CN114134566B - 提高金刚石异质外延形核均匀性的方法 - Google Patents

提高金刚石异质外延形核均匀性的方法 Download PDF

Info

Publication number
CN114134566B
CN114134566B CN202110732256.1A CN202110732256A CN114134566B CN 114134566 B CN114134566 B CN 114134566B CN 202110732256 A CN202110732256 A CN 202110732256A CN 114134566 B CN114134566 B CN 114134566B
Authority
CN
China
Prior art keywords
nucleation
diamond
heteroepitaxial
substrate
uniformity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110732256.1A
Other languages
English (en)
Other versions
CN114134566A (zh
Inventor
代兵
王伟华
杨世林
朱嘉琦
韩杰才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202110732256.1A priority Critical patent/CN114134566B/zh
Publication of CN114134566A publication Critical patent/CN114134566A/zh
Application granted granted Critical
Publication of CN114134566B publication Critical patent/CN114134566B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

提高金刚石异质外延形核均匀性的方法,本发明属于异质外延单晶金刚石制备领域,它为了解决常规BEN工艺下偏置电流水平较低,导致金刚石异质外延形核的均匀性较差的问题。提高形核均匀性的方法:一、在衬底上沉积Ir薄膜,然后在退火后的复合衬底的背面和侧面沉积金膜;二、用直流偏压增强形核工艺在样品托上沉积金刚石薄层;三、通入氢气,激活等离子体,通入甲烷气体,控制甲烷的体积分数,开启直流偏压电源,进行偏压增强形核,然后降低甲烷浓度,开始进行金刚石外延生长,直至生长结束。本发明使得异质外延所形核所需要的含碳粒子扩散会更加快速,有效避免了形核聚集发生在个别区域,使形核发生位置分布更为分散均匀。

