CN110373716B - 一种二维超薄CuBr纳米片的制备方法及其应用 - Google Patents

一种二维超薄CuBr纳米片的制备方法及其应用 Download PDF

Info

Publication number
CN110373716B
CN110373716B CN201910531231.8A CN201910531231A CN110373716B CN 110373716 B CN110373716 B CN 110373716B CN 201910531231 A CN201910531231 A CN 201910531231A CN 110373716 B CN110373716 B CN 110373716B
Authority
CN
China
Prior art keywords
cubr
nanosheet
substrate
preparation
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910531231.8A
Other languages
English (en)
Other versions
CN110373716A (zh
Inventor
熊杰
龚传辉
晏超贻
汪洋
饶高峰
黄建文
张淼
邬春阳
戴丽萍
张万里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910531231.8A priority Critical patent/CN110373716B/zh
Publication of CN110373716A publication Critical patent/CN110373716A/zh
Priority to US16/905,995 priority patent/US11114579B2/en
Application granted granted Critical
Publication of CN110373716B publication Critical patent/CN110373716B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种二维超薄CuBr纳米片的制备方法及其应用,属于二维纳米材料制备技术领域。通过简单的化学气相沉积法,在云母上通过范得瓦尔斯外延生长,避免了基底与材料的晶格失配;采用BiBr3作为反应源、铜箔作为限域手段,通过调节源量、反应温度和反应时间等参数,得到了厚度为0.9nm~200nm,尺寸为2~150μm的三角形单晶纳米片,实现了CuBr纳米片的可控生长,且制备的CuBr单晶性好,与基底之间不存在晶格失配。

Description

一种二维超薄CuBr纳米片的制备方法及其应用
技术领域
本发明属于二维纳米材料制备技术领域,具体涉及一种二维超薄非层状CuBr单晶纳米片的制备方法及其应用。
背景技术
自从2004年石墨烯被安德烈海姆发现以来,众多不同种类不同性质的二维材料,如六方氮化硼,过渡金属硫化物,黑磷等相继被发现并展示出极其优异的电学性质和光学性能。然而,目前二维材料的研究主要局限于具有层状结构的材料,这是因为层状材料的层间范德华接触较弱,可以较为容易地通过机械剥离或CVD等方法制备。但相比于层状材料,非层状材料占据着大多数的材料种类,并且有众多极其重要的半导体材料在属于此列。因此将非层状半导体材料二维化,利用二维材料特性,提升半导体材料的电学和光学性能,并且能够避免晶格失配,有利于构建异质结器件,具有重要意义。然而迄今为止,如何低成本生长超薄高性能的二维非层状材料仍存在着极大的问题。
CuBr是一种具有闪锌矿结构的直接带隙宽禁带半导体材料,室温禁带宽度约为3eV,具有很高的激子结合能108meV和非线性光学的性质,相比于GaN,SiC,ZnO等传统宽禁带半导体,其具有低成本、激子能级丰富和激子结合能大的优势,在发光二极管、紫外光电探测,非线性光学等领域有着广泛的应用前景。但是在过去的块体材料应用中,由于其存在形式多为多晶形式,并且存在与基底的晶格失配的现象,材料缺陷较多,因此制备出来的器件性能往往很差。
发明内容
针对背景技术所存在的不易制备高质量二维非层状CuBr单晶材料的问题,本发明的目的在于提供一种二维超薄CuBr单晶纳米片的制备方法及其应用,该方法通过简单的化学气相沉积法,采用BiBr3作为反应源、铜箔作为限域手段,通过调节源量、反应温度和生长时间控制生成的二维纳米片的厚度和尺寸,且制备的CuBr单晶性好,与基底之间不存在晶格失配。
为实现上述目的,本发明的技术方案如下:
一种二维超薄CuBr单晶纳米片的制备方法,包括以下步骤:
步骤1:将BiBr3粉末置于坩埚中,然后将坩埚放置于石英管上游第一加热区中心;将覆盖铜箔的基片放置于石英管下游第二加热区中心,其中,铜箔与基片的间距为0~100μm;
步骤2:将石英管内部抽真空至0.1Pa以下,通入Ar气使管内气压保持常压环境,然后向管内通入Ar和H2混合气体;
步骤3:将第二加热区升温至275~325℃,保持10~60min后,再将第一加热区升温至200~275℃,反应3~20min,反应结束后自然冷却至室温,取出基片,即可在基片上制备得到所述的CuBr单晶纳米片。
进一步地,步骤1所述基片为具有范德瓦尔斯力的基片,具体为云母或者石墨烯基底等。
进一步地,步骤1所述BiBr3粉末的质量为2~200mg。
进一步地,步骤2所述Ar和H2混合气体中,H2体积占比为0%~10%,混合气体的流速为50~100sccm。
进一步地,步骤3所述第二加热区的升温速率为10~25℃/min;第一加热区的升温速率为15~30℃/min。
本发明还公开了一种采用如上述制备方法得到的CuBr单晶纳米片,厚度为0.9nm~200nm,尺寸为2~150μm。
本发明还提供了上述CuBr单晶纳米片在光电探测器中的应用,器件制备方法为:在所述CuBr单晶纳米片上覆盖掩膜板,然后通过热蒸镀原位沉积银电极,其中电极厚度为25~100nm。
进一步地,所述掩膜板为Ni网、Cu网或Fe网等。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1.本发明提供的一种超薄二维单晶CuBr纳米片的制备方法,该方法通过简单的化学气相沉积法,采用BiBr3作为反应源、铜箔作为限域手段,通过调节源量、反应温度和反应时间等参数,得到了厚度为0.9nm~200nm,尺寸为2~150μm的三角形单晶纳米片,实现了CuBr纳米片的可控生长。
2.本发明在云母上通过范德瓦尔斯外延生长,避免了基底与材料的晶格失配,得到了高质量的二维单晶CuBr纳米片,可控性强,工艺参数容易控制,安全绿色无污染、产率高。
附图说明
图1为本发明CuBr纳米片的生长装置示意图。
图2为本发明实施例1所制备的CuBr纳米片的光学显微图,右上角插图为对应的AFM表征图。
图3为本发明实施例1所制备的CuBr纳米片的结构和元素表征图;
其中,(a)为XRD图谱以及闪锌矿结构CuBr的pdf卡片,(b)为拉曼图谱,(c)为XPS图谱。
图4为本发明实施例1所制备的CuBr纳米片的光学性能表征图;
其中,(a)为紫外-可见吸收光谱图,(b)为光致发光图谱图,(c)为荧光寿命数据图。
图5基于本发明实施例1所得到的CuBr纳米片制备的光电探测器件在不同光功率下的光响应I-V图。
图6为本发明实施例2所制备的CuBr纳米片的AFM扫描图,右上角插图为对应框内的精细AFM扫描图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合实施方式和附图,对本发明作进一步地详细描述。
实施例1
一种二维超薄CuBr单晶纳米片的制备方法,包括以下步骤:
步骤1:将10mg的BiBr3粉末置于Al2O3坩埚中,然后将坩埚放入石英管上游第一加热区中心;在石英板上放置云母基片,在基片上覆盖表面平整的铜箔,控制铜箔与云母基片的间距为50μm,然后将石英板放入石英管下游第二加热区中心;
步骤2:将石英管内部抽真空至0.1Pa以下,通入500sccm的Ar气,以去除管内残余的空气并使管内气压保持常压环境,然后向管内通入H2体积占比5%的Ar/H2混合气体,将气流调整为材料生长所需要的流速50sccm;
步骤3:将第二加热区在15min内升温至325℃,保持15min后,再将第一加热区在10min内加热至200℃,反应5min,反应结束后自然冷却至室温,取出基片,即可在基片上制备得到所述的CuBr单晶纳米片。
一种基于上述CuBr单晶纳米片的光电探测器的制备,包括以下步骤:将具有600目的Ni格栅覆盖在CuBr单晶纳米片上,然后通过热蒸镀的方法将50nm的Ag电极沉积在二维CuBr薄片形成光电探测器件。
实施例1制备的CuBr单晶纳米片的光学显微图如图2所示,结构和元素表征图如图3所示,光学性能表征图如图4所示,基于CuBr单晶纳米片制备的光电探测器件在不同光功率下的光响应I-V图如图5所示。
实施例2
一种二维超薄CuBr单晶纳米片的制备方法,包括以下步骤:
步骤1:将10mg的BiBr3粉末置于Al2O3坩埚中,然后将坩埚放入石英管上游第一加热区中心;在石英板上放置云母基片,在基片上覆盖表面平整的铜箔,控制铜箔与云母基片的间距为0μm,然后将石英板放入石英管下游第二加热区中心;
步骤2:将石英管内部抽真空至0.1Pa以下,通入500sccm的Ar气,以去除管内残余的空气并使管内气压保持常压环境,然后向管内通入H2体积占比5%的Ar/H2混合气体,将气流调整为材料生长所需要的流速50sccm;
步骤3:将第二加热区在15min内升温至325℃,保持15min后,再将第一加热区在10min内加热至220℃,反应5min,反应结束后自然冷却至室温,取出基片,即可在基片上制备得到所述的CuBr单晶纳米片。
实施例2制备的CuBr单晶纳米片的AFM扫描图如图6所示。
实施例3
步骤1:将50mg的BiBr3粉末置于Al2O3坩埚中,然后将坩埚放入石英管上游第一加热区中心,在石英板上放置云母基片,在基片上覆盖表面平整的铜箔,控制铜箔与云母基片的间距为25μm,然后将石英板放入石英管下游第二加热区中心;
步骤2:将石英管内部抽真空至0.1Pa以下,通入500sccm的Ar气,以去除管内残余的空气并使管内气压保持常压环境,然后向管内通入Ar气,将气流调整为材料生长所需要的流速75sccm;
步骤3:将第二加热区在15min内升温至305℃,保持15min后,再将第一加热区在10min内加热至275℃,反应5min,反应结束后自然冷却至室温,取出基片,即可在基片上制备得到所述的CuBr单晶纳米片。
实施例4
按照实施例2的步骤制备CuBr单晶纳米片,仅将步骤1中的铜箔与云母基片的间距调整为100μm,其他步骤不变。
本实施例制备的CuBr单晶纳米片的厚度较厚,可达200nm。
图1为本发明CuBr纳米片的生长装置示意图。本发明在石英管的两个加热温区分别放置Al2O3坩埚和石英板,其中BiBr3源放置于坩埚内,然后置于上游加热区中心,云母衬底上覆盖有铜箔进行反应限域,放置在石英板上,然后置于下游加热区中心;加热时,BiBr3源沿着气流方向进入铜箔与云母的夹缝,与铜箔接触发生反应,沉积于云母上,制备得到所述CuBr纳米片。
图2为实施例1制备的二维CuBr纳米片的光学显微图,从图中可以看出,CuBr纳米片为三角形,厚度在8.8nm,尺寸在4μm,均匀地生在在云母片表面。
图3为本发明实施例1所制备的CuBr纳米片的结构和元素表征图,其中,图3a为二维CuBr纳米片的XRD衍射图谱,可以看到,CuBr纳米片的衍射峰完全符合闪锌矿结构的CuBr的PDF卡片,故生长所得材料为闪锌矿结构的CuBr;图3b为拉曼图谱,其峰位与之前闪锌矿结构的CuBr的拉曼峰位置相符合;图3c为XPS分析数据,图中为Cu2p1/2,Cu2p3/2,Br3d3/2,Br3d5/2四个峰位,并且Cu2p附近没有卫星峰,说明所得CuBr纯度较高,结晶性较好。
图4为本发明实施例1所制备的CuBr纳米片的光学性能表征图,其中,图4a为二维CuBr纳米片的室温激子吸收现象,具有Z1,2和Z3激子的2个主要吸收峰,说明CuBr具有较大的激子结合能,图4b为二维CuBr纳米片在416nm附近的室温激子荧光现象,说明了CuBr具有短波发光器件的应用前景,图4c为二维CuBr纳米片的荧光寿命曲线图,从图中可以看出,材料具有346.59ps的短荧光寿命,说明了CuBr具有较高的晶体质量。
图5为二维CuBr纳米片在不同功率下的345nm紫外光照下光电器件性能,展示了一个在0V下非0电流的器件性能,说明其具有自驱动的紫外光探测性能。
图6为实施例2的生长的CuBr纳米片,该参数制备的纳米片具有45μm边长,厚度可达0.91nm。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (6)

1.一种二维超薄CuBr单晶纳米片的制备方法,其特征在于,包括以下步骤:
步骤1:将BiBr3粉末放置于石英管上游第一加热区中心,将覆盖铜箔的基片放置于石英管下游第二加热区中心,其中,所述铜箔与基片的间距为0~100μm;
步骤2:将石英管内部抽真空至0.1Pa以下,通入Ar气使管内气压保持常压环境,然后向管内通入Ar气、或Ar气和H2混合气体;
步骤3:将第二加热区升温至275~325℃,保持10~60min后,再将第一加热区升温至200~275℃,反应3~20min,反应结束后自然冷却至室温,取出基片,即可在基片上制备得到所述的CuBr单晶纳米片。
2.根据权利要求1所述二维超薄CuBr单晶纳米片的制备方法,其特征在于,步骤1所述基片为具有范德瓦尔斯力的基片。
3.根据权利要求2所述二维超薄CuBr单晶纳米片的制备方法,其特征在于,所述具有范德瓦尔斯力的基片为云母或石墨烯基底。
4.根据权利要求1所述二维超薄CuBr单晶纳米片的制备方法,其特征在于,步骤1所述BiBr3粉末的质量为2~200mg。
5.根据权利要求1所述二维超薄CuBr单晶纳米片的制备方法,其特征在于,步骤2所述Ar和H2混合气体中,H2体积占比大于0%并且小于等于10%,混合气体的流速为50~100sccm。
6.根据权利要求1所述二维超薄CuBr单晶纳米片的制备方法,其特征在于,步骤3所述第二加热区的升温速率为10~25℃/min,第一加热区的升温速率为15~30℃/min。
CN201910531231.8A 2019-06-19 2019-06-19 一种二维超薄CuBr纳米片的制备方法及其应用 Active CN110373716B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910531231.8A CN110373716B (zh) 2019-06-19 2019-06-19 一种二维超薄CuBr纳米片的制备方法及其应用
US16/905,995 US11114579B2 (en) 2019-06-19 2020-06-19 Method for preparing ultrathin two-dimensional nanosheets and applications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910531231.8A CN110373716B (zh) 2019-06-19 2019-06-19 一种二维超薄CuBr纳米片的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN110373716A CN110373716A (zh) 2019-10-25
CN110373716B true CN110373716B (zh) 2021-07-06

Family

ID=68248965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910531231.8A Active CN110373716B (zh) 2019-06-19 2019-06-19 一种二维超薄CuBr纳米片的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN110373716B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235632B (zh) * 2020-01-20 2021-06-01 电子科技大学 一种二维超薄BiOBr单晶纳米片的制备方法及其应用
CN111254488B (zh) * 2020-01-20 2021-09-24 电子科技大学 一种二维超薄Fe3O4单晶纳米片的制备方法及其应用
CN112941627B (zh) * 2021-01-29 2023-10-13 中南大学 一种垂直生长的超薄Cr2Te3单晶纳米片的制备方法
CN114262934B (zh) * 2021-12-23 2022-10-04 哈尔滨工业大学(深圳) 一种铌酸镁单晶纳米片及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191545A (zh) * 2010-03-08 2011-09-21 宁波大学 一种溴化亚铜晶体的生长方法
CN107083532A (zh) * 2016-09-19 2017-08-22 鲁东大学 一种 CuI 纳米结构的制备方法
CN107662939B (zh) * 2017-09-24 2019-08-06 盐城师范学院 一种铁离子诱导的氯化亚铜片状纳米晶体材料的界面快速可控制备方法

Also Published As

Publication number Publication date
CN110373716A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
CN110373716B (zh) 一种二维超薄CuBr纳米片的制备方法及其应用
US20200403111A1 (en) Method for preparing ultrathin two-dimensional nanosheets and applications thereof
KR101284059B1 (ko) 그라핀-산화물반도체 이종접합 소자 및 그의 제조방법
Deivanayaki et al. Optical and structural characterization of CdTe thin films by chemical bath deposition technique
Li et al. Template approach to large-area non-layered Ga-group two-dimensional crystals from printed skin of liquid gallium
Yang et al. Shape evolution of two dimensional hexagonal boron nitride single domains on Cu/Ni alloy and its applications in ultraviolet detection
Qin et al. van der Waals epitaxy of large-area continuous ReS 2 films on mica substrate
Aziz et al. Seedless growth of zinc oxide flower-shaped structures on multilayer graphene by electrochemical deposition
CN109056057B (zh) 一种大尺寸单晶氧化镓纳米片的制备方法
Luo et al. Piezoelectric effect enhancing decay time of p-NiO/n-ZnO ultraviolet photodetector
WO2016030746A1 (en) Synthesis of vertically aligned metal oxide nanostructures
Chao et al. Growth and characterization of type-II ZnO/ZnTe core-shell nanowire arrays for solar cell applications
CN113278948B (zh) 一种硫化锡/二硫化锡异质结材料及其制备方法
CN107119319B (zh) 一种碘化亚铜二维材料、制备及其应用
Scholz et al. MOVPE growth of GaAs on Ge substrates by inserting a thin low temperature buffer layer
Kuo et al. The synthesis and electrical characterization of Cu2O/Al: ZnO radial p–n junction nanowire arrays
CN102345162A (zh) 一维轴向型的纳米氧化锌/硫化锌异质结及其制备方法
Al-Douri et al. Structural and optical investigations of In doped ZnO binary compound
Hamzan et al. Effects of substrate temperature on the growth, structural and optical properties of NiSi/SiC core–shell nanowires
CN102208340B (zh) 自支撑氮化镓衬底的制作方法
Wang et al. Coaxial ZnSe/Si nanocables with controlled p-type shell doping
Goh et al. Synthesis of nickel catalyzed Si/SiC core–shell nanowires by HWCVD
CN101289172B (zh) 通过气相传输法制备InN纳米线和纳米棒的方法
CN102659174A (zh) 一种两步法制备氮化镓/硫化锌纳米异质结方法
CN101693528B (zh) 一种生长ZnSe单晶纳米线的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant