CN113390305B - 疏水憎冰涂层及具有该涂层的弹翼结构 - Google Patents

疏水憎冰涂层及具有该涂层的弹翼结构 Download PDF

Info

Publication number
CN113390305B
CN113390305B CN202110934004.7A CN202110934004A CN113390305B CN 113390305 B CN113390305 B CN 113390305B CN 202110934004 A CN202110934004 A CN 202110934004A CN 113390305 B CN113390305 B CN 113390305B
Authority
CN
China
Prior art keywords
hydrophobic
coating
missile wing
preparation
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110934004.7A
Other languages
English (en)
Other versions
CN113390305A (zh
Inventor
杨红娜
蔡风园
修建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Aerospace Tianmei Technology Co ltd
Beijing Aerospace Hexing Technology Co Ltd
Original Assignee
Beijing Hangtian Hexing Technology Co ltd
Beijing Aerospace Tianmei Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Hangtian Hexing Technology Co ltd, Beijing Aerospace Tianmei Technology Co ltd filed Critical Beijing Hangtian Hexing Technology Co ltd
Priority to CN202110934004.7A priority Critical patent/CN113390305B/zh
Publication of CN113390305A publication Critical patent/CN113390305A/zh
Application granted granted Critical
Publication of CN113390305B publication Critical patent/CN113390305B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/02Stabilising arrangements
    • F42B10/04Stabilising arrangements using fixed fins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Fluid Mechanics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种疏水憎冰涂层的制备方法以及具有该方法制备得到涂层的复合弹翼结构,第一步对弹翼改性在其表面得到含碳的活性官能团,能够提高后续疏水憎冰涂层与基体的结合性,避免涂层在复杂工况下性能降低,随后通过等离子体增强化学气相沉积方法制备得到铝掺杂的类金刚石涂层,通过对制备参数的调整得到含铝碳化物微纳结构表面,最终提高弹翼的疏水憎冰性能。

Description

疏水憎冰涂层及具有该涂层的弹翼结构
技术领域
本申请涉及一种疏水憎冰涂层及其制备方法,以及具有该涂层的弹翼结构。
背景技术
弹翼是连接在弹体上的主要翼面,其主要功能是产生空气升力,托举弹体,并起到稳定操控的作用。若在飞行过程中附着水汽后,由于高空气温较低会出现结冰现象,冰层的出现会影响弹翼的气动外形以及操控稳定性,导致升力变化,对飞行产生不利影响。
超疏水涂层是一种理想的疏水防覆冰方法,具有零耗能、无复杂的控制系统等优点,相比于电热除冰法不在翼体内增设其他结构;超疏水涂层主要利用涂层的低表面能和微纳结构,减小水滴在涂层表面附着,使水滴在结冰前脱离表面,即使出现结冰现象在震动下冰层也较易脱落。
本申请提供一种疏水憎冰涂层的制备方法,其获得的涂层具有较高的疏水、憎冰性能,并且与弹翼表面具有较高的膜基结合力。
发明内容
在弹翼碳纤维增强预浸布蒙皮表面制备得到疏水防覆冰涂层,主要思路为:第一步弹翼预处理,采用低压室温等离子体改性预浸布表面,在其表面产生活性含碳官能团;第二步,采用PECVD(plasma enhance chemical vapor deposition 、等离子体增强化学气相沉积)技术制备Al-DLC(Al掺杂 diamond like carbon Al、掺杂类金刚石)疏水防覆冰涂层,随后对制备得到的具有涂层的弹翼进行静态接触角、覆冰结合力等测试。
第一步,首先对弹翼整体进行超声水洗清洁,采用电介质阻挡放电反应器中进行常温等离子体改性,在反应腔室电极间通入高纯乙炔、氧气混合气体,通气流速为30-50mL/min,乙炔氧气体积比为1:1,保持腔室内含碳气氛,在电介质阻挡放电反应器中施加10kHz、20-25kV的交流电源产生常温含碳等离子体,对样品施加处理1-2min。
第二步,在PECVD设备中,沉积温度50-80℃,偏压2000-3000V,沉积时间1-2h,气压0.01-0.2pa,甲烷与三甲基铝的流速比为(5-7):1。
通过第一步对弹翼改性在其表面得到含碳的活性官能团,能够提高后续疏水憎冰涂层与基体的结合性,避免涂层在复杂工况下性能降低,随后通过等离子体增强化学气相沉积方法制备得到铝掺杂的类金刚石涂层,通过对制备参数的调整得到含铝碳化物微纳结构表面,最终提高弹翼的疏水憎冰性能。
复合弹翼包括主翼及副翼,二者之间通过高强纤维编织布连接。
附图说明
图1为复合弹翼结构示意图;
图中:1、主翼;2、高强纤维编织布;3、副翼;4、泡沫;5、纤维增强缠绕层;6、碳纤维增强预浸布蒙皮。
具体实施方式
实施例1
在弹翼碳纤维增强预浸布蒙皮表面制备得到疏水防覆冰涂层。首先对弹翼整体进行超声水洗清洁,采用电介质阻挡放电反应器中进行常温等离子体改性,在反应腔室电极间通入高纯乙炔、氧气混合气体,通气流速为40mL/min,乙炔氧气体积比为1:1,保持腔室内含碳气氛,在电介质阻挡放电反应器中施加10kHz、20kV的交流电源产生常温含碳等离子体。对样品施加处理1min,得到表面改性的弹翼。
第二步,在PECVD设备中制备掺杂Al的DLC疏水憎冰涂层,沉积温度50℃,偏压2kV,沉积时间1h,气压0.01pa,甲烷与三甲基铝的流速比为5:1。
实施例2-5
实施例2-5制备步骤与实施例1相同,具体参数参见表1和表2。
制备得到的涂层进行膜基结合强度测试。接触角测试采用GB/T24368-2009测试标准进行,冰粘附力测试方法为,在透明比色皿中装入1mL去离子水,其开口一端与样品紧密贴紧,倒置后放入冰箱内低温冷冻1h,取出后迅速测试,采用测量最大推力值,结合实际接触面积得到冰粘附力。测试得到的数据参见表3,可见得到的涂层具有较高的疏水憎冰性能。
表1.实施例1-5第一步改性处理参数
Figure 56194DEST_PATH_IMAGE002
表2.实施例1-5第二步沉积处理参数
Figure 973335DEST_PATH_IMAGE004
表3.实施例1-5测试性能参数
Figure 815389DEST_PATH_IMAGE006
对比例1-4
对比例1-4制备步骤与实施例1相同,调整第一步改性处理参数,具体数据参见表4。通过膜基结合力测试,实施例1-5结合力均大于30N,对比例1中未通入含碳气体,导致无法得到预期的活性官能团,其膜基结合力不足20N,仅为18N;对比例2中处理时间不足,通气速率改变也会导致膜基结合力无法达到30N,为22N;对比例3和对比例4中对通气速率调整,其会影响产生的活性官能团种类和数量,最终导致膜基结合力不足。
表4.对比例1-4第一步改性处理参数
Figure DEST_PATH_IMAGE008
对比例5-8
对比例5-8制备步骤与实施例1相同,调整第二步涂层制备工艺,具体参数参见表5。通过对前驱体比例的调整,发现其显著影响疏水憎冰性能,前驱体调整会影响碳化物微纳米结构的形貌,而微纳米结构特别是其结构产生的表面空隙密度、空隙大小的变化,会导致水滴的浸润和冰附着状态的变化。
表5.对比例5-8第二步制备参数
Figure DEST_PATH_IMAGE010
实施例6
如图1所示的复合弹翼结构示意图,复合弹翼包括主翼1及副翼3,二者之间通过高强纤维编织布2连接,主翼1和副翼3主体为泡沫4,通过纤维增强缠绕层5包覆泡沫4,再在其上设置碳纤维增强预浸布蒙皮6结构,随后通过实施例1中的方法,在弹翼蒙皮表面制备得到疏水防覆冰涂层。

Claims (3)

1.一种疏水憎冰涂层的制备方法,其特征在于:
第一步,采用室温等离子体以高纯乙炔、氧气混合气体改性基体,在其表面产生活性含碳官能团,所述基体为碳纤维增强预浸布蒙皮;第二步,采用PECVD技术制备Al-DLC疏水憎冰涂层,第二步具体制备方法包括,在PECVD设备中,沉积温度50-80℃,偏压2000-3000V,沉积时间1-2h,气压0.01-0.2pa,甲烷与三甲基铝的流速比为(5-7):1。
2.如权利要求1所述的制备方法,其特征在于第一步具体改性方法包括,首先对弹翼整体进行超声水洗清洁,采用电介质阻挡放电反应器中进行常温等离子体改性,在反应腔室电极间通入高纯乙炔、氧气混合气体,通气流速为30-50mL/min,乙炔氧气体积比为1:1,保持腔室内含碳气氛,在电介质阻挡放电反应器中施加10kHz、20-25kV的交流电源产生常温含碳等离子体,对样品施加处理1-2min。
3.一种复合弹翼结构,其特征在于蒙皮表面具有如权利要求1-2任一项所述制备方法制备得到的疏水憎冰涂层,复合弹翼包括主翼及副翼,二者之间通过高强纤维编织布连接。
CN202110934004.7A 2021-08-16 2021-08-16 疏水憎冰涂层及具有该涂层的弹翼结构 Active CN113390305B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110934004.7A CN113390305B (zh) 2021-08-16 2021-08-16 疏水憎冰涂层及具有该涂层的弹翼结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110934004.7A CN113390305B (zh) 2021-08-16 2021-08-16 疏水憎冰涂层及具有该涂层的弹翼结构

Publications (2)

Publication Number Publication Date
CN113390305A CN113390305A (zh) 2021-09-14
CN113390305B true CN113390305B (zh) 2021-10-29

Family

ID=77622560

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110934004.7A Active CN113390305B (zh) 2021-08-16 2021-08-16 疏水憎冰涂层及具有该涂层的弹翼结构

Country Status (1)

Country Link
CN (1) CN113390305B (zh)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100392840B1 (ko) * 2000-12-02 2003-07-28 주식회사 우광케미칼 저온 플라즈마 중합법을 이용한 중합박막의 형성방법
CN1985144A (zh) * 2003-11-26 2007-06-20 索鲁科普工业有限公司 自补救发射体
US7049247B2 (en) * 2004-05-03 2006-05-23 International Business Machines Corporation Method for fabricating an ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device and electronic device made
DE102005035673A1 (de) * 2005-07-29 2007-02-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Photokatalytisches Schichtsystem mit hohem Schalthub
US8968827B2 (en) * 2008-04-01 2015-03-03 U.S. Department Of Energy Methods of forming boron nitride
US9062219B2 (en) * 2009-01-21 2015-06-23 Xerox Corporation Superhydrophobic nano-fabrics and coatings
CN102459693B (zh) * 2009-05-13 2015-11-25 Sio2医药产品公司 使用有机硅前体的pecvd涂层
EP2792379B1 (de) * 2013-04-15 2016-04-13 Genigo GmbH Hydrophil innenbeschichtetes medizintechnisches Gerät
CN103956373A (zh) * 2013-12-18 2014-07-30 上海天马有机发光显示技术有限公司 一种疏水有机薄膜封装的有机发光显示装置及其制造方法
TWI665330B (zh) * 2018-06-21 2019-07-11 Feng Chia University 抗刮疏水層鍍製於金屬表面的方法
CN112026205B (zh) * 2020-08-20 2022-07-01 四川一诺高分子材料科技有限公司 一种共性雷达天线罩的制造方法
CN113086161A (zh) * 2021-04-29 2021-07-09 吉林大学 一种仿生疏水防冰机翼

Also Published As

Publication number Publication date
CN113390305A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
CN102677022B (zh) 一种原子层沉积装置
AU2019101816A4 (en) Method for preparing protective coating for plasma etching chamber of IC equipment
CN109545657A (zh) 一种改善碳化硅衬底上生长的氧化镓薄膜的方法
CN104805405A (zh) 一种氮化铝压电薄膜及其制备方法
CN103121670A (zh) 远程等离子体增强原子层沉积低温生长石墨烯的方法
CN107604675B (zh) 一种基于气相碳纳米管分散雾的定向碳纳米管改性碳纤维表面的接触端处理方法
CN105453249A (zh) 保持架、其制造方法及其使用
CN113390305B (zh) 疏水憎冰涂层及具有该涂层的弹翼结构
CN105385983A (zh) 一种以纳米碳材料的热扩散为预处理的硬质涂层制备方法
CN104862654B (zh) 一体化大尺寸高纯度超导钇钡铜氧旋转靶材及其制备方法
CN108218476A (zh) 一种稀土镥硅酸盐复合环境障涂层及其制备方法
CN107299345A (zh) 一种SiCf/SiC复合材料导向器叶片的环境防护涂层及其制备方法
Sun et al. A two-step method for high efficient and continuous carbon fiber treatment with enhanced fiber strength and interfacial adhesion
CN110416039B (zh) 一种太赫兹波段真空器件用的输能窗片及其制备方法
CN101323971A (zh) 一种利用缓冲层制备高质量ZnO薄膜的方法
CN115028472A (zh) 一种c/c复合材料表面抗氧化烧蚀涂层的制备方法
CN104480436B (zh) 一种高硬度折射率可变的碳化锗薄膜的制备方法
CN109161889A (zh) 一种抗烧结双模复合结构热障涂层及其制备工艺
CN108597993B (zh) 一种氮化镓/金刚石的直接键合方法
CN108106748B (zh) 一种柔性烧蚀电阻薄膜及其制备方法
CN109264785A (zh) 一种氧空位wo3-x粉体材料的快速制备方法
CN109402582B (zh) 一种耐冲蚀防覆冰复合涂层及其制备方法与应用
CN114134566B (zh) 提高金刚石异质外延形核均匀性的方法
CN203382818U (zh) 一种用于平板件表面镀类金刚石膜的设备
CN101235488A (zh) 在放置于射频等离子体之外的衬底上形成薄膜的技术

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Area B, No.1 Factory building, No.26 Siwei Road, development zone, Dongli District, Tianjin

Patentee after: BEIJING AEROSPACE TIANMEI TECHNOLOGY Co.,Ltd.

Patentee after: Beijing Aerospace Hexing Technology Co., Ltd

Address before: Area B, No.1 Factory building, No.26 Siwei Road, development zone, Dongli District, Tianjin

Patentee before: BEIJING AEROSPACE TIANMEI TECHNOLOGY Co.,Ltd.

Patentee before: Beijing Aerospace Hexing Technology Co., Ltd