Description

提高金刚石异质外延形核均匀性的方法
技术领域
本发明属于异质外延单晶金刚石制备领域,具体涉及到一种有效提高金刚石形核均匀性的方法。
背景技术
单晶金刚石具有高硬度、高弹性模量,良好的导热性能和化学稳定性,超宽禁带以及一系列优异的力声电光热等性能,在机械加工、光学器件、散热器、计算机芯片以及航空航天等领域存在着极大的应用潜力。由于天然的单晶金刚石价格昂贵且尺寸受限,严重限制了这种优良材料的应用。因此,人工制备出纯净的大尺寸单晶金刚石是充分发挥出金刚石优异性能并使其获得广泛应用的关键。
目前人工制备金刚石的方法主要包括高压高温(High Pressure HighTemperature,HPHT)法和化学气相沉积(Chemical Vapor Deposition,CVD)法。模拟天然金刚石生长环境的HPHT方法会限制金刚石的尺寸和质量;CVD方法因为更容易获得高质量的金刚石,被认为是最有前途的方法。其中,微波等离子体化学气相沉积法(MicrowavePlasma CVD,MPCVD)技术相较于传统的CVD技术,因为无需电极放电,产生的等离子体纯净无污染,且能量集中在放电的区域,易于控制,成为目前外延生长大尺寸高品质单晶金刚石的首选方法。CVD法根据所使用的金刚石生长衬底材料的不同,可以分为同质外延(以金刚石为衬底)和异质外延(以非金刚石材料为衬底)。其中,异质外延能够较好地解决衬底尺寸受限的问题,尤其在铱(001)衬底上金刚石的异质外延研究已经取得了较大的技术突破。
形核是异质外延方法制备金刚石膜的第一步,如何提高形核密度以及改善形核均匀性是关键。提高形核密度最典型的方法是偏压增强形核(BEN)工艺,即通过在异质衬底上施加一定大小的偏压,使得等离子体中的某些粒子加速轰击衬底并与衬底产生一系列相互作用。在碳的溶解-析出过程以及衬底的模板效应等因素的共同作用下,金刚石实现了“自组装”的外延形核过程。
形核的均匀性对于后续生长的金刚石的取向性、应力水平以及晶体质量都有着重要的影响。常规的BEN工艺虽然能显著提高形核密度,但是由于偏置电流随偏置电压变化的幅度有限,使得偏置电流的水平较低,不利于碳的扩散,导致异质外延得到的金刚石初级晶核分布集中不均匀,即形核的均匀性较差,从而不利于高品质金刚石的制备。
发明内容
本发明的目的是为了解决常规BEN工艺下偏置电流水平较低,导致金刚石异质外延形核的均匀性较差的问题,而提供一种利用特殊处理的样品托实现有效增大偏置电流,从而改善形核均匀性的方法。
本发明提高金刚石异质外延形核均匀性的方法按照以下步骤实现:
一、导电衬底的制备:
a、利用电子束蒸发法在衬底上沉积Ir薄膜;
b、在氩气环境下进行高温原位退火处理,得到退火后的复合衬底;
c、使用磁控溅射法在退火后的复合衬底的背面和侧面沉积金膜,得到导电衬底;
二、附着有金刚石的样品托的制备:
d、使用MPCVD设备,通入氢气和甲烷,采用直流偏压增强形核工艺在样品托上沉积金刚石薄层,得到附着有金刚石层的样品托;
三、结合BEN工艺的金刚石形核过程:
e、将附着有金刚石层的样品托放置于CVD腔体内的水冷台上,导电衬底置于样品托上;
f、关闭舱门,依次利用机械真空泵和分子真空泵对CVD腔体抽真空;
g、通入氢气,控制CVD腔体内气压在5~10torr水平时,启动微波发生器,激活等离子体;
h、升高CVD腔体内气压和微波发生器的功率以升高导电衬底的温度至650~750℃;
i、待等离子体H对导电衬底进行刻蚀清洗20~25分钟,通入甲烷气体,控制甲烷的体积分数为2.5%~3.5%;
j、直流偏压电源的正极连接CVD腔体并接地,直流偏压电源的负极连接样品托,开启直流偏压电源,逐步增加偏压至260~320V,进行偏压增强形核后关闭射频电源,停止偏压增强形核过程;
k、降低甲烷浓度,开始进行金刚石外延生长,直至生长结束;
l、降低气压和功率,继续用真空泵将CVD腔体内抽真空,然后通氮气至大气压,打开腔体,完成金刚石异质外延生长。
在结合BEN工艺的金刚石形核过程中,反应气体包括氢气和甲烷,先在微波的激励下,被电离发生分子分裂。在施加偏压后,离子和电子会在电场作用下开始定向移动,部分粒子加速运动向衬底表面产生轰击作用;同时加速运动的带电粒子会与反应性气体分子之间发生碰撞而导致更多的电离和分子分裂。上述效应产生了偏置电流且保证偏置电流取得对应偏压下的最大值。此外,由于离子,电子或其他具有一定动能的物质轰击材料时,带电物质会激活的次表面,从而产生逆流,使得二次电子发射成为一种常见现象。在本发明中,二次电子主要由两部分组成:(1)带电粒子包括离子和电子在等离子球体中的定向移动;(2)带正电离子(CxHx)对包括衬底以及样品托等附着有金刚石的表面轰击出二次电子。附有金刚石样品托的存在能够显著提升这种效应,使得二次电子含量增加,直观表现为偏置电流最大值的增大。
本发明所采用的改良的BEN工艺增强异质外延形核有益效果是:本发明提供了一种有效提高偏置电流的方法,使得异质外延所形核所需要的含碳粒子扩散会更加快速,有效避免了形核聚集发生在个别区域,使形核发生位置分布更为分散均匀,明显地改善了形核的均匀性。
附图说明
图1为实施例中所述改良的BEN工艺和常规BEN工艺中偏置电流随偏压的变化以及两者之间的差值的示意图,其中●代表实施例中改良的BEN工艺,■代表常规BEN工艺,▲代表两者之间的差值;
图2中(a)和(b)分别为常规BEN工艺处理后形核情况和改良BEN工艺处理后的形核情况。
具体实施方法
具体实施方式一:本实施方式提高金刚石异质外延形核均匀性的方法按照以下步骤实施:
一、导电衬底的制备:
a、利用电子束蒸发法在衬底上沉积Ir薄膜;
b、在氩气环境下进行高温原位退火处理,得到退火后的复合衬底;
c、使用磁控溅射法在退火后的复合衬底的背面和侧面沉积金膜,得到导电衬底;
二、附着有金刚石的样品托的制备:
d、使用MPCVD设备,通入氢气和甲烷,采用直流偏压增强形核工艺在样品托上沉积金刚石薄层,得到附着有金刚石层的样品托;
三、结合BEN工艺的金刚石形核过程:
e、将附着有金刚石层的样品托放置于CVD腔体内的水冷台上,导电衬底置于样品托上;
f、关闭舱门,依次利用机械真空泵和分子真空泵对CVD腔体抽真空;
g、通入氢气,控制CVD腔体内气压在5~10torr水平时,启动微波发生器,激活等离子体;
h、升高CVD腔体内气压和微波发生器的功率以升高导电衬底的温度至650~750℃;
i、待等离子体H对导电衬底进行刻蚀清洗20~25分钟,通入甲烷气体,控制甲烷的体积分数为2.5%~3.5%;
j、直流偏压电源的正极连接CVD腔体并接地,直流偏压电源的负极连接样品托,开启直流偏压电源,逐步增加偏压至260~320V,进行偏压增强形核后关闭射频电源,停止偏压增强形核过程;
k、降低甲烷浓度,开始进行金刚石外延生长,直至生长结束;
l、降低气压和功率,继续用真空泵将CVD腔体内抽真空,然后通氮气至大气压,打开腔体,完成金刚石异质外延生长。
具体实施方式二:本实施方式与具体实施方式一不同的是步骤a中所述的衬底为STO单晶衬底、MgO衬底或者YSZ衬底。
具体实施方式三:本实施方式与具体实施方式一或二不同的是步骤b中高温原位退火处理是以500~1000℃退火0.5~2h。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是步骤a中沉积Ir薄膜的厚度为
Figure BDA0003139042010000041
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是步骤d中采用MPCVD设备,控制温度在600~1500℃,氢气流量为200~400sccm,甲烷的体积分数为1.5%~3%,以260V~300V大小的偏压进行增强形核。
具体实施方式六:本实施方式与具体实施方式五不同的是增强形核时间为50~70min。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是步骤d中样品托表面沉积的金刚石层的厚度为50~100μm。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是步骤i中控制甲烷的体积分数为3.0%。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是步骤j中偏压增强形核时间为45min~60min。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是步骤k降低甲烷的体积分数为1.5%~2%。
实施例:本实施例提高金刚石异质外延形核均匀性的方法按照以下步骤实施:
一、导电衬底的制备:
a、将STO单晶衬底依次利用去离子水、无水乙醇和丙酮进行超声清洗,将清洗后的STO单晶衬底固定在带有凹槽的托盘中,放入电子束蒸发设备的腔体里,将Ir颗粒靶材放置在石墨坩埚里,依次利用机械真空泵和分子泵将腔体内压强抽至≤5.0×10-6Torr,然后启动电子束蒸发设备的加热装置,以200℃为梯度缓慢升高温度至700±20℃,稳定5分钟,打开电子枪电源,调节电子枪的灯丝电流至0.6A预热2分钟,打开电子枪高压和靶材的挡板,调节束流使沉积速率达到
Figure BDA0003139042010000051
利用电子束蒸发设备在衬底上沉积Ir薄膜,沉积结束后,依次关闭束流和挡板,关闭电子枪设备,逐步降温至室温;
b、采用红外退火炉,在氩气环境下压强0.5Pa,在800℃温度下原位退火1h进行高温原位退火处理,得到退火后的复合衬底;
c、使用磁控溅射法退火后的复合衬底的背面和侧面沉积金膜,得到导电衬底;
二、附着有金刚石的样品托的制备:
d、利用MPCVD设备,控制温度在≥700℃,氢气流量为200sccm,甲烷的体积分数为3%,结合直流偏压增强形核工艺,(直流偏压电源的正极连接到CVD腔体外壳上并接地,直流偏压电源的负极通过水冷台连接到样品托上),以250V的偏压进行形核处理60分钟,在样品托上沉积金刚石层,得到附着有金刚石层的样品托;
三、结合改良BEN工艺的金刚石形核过程:
e、将附着有金刚石层的样品托放置于CVD腔体内的水冷台上,导电衬底置于样品托上;
f、关闭舱门,依次利用机械真空泵和分子真空泵对CVD腔体抽真空至≤5.0×10- 6Torr;
g、通入氢气,控制氢气流量为200sccm,控制CVD腔体内气压在7torr水平时,启动微波发生器,激活等离子体;
h、升高CVD腔体内气压至27torr和微波发生器的功率为1800W,以升高导电衬底的温度为700℃;
i、通过等离子体H对导电衬底进行刻蚀清洗,然后通入甲烷气体,控制甲烷的体积分数为3.0%;
j、开启偏压电源,直流偏压电源的正极连接CVD腔体并接地,直流偏压电源的负极连接样品托,开启直流偏压电源,逐步增加偏压至250V,进行偏压增强形核并记录偏置电流,偏压处理60分钟后关闭射频电源,停止偏压增强形核过程;
k、降低甲烷的体积分数为1.5%,开始进行金刚石外延生长,直至生长结束;
l、降低气压和功率,继续用真空泵将CVD腔体内抽真空,然后通氮气至大气压,打开腔体,完成金刚石异质外延生长。
图1为本实施例中所述改良的BEN工艺和常规BEN工艺(样品托未附着金刚石层),可以看出本实施例改良的BEN工艺能够有效提高偏置电流,使得异质外延所形核所需要的含碳粒子扩散会更加快速。
图2中(a)和(b)分别为常规BEN工艺处理后形核情况和改良BEN工艺处理后的形核情况。其中,常规BEN工艺下得到的金刚石形核具有明显的分布不均且呈现形核区域与非金刚石区域混合分布的特点;而改良的BEN工艺下所获得形核密度明显改善且分布均匀。

Claims (9)

1.提高金刚石异质外延形核均匀性的方法,其特征在于该提高金刚石异质外延形核均匀性的方法按照以下步骤实现:
一、导电衬底的制备:
a、利用电子束蒸发法在衬底上沉积Ir薄膜;
b、在氩气环境下进行高温原位退火处理,得到退火后的复合衬底;
c、使用磁控溅射法在退火后的复合衬底的背面和侧面沉积金膜,得到导电衬底;
二、附着有金刚石的样品托的制备:
d、使用MPCVD设备,通入氢气和甲烷,采用直流偏压增强形核工艺在样品托上沉积厚度为50~100μm的金刚石薄层,得到附着有金刚石层的样品托;
三、结合BEN工艺的金刚石形核过程:
e、将附着有金刚石层的样品托放置于CVD腔体内的水冷台上,导电衬底置于样品托上;
f、关闭舱门,依次利用机械真空泵和分子真空泵对CVD腔体抽真空;
g、通入氢气,控制CVD腔体内气压在5~10torr水平时,启动微波发生器,激活等离子体;
h、升高CVD腔体内气压和微波发生器的功率以升高导电衬底的温度至650~750℃;
i、待等离子体H对导电衬底进行刻蚀清洗20~25分钟,通入甲烷气体,控制甲烷的体积分数为2.5%~3.5%;
j、直流偏压电源的正极连接CVD腔体并接地,直流偏压电源的负极连接样品托,开启直流偏压电源,逐步增加偏压至260~320V,进行偏压增强形核后关闭射频电源,停止偏压增强形核过程;
k、降低甲烷浓度,开始进行金刚石外延生长,直至生长结束;
l、降低气压和功率,继续用真空泵将CVD腔体内抽真空,然后通氮气至大气压,打开腔体,完成金刚石异质外延生长。
2.根据权利要求1所述的提高金刚石异质外延形核均匀性的方法,其特征在于步骤a中所述的衬底为STO单晶衬底、MgO衬底或者YSZ衬底。
3.根据权利要求1所述的提高金刚石异质外延形核均匀性的方法,其特征在于步骤b中高温原位退火处理是以500~1000℃退火0.5~2h。
4.根据权利要求1所述的提高金刚石异质外延形核均匀性的方法,其特征在于步骤a中沉积Ir薄膜的厚度为
Figure FDA0004012461800000011
5.根据权利要求1所述的提高金刚石异质外延形核均匀性的方法,其特征在于步骤d中采用MPCVD设备,控制温度在600~1500℃,氢气流量为200~400sccm,甲烷的体积分数为1.5%~3%,以260V~300V大小的偏压进行增强形核。
6.根据权利要求5所述的提高金刚石异质外延形核均匀性的方法,其特征在于增强形核时间为50~70min。
7.根据权利要求1所述的提高金刚石异质外延形核均匀性的方法,其特征在于步骤i中控制甲烷的体积分数为3.0%。
8.根据权利要求1所述的提高金刚石异质外延形核均匀性的方法,其特征在于步骤j中偏压增强形核时间为45min~60min。
9.根据权利要求1所述的提高金刚石异质外延形核均匀性的方法,其特征在于步骤k降低甲烷的体积分数为1.5%~2%。
CN202110732256.1A 2021-06-29 2021-06-29 提高金刚石异质外延形核均匀性的方法 Active CN114134566B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110732256.1A CN114134566B (zh) 2021-06-29 2021-06-29 提高金刚石异质外延形核均匀性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110732256.1A CN114134566B (zh) 2021-06-29 2021-06-29 提高金刚石异质外延形核均匀性的方法

Publications (2)

Publication Number Publication Date
CN114134566A CN114134566A (zh) 2022-03-04
CN114134566B true CN114134566B (zh) 2023-02-24

Family

ID=80394190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110732256.1A Active CN114134566B (zh) 2021-06-29 2021-06-29 提高金刚石异质外延形核均匀性的方法

Country Status (1)

Country Link
CN (1) CN114134566B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114717540B (zh) * 2022-04-20 2022-11-29 广东奔朗新材料股份有限公司 一种金刚石增强碳化硅复合晶圆的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894529A (zh) * 2015-05-19 2015-09-09 西安交通大学 一种用于二次电子发射的金刚石薄膜的制备方法
CN111933514A (zh) * 2020-08-12 2020-11-13 哈尔滨工业大学 电子束蒸镀工艺制备外延单晶金刚石用Ir(111)复合衬底的方法
CN112609240A (zh) * 2020-12-11 2021-04-06 哈尔滨工业大学 基于复合结构样品台提高金刚石异质外延大尺寸形核均匀性的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894529A (zh) * 2015-05-19 2015-09-09 西安交通大学 一种用于二次电子发射的金刚石薄膜的制备方法
CN111933514A (zh) * 2020-08-12 2020-11-13 哈尔滨工业大学 电子束蒸镀工艺制备外延单晶金刚石用Ir(111)复合衬底的方法
CN112609240A (zh) * 2020-12-11 2021-04-06 哈尔滨工业大学 基于复合结构样品台提高金刚石异质外延大尺寸形核均匀性的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
In situ bias current monitoring of nucleation for epitaxial diamonds on 3C-SiC/Si substrates;Junya Yaita等;《Diamond & Related Materials》;20180719;第88卷;158-162 *

Also Published As

Publication number Publication date
CN114134566A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
CN111826714B (zh) 基于射频电源施加偏压以增强cvd金刚石异质外延形核的方法
CN112853482B (zh) 一种微波等离子体-磁控溅射复合气相沉积原位制备100面金刚石的方法及设备
CN104851765B (zh) 一种微波氢等离子体处理提升碳纳米管场发射性能的方法
WO2009142223A1 (ja) スパッタリング用ターゲット、薄膜の製造法及び表示装置
CN114134566B (zh) 提高金刚石异质外延形核均匀性的方法
CN108987214B (zh) 一种提升碳纳米管阵列场发射性能的方法
CN104882346A (zh) 一种碳纳米颗粒包覆的碳纳米管阵列场发射阴极的制备方法
CN108987215B (zh) 一种提升石墨烯片-碳纳米管阵列复合材料场发射性能的方法
CN111139526A (zh) 一种利用离子束溅射沉积获得单晶氮化硼薄膜的方法
CN112695382B (zh) 基于网格化结构电极提高金刚石异质外延形核均匀性的方法
CN112609240B (zh) 基于复合结构样品台提高金刚石异质外延大尺寸形核均匀性的方法
CN115652422A (zh) 一种基于铱-非晶碳预种植层提高大尺寸单晶金刚石异质外延形核密度的方法
US8512859B2 (en) Housing and method for making the same
US8568907B2 (en) Housing and method for making the same
CN113637952A (zh) 一种化学气相沉积电子照射制备石墨烯薄膜的方法
CN108987218B (zh) 一种提升石墨烯片-硅纳米线阵列复合材料场发射性能的方法
CN113430642B (zh) 降低异质外延偏压阈值的方法
CN113564517A (zh) 一种低温快速韧性渗氮后原位沉积pvd涂层的装置及沉积方法
CN108987217B (zh) 一种提升石墨烯片-碳纳米管膜柔性复合材料场发射性能的方法
CN108987216B (zh) 一种提升碳纳米管阵列-碳纳米管膜柔性复合材料场发射性能的方法
CN113621947B (zh) 金刚石膜刻蚀方法、图形化金刚石膜及其应用
CN113235060B (zh) 一种全α相钽涂层的制备方法
CN116536650B (zh) 用于薄膜生长优化的薄膜生长界面优化方法
US8568905B2 (en) Housing and method for making the same
US8568906B2 (en) Housing and method for making the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant