CN113394470A - 锂离子电池电解液配方快速优化方法 - Google Patents

锂离子电池电解液配方快速优化方法 Download PDF

Info

Publication number
CN113394470A
CN113394470A CN202110710669.XA CN202110710669A CN113394470A CN 113394470 A CN113394470 A CN 113394470A CN 202110710669 A CN202110710669 A CN 202110710669A CN 113394470 A CN113394470 A CN 113394470A
Authority
CN
China
Prior art keywords
electrolyte
ion battery
lithium ion
lithium
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110710669.XA
Other languages
English (en)
Other versions
CN113394470B (zh
Inventor
王思敏
马怡晖
刘恋
周江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Juyuan New Energy Technology Co ltd
Tianjin Lishen Battery JSCL
Original Assignee
Tianjin Lishen Battery JSCL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Lishen Battery JSCL filed Critical Tianjin Lishen Battery JSCL
Priority to CN202110710669.XA priority Critical patent/CN113394470B/zh
Publication of CN113394470A publication Critical patent/CN113394470A/zh
Application granted granted Critical
Publication of CN113394470B publication Critical patent/CN113394470B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于锂电池测试领域,具体涉及一种锂离子电池电解液配方快速优化方法;包括下述步骤:步骤1:根据现有配方配制一种锂离子电池电解液;步骤2:组装简易电池;步骤3:简易电池进行充放电循环测试,同时保持一定的循环次数间隔进行红外光谱测试,观察电解液中各种添加剂的消耗速度和电池容量变化。本发明提供了一种无需制成电池成品、无需进行长时间循环,仅通过观察循环过程中电解液的原位红外光谱变化,即可推断各种添加剂的消耗速率,进而快速优化电解液配方的方法。

Description

锂离子电池电解液配方快速优化方法
技术领域
本发明属于锂电池测试领域,具体涉及一种锂离子电池电解液配方快速优化方法。
背景技术
锂离子电池比能量高,比功率大,循环次数多,放电电压平稳,储存寿命长且绿色环保,广泛应用于消费类电子设备和电动汽车行业。电解液承担着传导锂离子的重任,是锂离子电池获得更高能量密度和更安全性能的关键因素,因此开发新型电解液和优化电解液配方至关重要。
常规的评测电解液的方法是制成锂离子电池后注入不同电解液进行循环测试,通过循环性能来筛选和调整电解液配方,此方法无法得知各种添加剂的分解速度且耗时耗力。本发明提供了一种更简单、更有针对性的快速优化电解液配方的方法,无需进行长时间电池循环,只需借助原位红外测试观察添加剂的消耗速率,即可有针对性地调整其含量从而优化电解液配方。
发明内容
本发明的目的在于克服现有技术中的缺点,提供一种锂离子电池电解液配方快速优化方法。
为实现上述目的,本发明采用的技术方案为:
一种锂离子电池电解液配方快速优化方法,包括下述步骤:
步骤1:根据现有配方配制一种锂离子电池电解液;
步骤2:将正极片、负极片、隔膜进行打孔,并用原位红外样品池、步骤1配制的电解液、以及打孔后的正极片、负极片、隔膜和组装简易电池;
步骤3:对步骤2中组装的简易电池进行充放电循环测试,同时保持一定的循环次数间隔进行红外光谱测试,观察电解液中各种添加剂的消耗速度和电池容量变化;
步骤4:根据步骤3得到的结果,适当调整电解液中各添加剂的添加量。消耗速率较快的添加剂需求量较大。
步骤2正极片直径为10mm、负极片的直径为12mm、隔膜的直径为13mm。
步骤2中打孔的直径为1mm。
所述的电解液包括下述质量份组分:锂盐11-15份;功能添加剂1-10份,有机溶剂75-90份。
所述锂盐为六氟磷酸锂LiPF6、四氟硼酸锂LiBF4、六氟砷酸锂LiAsF6、高氯酸锂LiClO4、双氟磺酰亚胺锂LiFSI、双三氟甲烷磺酰亚胺锂LiTFSI中的一种或多种混合。
所述有机溶剂为碳酸乙烯酯EC、碳酸二甲酯DMC、碳酸甲乙酯EMC,碳酸丙烯酯PC,碳酸二乙酯DEC中的一种或几种。
所述功能添加剂选自氟代碳酸乙烯酯FEC、碳酸亚乙烯酯VC、亚硫酸丙烯酯PS、硫酸乙烯酯DTD、三(三甲基硅烷硼酸酯)TMSB中的一种或多种混合。
与现有技术相比,本发明的有益效果是:
本发明提供了一种无需制成电池成品、无需进行长时间循环,仅通过观察循环过程中电解液的原位红外光谱变化,即可推断各种添加剂的消耗速率,进而快速优化电解液配方的方法。
附图说明:
图1为电解液E1的原位红外光谱图;
图2为使用电解液E1的简易电池循环曲线;
图3为使用电解液E1和E2的电池循环曲线;
图4为简易电池的使用示意图。
具体实施方式
为了使本技术领域的技术人员更好地理解本发明的技术方案,下面结合附图和最佳实施例对本发明作进一步的详细说明。
一种锂离子电池电解液配方快速优化方法,包括下述步骤:
配制一种锂离子电池电解液E1,其中锂盐LiPF6占比13%,溶剂EC:EMC=3:7占比83%,添加剂A为TMSB占比2%,添加剂B为VC占比2%。
将电解液E1、打孔的正极片、负极片、隔膜和原位红外样品池组装成简易电池图4示出。测试电解液E1的红外光谱吸收峰,如图1中L1所示。实验时,光源5发射的红外线,通过干涉仪6干涉后进入原位红外样品池8;通过正极片2、隔膜3、负极片1上的小孔4进入检测器7;即可显示电解液中的红外光谱图。
对简易电池进行充放电测试,设置合适的循环电流和截止电压,循环数据如图2所示。依次测试循环20次和40次后电解液E1的红外光谱吸收峰,如图1中L2和L3所示。
如图1所示,经过20次充放电循环,添加剂A的红外光谱特征峰(970cm-1,1350cm-1)已经消失,而添加剂B的特征峰(1750cm-1)在40次循环后变化不明显。由此可知添加剂A的消耗速率更快。同时,如图2所示,电池的容量保持率在第20次循环前后发生明显下降,可见添加剂A的添加量对电池的循环性能影响较大,添加剂B的影响不明显。
根据以上分析,适当调整电解液E1的配方:锂盐LiPF6占比13%,溶剂EC:EMC=3:7占比81%,添加剂A为TMSB占比5%,添加剂B为VC占比1%,记为电解液E2。
图3为制成电池后,使用两种电解液E1、E2的电池循环效果对比图,实际测试结果与预测一致。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种锂离子电池电解液配方快速优化方法,其特征在于,包括下述步骤:
步骤1:根据现有配方配制一种锂离子电池电解液;
步骤2:将正极片、负极片、隔膜进行打孔,并用原位红外样品池、步骤1配制的电解液、以及打孔后的正极片、负极片、隔膜和组装简易电池;
步骤3:对步骤2中组装的简易电池进行充放电循环测试,同时保持一定的循环次数间隔进行红外光谱测试,观察电解液中各种添加剂的消耗速度和电池容量变化;
步骤4:根据步骤3得到的结果,适当调整电解液中各添加剂的添加量;消耗速率较快的添加剂需求量较大。
2.根据权利要求1所述的锂离子电池电解液配方快速优化方法,其特征在于,步骤2正极片直径为10mm、负极片的直径为12mm、隔膜的直径为13mm。
3.根据权利要求1所述的锂离子电池电解液配方快速优化方法,其特征在于,步骤2中打孔的直径为1mm。
4.根据权利要求1所述的锂离子电池电解液配方快速优化方法,其特征在于,所述的电解液包括下述质量份组分:锂盐11-15份;功能添加剂1-10份,有机溶剂75-90份。
5.根据权利要求4所述的锂离子电池电解液配方快速优化方法,其特征在于,所述锂盐为六氟磷酸锂LiPF6、四氟硼酸锂LiBF4、六氟砷酸锂LiAsF6、高氯酸锂LiClO4、双氟磺酰亚胺锂LiFSI、双三氟甲烷磺酰亚胺锂LiTFSI中的一种或多种混合。
6.根据权利要求4所述的锂离子电池电解液配方快速优化方法,其特征在于,所述有机溶剂为碳酸乙烯酯EC、碳酸二甲酯DMC、碳酸甲乙酯EMC,碳酸丙烯酯PC,碳酸二乙酯DEC中的一种或几种。
7.根据权利要求4所述的锂离子电池电解液配方快速优化方法,其特征在于,所述功能添加剂选自氟代碳酸乙烯酯FEC、碳酸亚乙烯酯VC、亚硫酸丙烯酯PS、硫酸乙烯酯DTD、三(三甲基硅烷硼酸酯)TMSB中的一种或多种混合。
CN202110710669.XA 2021-06-25 2021-06-25 锂离子电池电解液配方快速优化方法 Active CN113394470B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110710669.XA CN113394470B (zh) 2021-06-25 2021-06-25 锂离子电池电解液配方快速优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110710669.XA CN113394470B (zh) 2021-06-25 2021-06-25 锂离子电池电解液配方快速优化方法

Publications (2)

Publication Number Publication Date
CN113394470A true CN113394470A (zh) 2021-09-14
CN113394470B CN113394470B (zh) 2022-05-10

Family

ID=77623890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110710669.XA Active CN113394470B (zh) 2021-06-25 2021-06-25 锂离子电池电解液配方快速优化方法

Country Status (1)

Country Link
CN (1) CN113394470B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103196963A (zh) * 2012-01-05 2013-07-10 中国科学院过程工程研究所 一种离子液体体系电化学过程原位研究装置
US20140287285A1 (en) * 2013-03-25 2014-09-25 Kabushiki Kaisha Toshiba Active material for battery, nonaqueous electrolyte battery, and battery pack
CN105651723A (zh) * 2015-12-30 2016-06-08 哈尔滨工业大学 用于锂离子电池气体检测的原位透射红外电解池及其实验方法
CN107389591A (zh) * 2017-06-13 2017-11-24 中国科学技术大学 拉曼和红外光谱两用原位检测密封电解池、使用其的方法及其用途
CN110380124A (zh) * 2019-07-19 2019-10-25 北京理工大学 一种可原位表征锂电池电解液三维浸润过程的定量化方法
CN110987978A (zh) * 2019-12-20 2020-04-10 中国科学院青岛生物能源与过程研究所 一种原位观察电池极片和电解液的装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103196963A (zh) * 2012-01-05 2013-07-10 中国科学院过程工程研究所 一种离子液体体系电化学过程原位研究装置
US20140287285A1 (en) * 2013-03-25 2014-09-25 Kabushiki Kaisha Toshiba Active material for battery, nonaqueous electrolyte battery, and battery pack
CN105651723A (zh) * 2015-12-30 2016-06-08 哈尔滨工业大学 用于锂离子电池气体检测的原位透射红外电解池及其实验方法
CN107389591A (zh) * 2017-06-13 2017-11-24 中国科学技术大学 拉曼和红外光谱两用原位检测密封电解池、使用其的方法及其用途
CN110380124A (zh) * 2019-07-19 2019-10-25 北京理工大学 一种可原位表征锂电池电解液三维浸润过程的定量化方法
CN110987978A (zh) * 2019-12-20 2020-04-10 中国科学院青岛生物能源与过程研究所 一种原位观察电池极片和电解液的装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONGYOU, K ETAL.: "Dynamic in situ fourier transform infrared measurements of chemical bonds of electrolyte solvents during the initial charging process in a Li ion battery", 《JOURNAL OF POWER SOURCES》 *
李君涛等: "锂离子二次电池界面过程的红外光谱研究", 《化学进展》 *

Also Published As

Publication number Publication date
CN113394470B (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
CN110336078B (zh) 一种硅基负极电解液及锂离子动力电池
CN102340029A (zh) 一种用于锂离子电池非水电解液的功能性添加剂
CN103531845A (zh) 以LiBF2SO4为基础锂盐的锂离子电池电解液
CN116646526B (zh) 一种钠离子电池正极界面膜及其制备方法、钠离子电池
CN109888394A (zh) 一种新型的二次锂电池电解液
CN113745659A (zh) 复合型高安全性电解液及锂离子电池
CN116632355A (zh) 一种钠离子电池用电解液及钠离子电池
CN107565167B (zh) 一种电解液及双离子电池
Li et al. Peak attribution of the differential capacity profile of a LiCoO2-based three-electrode Li-ion laminate cell
CN103346347A (zh) 高电压锂离子电池
CN108899582B (zh) 一种阻燃型电解液及双离子电池
CN107181003B (zh) 一种锂离子电池用安全电解液及含该电解液的锂离子电池
CN113394470B (zh) 锂离子电池电解液配方快速优化方法
CN117525469A (zh) 一种低温锂/氟化碳一次电池的电解液及其制备方法
CN110911743B (zh) 一种锂离子电池电解液添加剂、锂离子电池电解液及锂离子电池
CN114421015B (zh) 一种具有醚氧键官能团的碳酸酯基电解液及其应用
CN103107364A (zh) 一种低温型锂离子电池电解液及锂离子电池
CN115588825A (zh) 锂离子二次电池的化成方法及锂离子二次电池
CN113488696B (zh) 一种圆柱锂离子电池高浸润性电解液
CN115084653A (zh) 提升钠(锂)离子储能电池安全性和循环性能的复合电解液添加剂
CN112290088B (zh) 一种非水电解液及锂离子电池
CN115799628A (zh) 一种非水电解液以及一种电池
CN114188606A (zh) 一种电解液及其应用
CN104022309A (zh) 电解液阻燃剂、含有该阻燃剂的电解液及二次锂离子电池
CN117849247B (zh) 一种电解液的检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230306

Address after: 300457 No. 38, Haitai South Road, Binhai high tech Industrial Development Zone (outer ring), Binhai New Area, Tianjin

Patentee after: TIANJIN LISHEN BATTERY JOINT-STOCK Co.,Ltd.

Patentee after: Tianjin Juyuan New Energy Technology Co.,Ltd.

Address before: 300457 No. 38, Haitai South Road, Binhai high tech Industrial Development Zone (outer ring), Binhai New Area, Tianjin

Patentee before: TIANJIN LISHEN BATTERY JOINT-STOCK Co.,Ltd.

TR01 Transfer of patent right