CN113394306A - 一种基于石墨烯的可重复使用ZnO单晶衬底及制备ZnO薄膜的方法 - Google Patents

一种基于石墨烯的可重复使用ZnO单晶衬底及制备ZnO薄膜的方法 Download PDF

Info

Publication number
CN113394306A
CN113394306A CN202110539931.9A CN202110539931A CN113394306A CN 113394306 A CN113394306 A CN 113394306A CN 202110539931 A CN202110539931 A CN 202110539931A CN 113394306 A CN113394306 A CN 113394306A
Authority
CN
China
Prior art keywords
zno
graphene
substrate
single crystal
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110539931.9A
Other languages
English (en)
Other versions
CN113394306B (zh
Inventor
叶志镇
王朋
潘新花
王宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202110539931.9A priority Critical patent/CN113394306B/zh
Publication of CN113394306A publication Critical patent/CN113394306A/zh
Application granted granted Critical
Publication of CN113394306B publication Critical patent/CN113394306B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/024Group 12/16 materials
    • H01L21/02403Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02444Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种基于石墨烯的可重复使用ZnO单晶衬底及制备ZnO薄膜的方法,具体方案为:首先通过湿法转移将至少两层石墨烯转移到ZnO单晶衬底上;然后在ZnO/双层石墨烯衬底上生长ZnO薄膜;最后将ZnO薄膜从ZnO单晶衬底上剥离下来,由于石墨烯与ZnO薄膜之间通过比较弱的范德华力结合在一起,因此可以轻易地将ZnO薄膜从ZnO/石墨烯衬底上剥离,从而实现ZnO单晶衬底的重复利用。本发明通过将至少双层石墨烯转移到ZnO单晶衬底上,实现了ZnO单晶衬底的重复利用,降低了ZnO单晶衬底的使用成本,同时剥离下来的ZnO薄膜也可用于柔性器件的制备。

Description

一种基于石墨烯的可重复使用ZnO单晶衬底及制备ZnO薄膜的 方法
技术领域
本发明属于光电材料外延生长技术领域,涉及一种基于石墨烯的可重复使用ZnO单晶衬底及制备ZnO薄膜的方法。
背景技术
ZnO是一种直接带隙的宽禁带半导体材料,激子束缚能高达60meV,室温下禁带宽度为3.37eV,而且通过向ZnO中掺入Mg和Cd等元素可以实现对其带隙的调节,进而构建量子阱结构,因此ZnO是一种非常有应用前景的紫外光电材料。
高质量ZnO单晶薄膜是制备性能优异的ZnO光电器件的前提,由于没有晶格失配和热失配,同质外延非常适合于高质量ZnO单晶薄膜的生长。然而目前ZnO体单晶的生长方法还不成熟,生长的ZnO体单晶多在2英寸左右,这使得ZnO单晶衬底的制备成本较高,不利于ZnO单晶衬底的大规模应用。如果能够提供一种可以使得ZnO单晶衬底重复使用的薄膜生长方法,则将有效解决上述问题。
发明内容
本发明的目的是解决同质外延ZnO薄膜过程中ZnO单晶衬底价格昂贵且不能重复使用的问题,提供一种基于石墨烯的可重复使用ZnO单晶衬底及制备ZnO薄膜的方法。
为实现上述发明目的,本发明采用的技术方案如下:
本发明提供了一种ZnO/石墨烯复合衬底,包括ZnO单晶衬底以及附着于其表面的至少两层石墨烯;其中所述的石墨烯可以采用湿法转移的方式直接转移至ZnO单晶衬底上;更为优选的,所述复合衬底可以是直接采用两次湿法转移将两片单层石墨烯转移到ZnO单晶衬底上获得。
此外,本发明还提供一种ZnO薄膜的制备方法,直接利用上述的ZnO/石墨烯复合衬底作为衬底,在其上先进行ZnO薄膜的生长,之后再将生长的ZnO薄膜从ZnO/石墨烯衬底上剥离。由于在ZnO薄膜生长过程中氧等离子体及高温对石墨烯均具有一定的破坏作用,所以在本发明方案中,在ZnO单晶衬底上转移至少两层石墨烯,这样可以在生长ZnO薄膜的过程中,保证至少有一层石墨烯是完整的,从而避免ZnO薄膜和ZnO单晶衬底直接接触,影响ZnO薄膜的剥离。同时,本发明中ZnO薄膜生长采用低高温两阶段生长方法;具体如下:
将ZnO/石墨烯衬底转移到生长室中,在不超过650℃的温度下对衬底进行退火20min,以修复ZnO单晶衬底的表面晶格,650℃及以下退火对石墨烯的损伤较小,在保证石墨烯质量的前提下提高退火温度,有利于ZnO单晶衬底晶体质量的改善。以纯O2经过射频活化形成的氧等离子体作为O源,调节生长室真空度为1x10-7~3x10-7Torr,以纯金属Zn源为金属源,调节Zn源温度为260~280℃。在衬底上首先以较低温度300~400℃生长ZnO薄膜,使得ZnO在石墨烯上形核生长,较低的生长温度对石墨烯具有保护作用,且当石墨烯表面有ZnO薄膜覆盖后,后续薄膜生长过程中氧等离子体的破坏和衬底的分解对石墨烯的破坏作用就会大大地减弱。然后提高衬底温度至500~600℃生长所需厚度的ZnO薄膜,生长结束后将薄膜在O2气氛下,以10℃/min的降温速率冷却至室温。其中,在较低温度下生长ZnO薄膜时需要同时打开锌源和O源,或先打开锌源再打开O源,以减少氧等离子体对石墨烯的破坏。此外,在该阶段ZnO薄膜生长时间通常可以控制在20min,以控制低温生长ZnO薄膜厚度不超过100nm。
所述的将ZnO薄膜从ZnO/石墨烯衬底上剥离,可以采用热释放胶带实现。因为石墨烯是一种以SP2碳原子杂化连接形成的六角蜂窝状结构的二维材料,与ZnO通过比较弱的范德华力结合,因此可以轻易的将ZnO薄膜从石墨烯上剥离下来。
本发明的有益效果在于:
1、本发明通过至少双层石墨烯的使用,以及低温层生长工艺的优化,使得至少有一层石墨烯可以在ZnO薄膜的生长气氛中稳定存在,解决了高温下ZnO单晶衬底上的石墨烯在ZnO的生长气氛中稳定性较差的问题;
2、本发明优化了ZnO低温层的生长工艺以对石墨烯进行保护,由于ZnO在较高温度下会发生分解对石墨烯造成破坏,因此低温层的温度限定为300~400℃,并且在生长ZnO低温层时需要同时打开锌源和O源,或先打开锌源再打开O源,以减少氧等离子体对石墨烯的破坏,在进行ZnO高温层的生长时,低温ZnO层对石墨烯具有保护作用。
3、本发明通过在ZnO单晶衬底上转移至少两层石墨烯,实现了ZnO/石墨烯复合衬底上可剥离ZnO薄膜的生长,与传统同质外延相比,用于长膜的ZnO单晶衬底可以重复使用,降低了ZnO单晶衬底的使用成本;
4、本发明实现了ZnO薄膜从硬质衬底上的剥离,且剥离方法简单,为ZnO薄膜在柔性器件方面的应用奠定了基础。
附图说明
图1是在ZnO/石墨烯复合衬底上生长的ZnO薄膜的结构示意图。
图2是剥离掉ZnO薄膜后ZnO单晶衬底表面AFM形貌图。
图3是ZnO薄膜生长前后ZnO单晶衬底上单、双层石墨烯的拉曼光谱图。
具体实施方式
实施例1
将转移了双层石墨烯的ZnO/石墨烯复合衬底放入分子束外延设备的生长室中,在650℃下对衬底进行退火20min,以修复ZnO单晶衬底的表面晶格。以纯O2经过射频活化形成的氧等离子体作为O源,活化O2的射频功率为300w。调节生长室真空度为1x10-7torr,以纯金属Zn源为金属源,调节Zn源温度为280℃。首先将衬底温度加热至300℃,在其上进行ZnO薄膜的生长,生长时间为20min,使得ZnO在ZnO/石墨烯复合衬底上形核生长;然后提高衬底温度至550℃,在其上进行ZnO薄膜的生长,生长时间为3h。生长结束后将薄膜在O2气氛下,以10℃/min的降温速率冷却至室温。
ZnO/石墨烯复合衬底上的ZnO薄膜的结构示意图如图1所示。
图2显示了剥离掉ZnO薄膜后ZnO单晶衬底表面的AFM表面形貌图,从图中可以看出,ZnO单晶衬底的表面比较干净,表面粗糙度Rq仅为0.59nm,满足ZnO薄膜的生长要求。
从图3中可以看出,在ZnO/双层石墨烯复合衬底上生长ZnO薄膜后,石墨烯的特征峰G峰和2D峰仍然存在,且G峰较强,说明石墨烯比较完整。
实施例2
将转移了双层石墨烯的ZnO/石墨烯复合衬底放入分子束外延设备的生长室中,在650℃下对衬底进行退火20min,以修复ZnO单晶衬底的表面晶格。以纯O2经过射频活化形成的氧等离子体作为O源,活化O2的射频功率为300w。调节生长室真空度为2.0x10-7torr,以纯金属Zn源为金属源,调节Zn源温度为270℃。首先将衬底温度加热至350℃,在其上进行ZnO薄膜的生长,生长时间为20min,使得ZnO在ZnO/石墨烯复合衬底上形核生长;然后提高衬底温度至600℃,在其上进行ZnO薄膜的生长,生长时间为3h。生长结束后将薄膜在O2气氛下,以10℃/min的降温速率冷却至室温。
所制备的ZnO薄膜可以从ZnO单晶衬底上剥离。
实施例3
将转移了双层石墨烯的ZnO/石墨烯复合衬底放入分子束外延设备的生长室中,在650℃下对衬底进行退火20min,以修复ZnO单晶衬底的表面晶格。以纯O2经过射频活化形成的氧等离子体作为O源,活化O2的射频功率为300w。调节生长室真空度为3x10-7torr,以纯金属Zn源为金属源,调节Zn源温度为260℃。首先将衬底温度加热至400℃,在其上进行ZnO薄膜的生长,生长时间为20min,使得ZnO在ZnO/石墨烯复合衬底上形核生长;然后提高衬底温度至500℃,在其上进行ZnO薄膜的生长,生长时间为3h。生长结束后将薄膜在O2气氛下,以10℃/min的降温速率冷却至室温。
所制备的ZnO薄膜可以从ZnO单晶衬底上剥离。
实施例4
在ZnO单晶衬底上转移单层石墨烯。
使用分子束外延设备在转移了单层石墨烯的ZnO/石墨烯复合衬底上生长ZnO薄膜,ZnO低温层的生长温度在300~400℃范围内变化,高温层的生长温度固定在550℃。实验结果表明生长过程中单层石墨烯被破坏,所制备的ZnO薄膜不能从ZnO单晶衬底上剥离。
从图3中可以看出,在ZnO/单层石墨烯复合衬底上生长ZnO薄膜后,石墨烯的特征峰2D峰消失且G峰也很弱,说明石墨烯被严重破坏。
实施例5
在ZnO单晶衬底上转移双层石墨烯。
使用分子束外延设备在转移了双层石墨烯的ZnO/石墨烯复合衬底上生长ZnO薄膜,ZnO低温层的生长温度在300~400℃范围内变化,高温层的生长温度固定在550℃。在长低温层时,提前打开O源,使得氧等离子体反射功率稳定在6w,然后再打开Zn源进行ZnO低温层和高温层的生长。实验结果表明生长过程中双层石墨烯均被破坏,所制备的ZnO薄膜不能从ZnO单晶衬底上剥离。
综上所述,本发明通过双层石墨烯的使用以及对ZnO低温层的生长工艺的优化,成功地在ZnO单晶衬底上制备出了可剥离的ZnO薄膜,实现了ZnO单晶衬底的重复使用,降低了ZnO单晶衬底的使用成本。

Claims (7)

1.一种基于石墨烯的可重复使用ZnO单晶衬底,其特征在于,所述衬底为ZnO/石墨烯衬底,包括ZnO单晶衬底以及附着于其表面的至少两层石墨烯。
2.根据权利要求1所述的基于石墨烯的可重复使用ZnO单晶衬底,其特征在于,所述石墨烯是通过湿法转移的方法转移到ZnO单晶衬底上。
3.根据权利要求2所述的基于石墨烯的可重复使用ZnO单晶衬底,其特征在于,所述衬底通过两次湿法转移将两片单层石墨烯转移到ZnO单晶衬底上获得。
4.一种ZnO薄膜的制备方法,其特征在于,基于如权利要求1所述的基于石墨烯的可重复使用ZnO单晶衬底制得,其方法包括以下步骤:
在所述ZnO/石墨烯衬底上进行ZnO薄膜的制备;制备过程采用低高温两阶段生长方法;之后将生长的ZnO薄膜从ZnO/石墨烯衬底上剥离。
5.根据权利要求4所述的ZnO薄膜的制备方法,其特征在于,所述的低高温两阶段生长方法具体如下:
将ZnO/石墨烯衬底转移到生长室中,在不超过650℃的温度下将衬底进行退火20min;以纯O2经过射频活化形成的氧等离子体作为O源,调节生长室真空度为1x10-7~3x10-7Torr,以纯金属Zn源为金属源,调节Zn源温度为260~280℃;在衬底上首先以较低温度300~400℃生长ZnO薄膜,使得ZnO在石墨烯上形核生长,然后提高衬底温度至500~600℃生长所需厚度的ZnO薄膜,生长结束后将薄膜在O2气氛下,冷却至室温。
6.根据权利要求4所述的ZnO薄膜的制备方法,其特征在于,所述的在较低温度下生长ZnO薄膜时,需要同时打开锌源和O源,或先打开锌源再打开O源。
7.根据权利要求4所述的ZnO薄膜的生长方法,其特征在于,采用热释放胶带将ZnO薄膜从ZnO/石墨烯衬底上剥离。
CN202110539931.9A 2021-05-18 2021-05-18 一种基于石墨烯的可重复使用ZnO单晶衬底及制备ZnO薄膜的方法 Active CN113394306B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110539931.9A CN113394306B (zh) 2021-05-18 2021-05-18 一种基于石墨烯的可重复使用ZnO单晶衬底及制备ZnO薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110539931.9A CN113394306B (zh) 2021-05-18 2021-05-18 一种基于石墨烯的可重复使用ZnO单晶衬底及制备ZnO薄膜的方法

Publications (2)

Publication Number Publication Date
CN113394306A true CN113394306A (zh) 2021-09-14
CN113394306B CN113394306B (zh) 2022-09-27

Family

ID=77617212

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110539931.9A Active CN113394306B (zh) 2021-05-18 2021-05-18 一种基于石墨烯的可重复使用ZnO单晶衬底及制备ZnO薄膜的方法

Country Status (1)

Country Link
CN (1) CN113394306B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1716653A (zh) * 2005-06-09 2006-01-04 大连理工大学 ZnO-GaN复合衬底GaN发光器件及其制备方法
CN1722482A (zh) * 2005-06-27 2006-01-18 金芃 导电和绝缘准氧化锌衬底及垂直结构的半导体发光二极管
CN102903616A (zh) * 2012-10-22 2013-01-30 西安电子科技大学 基于ZnO衬底的石墨烯CVD直接外延生长方法及制造的器件
CN103794469A (zh) * 2012-10-30 2014-05-14 北京北方微电子基地设备工艺研究中心有限责任公司 一种氮化镓薄膜层的制备方法及衬底
CN105967174A (zh) * 2016-05-11 2016-09-28 芜湖德豪润达光电科技有限公司 一种在蓝宝石衬底上生长石墨烯的方法
CN109585269A (zh) * 2018-11-09 2019-04-05 北京大学 一种利用二维晶体过渡层制备半导体单晶衬底的方法
CN110265356A (zh) * 2019-06-21 2019-09-20 西安电子科技大学 基于石墨烯的氮化镓外延层剥离方法
CN111334856A (zh) * 2020-02-18 2020-06-26 浙江大学 用等离子体辅助分子束外延以准范德华外延生长高质量ZnO单晶薄膜的方法
CN112053942A (zh) * 2020-09-14 2020-12-08 吉林大学 一种在石墨烯上生长GaN薄膜的方法
CN113990739A (zh) * 2021-10-26 2022-01-28 西安电子科技大学 基于范德华薄膜上的氧化镓外延层转印方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1716653A (zh) * 2005-06-09 2006-01-04 大连理工大学 ZnO-GaN复合衬底GaN发光器件及其制备方法
CN1722482A (zh) * 2005-06-27 2006-01-18 金芃 导电和绝缘准氧化锌衬底及垂直结构的半导体发光二极管
CN102903616A (zh) * 2012-10-22 2013-01-30 西安电子科技大学 基于ZnO衬底的石墨烯CVD直接外延生长方法及制造的器件
CN103794469A (zh) * 2012-10-30 2014-05-14 北京北方微电子基地设备工艺研究中心有限责任公司 一种氮化镓薄膜层的制备方法及衬底
CN105967174A (zh) * 2016-05-11 2016-09-28 芜湖德豪润达光电科技有限公司 一种在蓝宝石衬底上生长石墨烯的方法
CN109585269A (zh) * 2018-11-09 2019-04-05 北京大学 一种利用二维晶体过渡层制备半导体单晶衬底的方法
CN110265356A (zh) * 2019-06-21 2019-09-20 西安电子科技大学 基于石墨烯的氮化镓外延层剥离方法
CN111334856A (zh) * 2020-02-18 2020-06-26 浙江大学 用等离子体辅助分子束外延以准范德华外延生长高质量ZnO单晶薄膜的方法
CN112053942A (zh) * 2020-09-14 2020-12-08 吉林大学 一种在石墨烯上生长GaN薄膜的方法
CN113990739A (zh) * 2021-10-26 2022-01-28 西安电子科技大学 基于范德华薄膜上的氧化镓外延层转印方法

Also Published As

Publication number Publication date
CN113394306B (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
CN107039245B (zh) 提高氧化镓材料导热性的方法
US20130078424A1 (en) Hexagonal Boron Nitride Substrate With Monatomic Layer Step, And Preparation Method And Application Thereof
CN104313684A (zh) 一种制备六方氮化硼二维原子晶体的方法
CN110373716B (zh) 一种二维超薄CuBr纳米片的制备方法及其应用
CN111334856B (zh) 用等离子体辅助分子束外延以准范德华外延生长高质量ZnO单晶薄膜的方法
CN113564699B (zh) 基于Cu2O介质层生长单层单晶石墨烯的方法
CN111933519B (zh) 一种非层状二维氧化镓薄膜的制备方法
CN116732607A (zh) 氮化物外延结构、外延生长方法及其应用
CN113130296B (zh) 一种六方氮化硼上生长氮化镓的方法
CN110875170B (zh) 基于氮化硼中间层远程外延生长二硫化铪的方法
CN113394306B (zh) 一种基于石墨烯的可重复使用ZnO单晶衬底及制备ZnO薄膜的方法
CN204167345U (zh) 一种使用 SiC 衬底的氮化物 LED 外延结构
CN108511322A (zh) 一种在二维石墨衬底上制备GaN薄膜的方法
CN114277443B (zh) 氮化物单晶薄膜及其制备方法和应用
CN112830479B (zh) 一种利用硫束流解耦技术制备易剥离近自由态石墨烯的方法
CN102286741B (zh) 碲化镉薄膜制备方法
CN114975078A (zh) 一种不同层数WS2-WSe2横向异质结及其制备和应用
CN110690175B (zh) 一种提高剥离Si基和SOI基Ge薄膜质量的方法
US20230154747A1 (en) A seed layer, a heterostructure comprising the seed layer and a method of forming a layer of material using the seed layer
CN114318523A (zh) 一种大尺寸单晶金刚石外延层剥离方法
CN102424951A (zh) 一种制备半极性p型ZnO多晶薄膜的方法
CN112053942A (zh) 一种在石墨烯上生长GaN薄膜的方法
CN101748480B (zh) Si衬底上生长ZnO外延薄膜的方法
CN110660655A (zh) 一种无气泡无穿透位错Ge/Si异质混合集成方法
CN104332540A (zh) 一种制备高发光性能p型ZnO薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant