CN113387708A - 致密高介电钡钽氧氮化物陶瓷及其制备方法 - Google Patents

致密高介电钡钽氧氮化物陶瓷及其制备方法 Download PDF

Info

Publication number
CN113387708A
CN113387708A CN202110742060.0A CN202110742060A CN113387708A CN 113387708 A CN113387708 A CN 113387708A CN 202110742060 A CN202110742060 A CN 202110742060A CN 113387708 A CN113387708 A CN 113387708A
Authority
CN
China
Prior art keywords
tantalum oxynitride
ceramic
barium
oxynitride ceramic
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110742060.0A
Other languages
English (en)
Other versions
CN113387708B (zh
Inventor
李端
李俊生
曾良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202110742060.0A priority Critical patent/CN113387708B/zh
Publication of CN113387708A publication Critical patent/CN113387708A/zh
Application granted granted Critical
Publication of CN113387708B publication Critical patent/CN113387708B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种致密高介电钡钽氧氮化物陶瓷及其制备方法,钡钽氧氮化物陶瓷包括将钡钽氧氮化物陶瓷粉体与乙醇混合均匀,球磨后干燥并过筛,得到预烧结粉体,将预烧结粉体在加压、保护气氛条件下或者在加压、真空条件下进行放电等离子烧结,烧结温度为1200℃~1300℃,经冷却,得到陶瓷初烧结体,将陶瓷初烧结体在氨气气氛、无机械压力条件下进行二次烧结,降温冷却后,得到致密高介电钡钽氧氮化物陶瓷。本发明的制备方法周期较短,制得的致密高介电钡钽氧氮化物陶瓷致密度高、介电常数高、纯度高,有广泛的应用前景。

Description

致密高介电钡钽氧氮化物陶瓷及其制备方法
技术领域
本发明涉及高性能介电陶瓷材料制备技术领域,尤其涉及一种致密高介电钡钽氧氮化物陶瓷及其制备方法。
背景技术
作为一种新型钙钛矿类材料,钡钽氧氮化物BaTaO2N在室温下有着较高的介电常数,且耐酸碱腐蚀,热稳定性好,在高性能电容器等领域有着广泛的应用前景。对于同一种材料,其介电常数与气孔率密切相关,气孔率越低(即致密度越高),介电常数越高。因此,将氧氮化物制成致密块体是获得其高介电常数的关键。
烧结是材料实现从疏松粉体到致密块体转变的重要热处理过程,其中烧结温度是关键工艺条件。研究表明,对于BaTaO2N等钙钛矿类氧氮化物陶瓷,其烧结温度往往高于分解温度,即其在烧结过程中会伴随着部分分解,而分解产生的氮化物则会严重降低其介电常数并增加损耗。传统的无压烧结方法升温速率慢,保温时间长,不利于抑制氧氮化物的分解。烧结后在氨气中进行退火处理是恢复氧氮化物化学计量比、得到纯相氧氮化物陶瓷的方法。对于烧结后致密度较高(>90%)的陶瓷,由于其开气孔几乎全部闭合,氨气无法渗入闭气孔进行气-固反应,故此时氨化退火处理以恢复化学计量比较困难。A.Hosono等在BaTaO2N中加入不同含量BaCO3烧结助剂,然后于1350℃~1450℃下进行烧结,得到氧氮化物陶瓷,杂质相包括TaO和Ba5Ta4O15。当BaCO3含量为2.5wt%、烧结温度为1400℃、保温时间为3h时,得到致密度为74.6%的BaTaO2N0.85/Ba5Ta4O15混合物,其在氨气中退火处理后可得到纯相BaTaO2N,但致密度仅为73.0%,介电常数峰值仅为620。此方法烧结时间长、温度高、得到的样品纯度和致密度都不高,因此,亟待发展一种耗时短的方法烧结得到高密度、高纯度、高介电常数的铕钽氧氮化物陶瓷。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种高致密、高纯度、高介电常数的致密高介电钡钽氧氮化物陶瓷及其制备方法。
为解决上述技术问题,本发明采用以下技术方案:
一种致密高介电钡钽氧氮化物陶瓷的制备方法,包括以下步骤:
S1、将钡钽氧氮化物陶瓷粉体与乙醇混合均匀,经球磨后,干燥、过筛,得到预烧结粉体;
S2、将步骤S1所得的预烧结粉体,在加压、保护气氛条件下或者在加压、真空条件下进行放电等离子烧结,所述加压为施加100MPa~150MPa的压力,所述放电等离子烧结的烧结温度为1200℃~1300℃,升温速率为100℃/min~500℃/min,烧结保温0~10min,然后自然冷却,得到陶瓷初始烧结体;
S3、将步骤S2所得的陶瓷初始烧结体在氨气气氛、无机械压力条件下进行二次烧结,烧结温度为1220℃~1400℃,该烧结温度需大于步骤S2中的烧结温度,升温速率为10℃/min~50℃/min,烧结保温1min~100min,然后降温冷却,得到致密高介电钡钽氧氮化物陶瓷。
上述的致密高介电钡钽氧氮化物陶瓷的制备方法,优选的,步骤S2中,烧结保温0~5min。
上述的致密高介电钡钽氧氮化物陶瓷的制备方法,优选的,步骤S3中,烧结保温40min~60min。
上述的致密高介电钡钽氧氮化物陶瓷的制备方法,优选的,步骤S1中,所述球磨采用的球磨罐材质为聚氨酯、氧化铝或氧化锆,所述球磨采用的球磨珠材质为聚氨酯、氧化铝或氧化锆,所述球磨的时间为1h~12h,所述干燥的温度为50℃~200℃,所述干燥的时间为1h~24h,所述过筛的目数为1000目~10000目。
上述的致密高介电钡钽氧氮化物陶瓷的制备方法,更优选的,步骤S1中,所述球磨的时间为1h~6h,所述干燥的温度为80℃~240℃,所述干燥的时间为3h~18h,所述过筛的目数为5000目~8000目。
上述的致密高介电钡钽氧氮化物陶瓷的制备方法,优选的,步骤S3中,所述降温冷却的冷却速率为1℃/min~200℃/min。
上述的致密高介电钡钽氧氮化物陶瓷的制备方法,更优选的,步骤S3中,所述降温冷却的冷却速率为30℃/min~100℃/min。
上述的致密高介电钡钽氧氮化物陶瓷的制备方法,优选的,步骤S2中,所述保护气氛为氮气、氦气和氩气中的一种或多种。
作为一个总的发明构思,本发明还提供了一种上述的制备方法制得的致密高介电钡钽氧氮化物陶瓷。
本发明中,步骤S1采用的原料钡钽氧氮化物陶瓷粉体的制备方法可参考申请人在先申请并公开的专利文献,包括以下步骤:
(1)将5g碳酸钡粉末、5.5g五氧化二钽粉末与7.5g尿素溶于50mL无水乙醇并球磨,得到混合浆料;
(2)将混合浆料充分干燥,得到混合前驱体粉末;
(3)将混合前驱体放置在坩埚中,在保护气氛中980℃煅烧,得到BaTaO2N氧氮化物纳米粉体。
与现有技术相比,本发明的优点在于:
本发明针对目前主流的氨化加无压烧结的制备方法工艺时间长、产物纯度和致密度偏低等不足,利用放电等离子加压烧结和无压烧结的两步法实现材料的快速致密化,进一步实现材料介电性能的可调性,以期制备出纯度好、致密度高、介电性能优的材料。本发明采用两步法烧结氧氮化物,第一步采用加压+放电等离子烧结方法初步致密化可提高产物的致密度,同时通过温度、压力和保温时间保留住材料的开气孔率占总气孔率的比例最高,便于二次烧结时氨气的进入,第二步在氨气气氛中进行二次烧结,既使得放电等离子烧结中分解的氧氮化物恢复了化学计量比,又消除了剩余的大部分气孔率,进一步提高了产物的致密度和纯度。
本发明采用放电等离子烧结的方法初步致密化,其相对传统烧结方法大大缩短了时间、降低了烧结温度,从热力学和动力学方面同时抑制氧氮化物的分解。
附图说明
图1为本发明实施例1制得的致密高介电钡钽氧氮化物陶瓷的光学图片。
图2为本发明实施例1制得的致密高介电钡钽氧氮化物陶瓷的XRD谱图。
图3为本发明实施例1制得的致密高介电钡钽氧氮化物陶瓷的SEM图。
图4为本发明实施例1制得的致密高介电钡钽氧氮化物陶瓷的介电常数和损耗角正切值频谱曲线图。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
实施例1:
一种本发明的致密高介电钡钽氧氮化物陶瓷的制备方法,包括以下步骤:
S1、将5g钡钽氧氮化物陶瓷粉体与20mL无水乙醇混合均匀,在聚氨酯球磨罐中用聚氨酯球磨珠球磨4h,在100℃下干燥8h,然后在7000目过筛,得到预烧结粉体。
S2、将步骤S1所得3g预烧结粉体放入Φ12mm的石墨模具中,在放电等离子烧结设备中进行初始烧结,工艺条件为:机械压力140MPa,气氛为氮气,升温速率400℃/min,烧结温度为1250℃,保温时间为1min,自然冷却后得到陶瓷初烧结体。
S3、将步骤S2所得的陶瓷初始烧结体放入管式炉,在无机械压力、氨气气氛条件下进行二次烧结,烧结工艺条件为:升温速率为20℃/min,烧结温度为1300℃,保温时间为60min,冷却速率为30℃/min。降温冷却后得到致密高介电钡钽氧氮化物陶瓷。
本实施例中,钡钽氧氮化物陶瓷粉体的制备过程如下:
(1)将5g碳酸钡粉末、5.5g五氧化二钽粉末与7.5g尿素溶于50mL无水乙醇并球磨,得到混合浆料;
(2)将混合浆料充分干燥,得到混合前驱体粉末;
(3)将混合前驱体粉末放置在坩埚中,在保护气氛中980℃煅烧,得到BaTaO2N氧氮化物纳米粉体。
将本实施例制得的致密高介电钡钽氧氮化物陶瓷片上下表面打磨,其光学图片如图1所示,其颜色为深棕褐色,与氧氮化物陶瓷粉体相近,其物相组成及微观形貌分别如图2和图3所示。由图2和图3可知,本实施例制备得到的BaTaO2N氧氮化物陶瓷几乎为纯相,其微观结构致密,晶粒尺寸约300nm。经测试,所得陶瓷片致密度为93.22%(致密度为体积密度/理论密度,BaTaO2N的理论密度为8.743g/cm3),闭气孔率为4.2%。图4为本实施例制得的致密高介电钡钽氧氮化物陶瓷在室温下介电常数和损耗角正切值随频率变化曲线,由图可知,其在300Hz下有着极高的介电常数(18635)和较低的损耗(0.00039)。
对比例1:
一种钡钽氧氮化物陶瓷的制备方法,与实施例1基本相同,不同之处在于:
步骤S2中,并未采用放电等离子烧结设备进行初烧结,而是采用传统无压烧结炉,升温速率为30℃/min,烧结温度为1250℃,保温时间为1min。
本对比例制备得到的BaTaO2N氧氮化物陶瓷片致密度为49.87%,闭气孔率为11.33%,物相组成为BaTaO2N和Ba5Ta4O15。可见,此对比例产物相对密度和纯度都较实施例1明显降低,而闭气孔率高。这是由于采用传统无压方式进行初烧结,陶瓷初烧结体的致密度较低,其气孔率较高且气孔大,使得在二次烧结时很难致密化,而传统初烧结较慢的升温速率又从动力学上加快了氧氮化物的分解。
对比例2:
一种钡钽氧氮化物陶瓷的制备方法,与实施例1不同之处在于:没有步骤S3,即直接对氧氮化物进行放电等离子烧结,其机械压力140MPa,气氛为氮气,升温速率400℃/min,烧结温度为1300℃,保温时间为1min,自然冷却后得到陶瓷烧结体。
本对比例制备得到的BaTaO2N氧氮化物陶瓷片相对密度为91.31%,闭气孔率为5.08%,物相组成为BaTaO2N、Ba5Ta4OTa3N5和Ta3N5。可见,此对比例产物纯度较实施例1低。这是由于采用高压、快速升温和提高烧结温度的放电等离子烧结方法虽然从一定程度上能快速致密化氧氮化物,但因其分解温度低于烧结温度,产物分解严重且无法恢复化学计量比。
实施例2:
一种本发明的致密高介电钡钽氧氮化物陶瓷的制备方法,与实施例1基本相同,区别仅在于:步骤S2中,放电等离子烧结温度为1300℃,保温时间为3min。
经检测,本实施例制备得到的BaTaO2N氧氮化物陶瓷片致密度为93.45%,闭气孔率为2.53%,在室温、300Hz下介电常数为14295,介电损耗为0.00066。
虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围的情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。

Claims (9)

1.一种致密高介电钡钽氧氮化物陶瓷的制备方法,其特征在于,包括以下步骤:
S1、将钡钽氧氮化物陶瓷粉体与乙醇混合均匀,经球磨后,干燥、过筛,得到预烧结粉体;
S2、将步骤S1所得的预烧结粉体,在加压、保护气氛条件下或者在加压、真空条件下进行放电等离子烧结,所述加压为施加100MPa~150MPa的压力,所述放电等离子烧结的烧结温度为1200℃~1300℃,升温速率为100℃/min~500℃/min,烧结保温0~10min,然后自然冷却,得到陶瓷初始烧结体;
S3、将步骤S2所得的陶瓷初始烧结体在氨气气氛、无机械压力条件下进行二次烧结,烧结温度为1220℃~1400℃,该烧结温度需大于步骤S2中的烧结温度,升温速率为10℃/min~50℃/min,烧结保温1min~100min,然后降温冷却,得到致密高介电钡钽氧氮化物陶瓷。
2.根据权利要求1所述的致密高介电钡钽氧氮化物陶瓷的制备方法,其特征在于,步骤S2中,烧结保温0~5min。
3.根据权利要求1所述的致密高介电钡钽氧氮化物陶瓷的制备方法,其特征在于,步骤S3中,烧结保温40min~60min。
4.根据权利要求1~3中任一项所述的致密高介电钡钽氧氮化物陶瓷的制备方法,其特征在于,步骤S1中,所述球磨采用的球磨罐材质为聚氨酯、氧化铝或氧化锆,所述球磨采用的球磨珠材质为聚氨酯、氧化铝或氧化锆,所述球磨的时间为1h~12h,所述干燥的温度为50℃~200℃,所述干燥的时间为1h~24h,所述过筛的目数为1000目~10000目。
5.根据权利要求4所述的致密高介电钡钽氧氮化物陶瓷的制备方法,其特征在于,步骤S1中,所述球磨的时间为1h~6h,所述干燥的温度为80℃~240℃,所述干燥的时间为3h~18h,所述过筛的目数为5000目~8000目。
6.根据权利要求1~3中任一项所述的致密高介电钡钽氧氮化物陶瓷的制备方法,其特征在于,步骤S3中,所述降温冷却的冷却速率为1℃/min~200℃/min。
7.根据权利要求6所述的致密高介电钡钽氧氮化物陶瓷的制备方法,其特征在于,步骤S3中,所述降温冷却的冷却速率为30℃/min~100℃/min。
8.根据权利要求1~3中任一项所述的致密高介电钡钽氧氮化物陶瓷的制备方法,其特征在于,步骤S2中,所述保护气氛为氮气、氦气和氩气中的一种或多种。
9.一种如权利要求1~8中任一项所述的制备方法制得的致密高介电钡钽氧氮化物陶瓷。
CN202110742060.0A 2021-06-30 2021-06-30 致密高介电钡钽氧氮化物陶瓷及其制备方法 Active CN113387708B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110742060.0A CN113387708B (zh) 2021-06-30 2021-06-30 致密高介电钡钽氧氮化物陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110742060.0A CN113387708B (zh) 2021-06-30 2021-06-30 致密高介电钡钽氧氮化物陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN113387708A true CN113387708A (zh) 2021-09-14
CN113387708B CN113387708B (zh) 2022-03-11

Family

ID=77624851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110742060.0A Active CN113387708B (zh) 2021-06-30 2021-06-30 致密高介电钡钽氧氮化物陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN113387708B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036589A (ja) * 2004-07-27 2006-02-09 Neomax Co Ltd 電子デバイス用誘電体磁器組成物及びその製造方法
JP2007175659A (ja) * 2005-12-28 2007-07-12 Niigata Univ タンタル系酸窒化物光触媒及びその製造方法
CN106391077A (zh) * 2015-07-29 2017-02-15 暨南大学 一种合成钽基氮(氧)化物纳米颗粒的方法及其纳米颗粒
CN109928762A (zh) * 2018-12-21 2019-06-25 中国人民解放军国防科技大学 一种BaTaO2N氧氮化物粉体及其双氮源制备方法
CN110156474A (zh) * 2019-05-30 2019-08-23 中国人民解放军国防科技大学 一种多孔钽基氧氮化物陶瓷及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036589A (ja) * 2004-07-27 2006-02-09 Neomax Co Ltd 電子デバイス用誘電体磁器組成物及びその製造方法
JP2007175659A (ja) * 2005-12-28 2007-07-12 Niigata Univ タンタル系酸窒化物光触媒及びその製造方法
CN106391077A (zh) * 2015-07-29 2017-02-15 暨南大学 一种合成钽基氮(氧)化物纳米颗粒的方法及其纳米颗粒
CN109928762A (zh) * 2018-12-21 2019-06-25 中国人民解放军国防科技大学 一种BaTaO2N氧氮化物粉体及其双氮源制备方法
CN110156474A (zh) * 2019-05-30 2019-08-23 中国人民解放军国防科技大学 一种多孔钽基氧氮化物陶瓷及其制备方法

Also Published As

Publication number Publication date
CN113387708B (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
CN101817683B (zh) MgAlON透明陶瓷的无压烧结制备方法
JP4658689B2 (ja) チタン酸バリウム粉末の製法およびチタン酸バリウム粉末、並びにチタン酸バリウム焼結体
CN109928763B (zh) 一种钽基氧氮化物纳米粉及其制备方法
CN114455952B (zh) 一种AlON粉体及其直接氮化法高气压合成方法和应用
CZ305913B6 (cs) Způsob přípravy práškových suboxidů niobu nebo práškového niobu
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN110981479B (zh) 一种高击穿的铁电陶瓷及其制备方法
CN113233901B (zh) 致密高纯锶钽氧氮化物陶瓷及其制备方法
Li et al. Reactive yttrium aluminate garnet powder via coprecipitation using ammonium hydrogen carbonate as the precipitant
CN113387708B (zh) 致密高介电钡钽氧氮化物陶瓷及其制备方法
CN111410526A (zh) 一种掺杂钙钛矿锡酸钡材料及其制备方法与应用
KR20230147153A (ko) 조밀한 그린 테이프, 그 제조방법 및 용도
Zhu et al. Compositional regulation of multi-component GYGAG: Ce scintillation ceramics: Self-sintering-aid effect and afterglow suppression
Descemond et al. Characteristics and sintering behaviour of 3 mol% Y 2 O 3-ZrO 2 powders synthesized by reaction in molten salts
CN113387709B (zh) 致密镧钽氧氮化物陶瓷及其制备方法
KR20140015073A (ko) 티탄산바륨의 제조방법 및 그 방법으로 제조한 티탄산바륨 분말
JP4570516B2 (ja) チタン酸バリウム粉末およびその製法、並びにチタン酸バリウム焼結体
CN113264776B (zh) 致密铕钽氧氮化物陶瓷及其制备方法
CN115947598A (zh) 一种可与贱金属内电极共烧的反铁电材料及其制备方法
Pfaff Peroxide route to synthesize calcium titanate powders of different composition
CN116041059B (zh) 一种钛酸锶基巨介电陶瓷制备方法
CN110845229B (zh) LaBiO3薄膜、LaBiO3陶瓷靶材及其制备方法
CN109516800A (zh) 一种高储能性能介质陶瓷、制备方法及其应用
CN110642623A (zh) 一种铌镁酸铅-钛酸铅厚膜陶瓷及其制备方法与应用
CN109503153A (zh) 一种高储能性能介质陶瓷、制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant