSe1-xTex靶材相比于现有工艺所制备的靶材,其致密性得到了较大的提高,并且可以通过改变烧结目标温度连续调控FeSe1-xTex靶材的致密性,同时制得的FeSe1-xTex靶材成相好;解决了现有工艺制备的FeSe1-xTex靶材不够致密,经脉冲激光多次轰击后易粉化的问题;本制备工艺易于实现工业化,可用于百米、千米级FeSe1-xTex长带涂层导体的制备,具有良好的应用前景。
附图说明
图1为本发明的固相反应法烧结后靶材密度随烧结前冷压压强大小的变化示意图;
图2是本发明的27Mpa的压强下热压烧结后靶材密度随烧结温度的变化示意图;
图3是本发明的根据制备工艺制备出的直径为60mm的大尺寸高密度FeSeTe靶材的示意图。
具体实施方式
下面对本发明作进一步的说明,但本发明并不局限于这些内容。
实施例
本发明提供了一种FeSe1-xTex靶材的制备工艺,包括如下步骤:
对原材料进行配比称量:铁粉为100目,纯度99.95%,硒粉为200目,纯度为99.99%,碲粉为100目,纯度为99.99%;称量后的粉末放置于玛瑙研钵中充分研磨30min,随后将研磨好的混合粉末以400Mpa的压强保持10min压制成片,封装在真空石英管中,进行第一次固相反应;以5℃/min的升温速率升至400℃,预反应24小时,再以5℃/min的速率升温至700℃,保温3天,随后降至室温;对片状混合粉末进行碾碎,研磨60min,再以400Mpa的压强保持10min压制成片,封装在真空石英管中,进行第二次固相反应;以2℃/min的速率升温至700℃,保温3天,随后降至室温;对片状混合粉末进行碾碎,研磨60min,再以400Mpa的压强保持10min压制成片,封装在真空石英管中,进行第三次固相反应;以2℃/min的速率升温至700℃,保温3天,随后降至室温。保证粉胚的反应充分;对片状混合粉末再进行碾碎,研磨60min,最后将三次烧结完成的粉胚预压成靶,用石墨纸包裹,放置在一个直径为20mm的石墨模具中;所有的研磨过程都在一个充满氩气保护的、水值小于0.1ppm、氧值小于0.1ppm的手套箱中进行,确保原料与氧气较少的接触,避免对成品靶材的不利影响;热压烧结:对烧结炉腔体以氩气抽洗三次,真空度保持在10-2Pa,避免靶材与氧气较多的接触而影响最终靶材的质量,对模具中的粉胚施加27MPa的压强,在整个烧结过程中保持该压强,以30%的输出功率经由30min升温至400℃,再以50%的输出功率经由30min升温至400℃-700℃,最终在400℃-700℃保温12小时,使预压靶材内部致密化,提高成品靶材的密度,与传统的只进行固相反应的靶材相比,热压后使得靶材能够在高能量的激光轰击下不至于粉末化,避免了成膜的不均匀性以及保证了薄膜在微观尺度仍然具有良好的平整度;靶材的修整:将靶材表面以1500目、2000目、2500目的砂纸依次打磨,最后以型号为DNW0.5的水溶金刚石研磨膏进行抛光处理,得到一个平整光滑的靶材表面。
如图1所示,为固相反应法烧结后靶材密度随烧结前冷压压强大小的变化;
如图2所示,为27Mpa的压强下热压烧结后靶材密度随烧结温度的变化,圆圈代表热压前预压(冷压)的靶材密度,可见热压烧结后靶材密度明显增大;
如图3所示,为根据制备工艺制备出的直径为60mm的大尺寸高密度FeSeTe靶材。
指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (3)

1.一种FeSe1-xTex靶材的制备工艺,其特征在于:包括如下步骤:
步骤一:对原材料进行配比称量:铁粉为100目、硒粉为200目、碲粉为100目;
步骤二:称量后的粉末放置于玛瑙研钵中充分研磨30min,随后将研磨好的混合粉末以400Mpa的压强保持10min压制成片,封装在真空石英管中,进行第一次固相反应;
步骤三:以5℃/min的升温速率升至400℃,预反应24小时,再以5℃/min的速率升温至700℃,保温3天,随后降至室温;
步骤四:对片状混合粉末进行碾碎,研磨60min,再以400Mpa的压强保持10min压制成片,封装在真空石英管中,进行第二次固相反应;
步骤五:以2℃/min的速率升温至700℃,保温3天,随后降至室温;
步骤六:对片状混合粉末进行碾碎,研磨60min,再以400Mpa的压强保持10min压制成片,封装在真空石英管中,进行第三次固相反应;
步骤七:以2℃/min的速率升温至700℃,保温3天,随后降至室温;
步骤八:对片状混合粉末再进行碾碎,研磨60min,最后将三次烧结完成的粉胚预压成靶,用石墨纸包裹,放置在一个直径为20mm的石墨模具中;
步骤九:热压烧结:对烧结炉腔体以氩气抽洗三次,真空度保持在10-2Pa,对模具中的粉胚施加27MPa的压强,在整个烧结过程中保持该压强,以30%的输出功率经由30min升温至400℃,再以50%的输出功率经由30min升温至目标温度400℃-700℃,最终在400℃-700℃保温12小时;
步骤十:靶材的修整:将靶材表面以1500目、2000目、2500目的砂纸依次打磨,最后以型号为DNW0.5的水溶金刚石研磨膏进行抛光处理,得到一个平整光滑的靶材表面。
2.根据权利要求1所述的一种FeSe1-xTex靶材的制备工艺,其特征在于:所述的步骤一中铁粉的纯度为99.95%,硒粉、碲粉的纯度均为99.99%。
3.根据权利要求1所述的一种FeSe1-xTex靶材的制备工艺,其特征在于:所述的步骤二、四、六、八中研磨过程都在一个充满氩气保护的、水值小于0.1ppm、氧值小于0.1ppm的手套箱中进行。
CN202110665675.8A 2021-06-16 2021-06-16 一种FeSe1-xTex靶材的制备工艺 Pending CN113402277A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110665675.8A CN113402277A (zh) 2021-06-16 2021-06-16 一种FeSe1-xTex靶材的制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110665675.8A CN113402277A (zh) 2021-06-16 2021-06-16 一种FeSe1-xTex靶材的制备工艺

Publications (1)

Publication Number Publication Date
CN113402277A true CN113402277A (zh) 2021-09-17

Family

ID=77684324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110665675.8A Pending CN113402277A (zh) 2021-06-16 2021-06-16 一种FeSe1-xTex靶材的制备工艺

Country Status (1)

Country Link
CN (1) CN113402277A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931045A (zh) * 2009-06-18 2010-12-29 艾迪森股份公司 超导元件以及相关的制备方法
MD4095B1 (en) * 2010-08-02 2011-02-28 Inst De Fiz Aplikateh Al Akademiej De Shtiintse A Republichij Moldova Process for the production of superconducting monocrystals of iron chalcogenides of general formula FeTe0.5Se0.5
CN102074311A (zh) * 2010-12-08 2011-05-25 中国科学院电工研究所 一种制备高密度铁基化合物超导带材的方法
CN104953023A (zh) * 2015-07-01 2015-09-30 西北有色金属研究院 一种高密度Fe(Se,Te)超导材料的制备方法
CN112010270A (zh) * 2019-05-31 2020-12-01 中国科学院物理研究所 FeBi(Te,Se)多晶超导材料及其制备方法和应用
CN112863761A (zh) * 2021-02-10 2021-05-28 上海交通大学 一种铁硒碲超导材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931045A (zh) * 2009-06-18 2010-12-29 艾迪森股份公司 超导元件以及相关的制备方法
MD4095B1 (en) * 2010-08-02 2011-02-28 Inst De Fiz Aplikateh Al Akademiej De Shtiintse A Republichij Moldova Process for the production of superconducting monocrystals of iron chalcogenides of general formula FeTe0.5Se0.5
CN102074311A (zh) * 2010-12-08 2011-05-25 中国科学院电工研究所 一种制备高密度铁基化合物超导带材的方法
CN104953023A (zh) * 2015-07-01 2015-09-30 西北有色金属研究院 一种高密度Fe(Se,Te)超导材料的制备方法
CN112010270A (zh) * 2019-05-31 2020-12-01 中国科学院物理研究所 FeBi(Te,Se)多晶超导材料及其制备方法和应用
CN112863761A (zh) * 2021-02-10 2021-05-28 上海交通大学 一种铁硒碲超导材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNG-HO AHN ET AL: "Effect of hot-consolidation method on the superconducting properties", 《CURRENT APPLIED PHYSICS》 *

Similar Documents

Publication Publication Date Title
CN102912308B (zh) 一种低相变温度二氧化钒薄膜制备工艺
CN101714429B (zh) 一种Bi-2212高温超导线材的制备方法
CN101693962B (zh) 一种p型填充式方钴矿化合物热电材料的制备方法
CN101492291B (zh) 一种ybco超导薄膜靶材的制备方法
EP2500447A1 (en) Cu-in-ga-se quaternary alloy sputtering target
CN101285173A (zh) MgxZn1-xO薄膜的双靶射频磁控共溅射制备方法
CN102584205B (zh) 一种钇钡铜氧靶材的制造方法
CN114620996A (zh) 一种高效太阳能电池用旋转陶瓷靶材
CN110970170A (zh) 一种FeTeSe多晶超导体的制备方法
CN112813397A (zh) 一种钼钠合金板状靶材的制备方法
CN114105631A (zh) 一种超导靶材及其制备方法和应用
CN109053157A (zh) 一种Ga2O3基共掺杂材料靶及其制备方法
CN109534806A (zh) 一种Li系微波介电陶瓷材料及其制备方法和用途
CN109207947A (zh) 一种靶材的制备方法
CN102134702A (zh) 一种以喷雾干燥工艺制备azo粉末及平面和旋转靶材的方法
CN103805952A (zh) 一种大尺寸高纯钨靶材及其生产方法
CN103320636B (zh) 一种快速制备高性能Mg2Si0.3Sn0.7基热电材料的新方法
CN113402277A (zh) 一种FeSe1-xTex靶材的制备工艺
CN108423641B (zh) 一种具有超低热导率铋铟硒热电材料的制备方法
CN100453216C (zh) 高性能碲化铋热电材料的制备方法
JP2013001919A (ja) In2O3−ZnO系スパッタリングターゲット及び酸化物導電膜
CN109319748B (zh) 一种具有室温柔性的Cu2X块体热电材料的制备方法
CN117229056A (zh) 一种高介电铝掺杂型钙钛矿结构高熵微波介质陶瓷及其制备方法
CN101570321A (zh) 一种高性能纳米结构BixSbyTe3-z热电材料的制备方法
CN112216783B (zh) 一种Ga-Ti掺杂ZnO块体热电材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210917