CN113387700B - 一种致密柔韧的石墨烯/ps复合导热膜的制备方法 - Google Patents

一种致密柔韧的石墨烯/ps复合导热膜的制备方法 Download PDF

Info

Publication number
CN113387700B
CN113387700B CN202110760495.8A CN202110760495A CN113387700B CN 113387700 B CN113387700 B CN 113387700B CN 202110760495 A CN202110760495 A CN 202110760495A CN 113387700 B CN113387700 B CN 113387700B
Authority
CN
China
Prior art keywords
graphene oxide
graphene
styrene
composite
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110760495.8A
Other languages
English (en)
Other versions
CN113387700A (zh
Inventor
王文文
宋肖肖
刘太峥
徐兴
马乐
许瑞艳
侯士峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Leader Nano Technology Co ltd
Original Assignee
Shandong Leader Nano Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Leader Nano Technology Co ltd filed Critical Shandong Leader Nano Technology Co ltd
Priority to CN202110760495.8A priority Critical patent/CN113387700B/zh
Publication of CN113387700A publication Critical patent/CN113387700A/zh
Application granted granted Critical
Publication of CN113387700B publication Critical patent/CN113387700B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种致密柔韧的石墨烯/PS复合导热膜的制备方法,属于石墨基导热材料领域,其特征在于,首先将氧化石墨烯粉体在一定温度下烘干,并过筛;然后将规定量的氧化石墨烯粉体、苯乙烯、锆珠加至研磨机内,充分研磨一定时间后得到氧化石墨烯苯乙烯分散液;将氧化石墨烯苯乙烯分散液涂成1‑3mm厚的膜,并在室温下通风干燥处理一定时间,得到氧化石墨烯/PS复合膜;再在惰性保护气体下高温处理,得到致密柔韧的石墨烯/PS复合导热膜;本发明以氧化石墨烯粉体以及苯乙烯有机溶剂为原料,采用研磨分散和涂膜方法、结合热处理等工艺,工艺简单、所制备的复合导热膜柔韧性好、结构完整、强度高、导热系数大。

Description

一种致密柔韧的石墨烯/PS复合导热膜的制备方法
技术领域
本发明涉及石墨基导热材料技术领域,具体涉及一种致密柔韧的石墨烯/PS复合导热膜的制备方法。
背景技术
随着电子设备向着集成化、微型化、多功能化发展,元器件的发热量和功率密度大幅增加。电子元器件对温度十分敏感,提高电子元器件的散热性能是提高现有器件稳定性和可靠性的关键问题,散热已经成为其继续发展的瓶颈。
固体材料的导热机制从微观角度大致分为三种类型:自由电子的移动导热机制、晶格振动引发的声子导热机制以及红外光子辐射导热机制。大多数金属材料的导热机制遵循自由电子的移动导热机制。无机非金属材料由于被共价键束缚核外电子不能任意移动而遵循晶格振动引发的声子导热机制。
传统导热材料主要为金属材料、陶瓷材料、高分子材料。金属材料有优异的导热性能与力学性能,但金属材料密度大、易腐蚀、热膨胀系数大界面晶格不匹配等因素限制了金属材料使用范围。陶瓷材料的电器绝缘性好且热导率高,但陶瓷材料制备工艺复杂。高分子材料的密度低、价格便宜,绝缘性与耐腐蚀特性好,但热导率较低。
石墨类材料具有不同于金属材料与高分子材料的传热性质,其在微观方面是由电子与声子的共同作用进行传递热量。将碳原子有序排列的晶格网络抽象为声子,通过声子的协调振动来将热量传递到周边能量较弱的区域。石墨材料具有与其他材料不同的晶体结构,其碳原子在平面上属于原子晶体,平面与平面之间则属于分子晶体。石墨烯具有由单层碳原子构成的六元环平面结构,其特殊的结构使其具有超高的热导率,其理论值最高可达超过 6600 W/(m·K)。但现有的石墨材料基本上都是多晶体,其晶体结构中存在大量的缺陷,例微孔、杂质和晶界等缺陷。缺陷的存在大大降低了碳原子晶格振动的幅度和传播速率。因此,保持石墨晶体结构的完整性是影响石墨材料热导率的决定因素。目前制备石墨膜的方法主要有真空抽滤法,电泳沉积法(EPD),化学气相沉积法(CVD),旋转涂覆法,层-层(LBL)静电自组装法,以及喷射涂覆法。CVD 法能够制备出热导率高达2000W/(m·K)的石墨烯膜,但需要高温反应,成本昂贵,能耗高。且前的制备方法都或多或少的引入了各种缺陷,因此选择合适制备工艺来尽量减少缺陷是非常必要的。
氧化石墨烯是石墨烯对应的氧化物,含有大量的羟基、羧基、环氧基和羰基等含氧官能团。需要经过还原去除氧化石墨烯片层上的含氧官能团来实现其导电导热功能。现有石墨烯导热膜的制备方法一般是将氧化石墨烯浆料经涂布、烘干、高温碳化或石墨化得到。但由于氧化石墨烯膜柔韧性较差、层间相互作用力较弱,极容易出现破损、折叠、断裂等现象,往往在氧化石墨烯膜热还原成石墨烯导热膜的过程中出现膜破损不连续现象,从而降低了膜的导电导热性。
发明内容
本发明所要解决的技术问题是针对现有技术的不足,提供一种致密柔韧的石墨烯/PS复合导热膜的制备方法,以氧化石墨烯粉体以及苯乙烯有机溶剂为原料,采用研磨分散和涂膜方法、结合热处理等工艺制备石墨烯/PS新型导热导电复合膜。此制备工艺简单、所制备的复合导热膜柔韧性好、结构完整、强度高、导热系数大。
本发明解决上述技术问题的技术方案如下:一种致密柔韧的石墨烯/PS复合导热膜的制备方法,其特征在于,其原料由氧化石墨烯粉体和苯乙烯组成,包括如下步骤:
(1)氧化石墨烯粉体预处理:将氧化石墨烯粉体在一定温度下烘干,并过筛;
此步的目的:烘干去除氧化石墨烯内多余水分是为了防止水与苯乙烯反应污染了分散液;过筛去除氧化石墨烯分体内固体颗粒杂质;
(2)制备氧化石墨烯苯乙烯分散液:将规定量的氧化石墨烯粉体、苯乙烯、锆珠加至研磨机内,充分研磨一定时间后得到氧化石墨烯苯乙烯分散液;
此步的目的:经充分研磨后,氧化石墨烯表面上的环氧基、羟基、羰基与苯乙烯能够更加充分接触。苯乙烯小分子能进入到氧化石墨烯层间形成稳定均匀的氧化石墨烯苯乙烯分散液。
其中,氧化石墨烯在苯乙烯内的加入的比例范围是0.1wt.%-6.0wt.%;
若氧化石墨烯添加量过低,则不能有效增强石墨烯/PS复合膜的导热性能,若添加量过高,则会出现局部团聚现象,反而增加了石墨烯/PS复合膜的缺陷,降低了复合导热膜的导热性。
(3)制备氧化石墨烯/PS复合膜:将氧化石墨烯苯乙烯分散液涂成1-3mm厚的膜,并在室温下通风干燥处理一定时间后用压延法压平,得到氧化石墨烯/PS复合膜;
此步的目的:GO(氧化石墨烯)片层上的含氧官能团能促进苯乙烯自聚交联、且在蒸发沉积聚合过程中片状氧化石墨烯上的含氧官能团与苯乙烯内的碳碳双键键合,经自组装后形成致密性良好、韧性大、结构完整的复合膜。室温处理是为了保持复合膜的结构完整性。
(4)将步骤(3)的氧化石墨烯/PS复合膜在惰性保护气体的环境下,经2500-3000℃高温处理一定时间后,得到致密性良好的石墨烯/PS复合导热膜,所得石墨烯/PS复合导热膜的导热系数为600-1550W/m·K。
其中惰性保护气体优选氩气。
此步的目的:高温碳化处理是为了将氧化石墨烯及聚苯乙烯内的含氧官能团去掉,最终得到结构完整的纯碳环构成的导热导电膜。
进一步的,所述步骤(1)中氧化石墨烯粉体在60℃下烘干3-6小时。
进一步的,所述步骤(1)中氧化石墨烯粉体烘干后过200目筛。
进一步的,所述步骤(2)中苯乙烯与锆珠的质量比=1:(1-4),锆珠直径0.4-0.6mm、0.9-1.0mm、1.8-2.0mm。锆珠的加入是为了促进氧化石墨烯在苯乙烯中的均匀分散,同时将氧化石墨烯粉体碾平剥离。
进一步的,所述步骤(2)研磨时间为1-10h。
进一步的,所述步骤(2)氧化石墨烯在苯乙烯内的加入的比例范围是0.1wt.%-6.0wt.%。
进一步的,所述步骤(3)中室温通风干燥时间为6-36h。
进一步的,所述步骤(4)高温处理的时间为10-70h,优选60h。
本发明的有益效果是:
1.本发明所制备的氧化石墨烯/PS复合膜导热膜制备过程中,直接将氧化石墨烯粉末分散在苯乙烯内。苯乙烯原本结构中带有的苯环,经高温处理碳化后仍然保留了碳六元环结构,此六元环结构与被还原为石墨烯的六元环之间形成 π-π 键相互作用。不仅使得在热还原后能够制备紧密堆积的石墨导热膜,并且纵向层与层之间通过π电子形成了自由电子的移动导热通道,提高了复合导热膜的导热系数。
2.研磨分散后,氧化石墨烯由粉体剥离成较薄的片状。氧化石墨烯分散在苯乙烯内,平展堆叠,密闭,少层氧化石墨烯不仅柔韧性好、且其上的含氧官能团能更充分的与苯乙烯接触。部分活性较高的含氧官能团不仅能在低温下促进苯乙烯自聚交联,且能与苯乙烯上的碳碳双键形成烯醇键合,增强了氧化石墨烯片层间之间、以及氧化石墨烯与苯乙烯之间的相互作用,使得复合膜自组装时紧密堆叠良好,最终为氧化石墨烯、苯乙烯(后自聚交联为聚苯乙烯PS)为基底的炭化导热膜,制备的氧化石墨烯/PS复合膜致密性强、柔韧性良好,有效降低了高温热还原过程中出现的破损、断裂等现象。
3.本工艺简单易操作,成本低,能耗低,所制备的导热膜可应用于电子元器件上。
附图说明
图1是实施例2步骤(2)制得的GO/苯乙烯分散液的SEM图;
图2是实施例2步骤(3)制得的氧化石墨烯/PS复合膜实物图;
图3是对比例1制得的氧化石墨烯/甲醇分散液的SEM图;
图4是对比例1制得的氧化石墨烯/甲醇复合膜实物图;
图5是实施例2制得的GO/苯乙烯分散液显微放大150倍后的图像;
图6是实施例2制得的石墨烯/PS复合膜应用于电子产品上的实物图;
图7是对比例2制得的GO/苯乙烯分散液显微放大150倍后的图像。
具体实施方式
下面对本发明的原理和特征进行描述,所举实施例只用于解释本发明,并非用于限定本发明的范围。
实施例1
制备方法包括如下步骤:
(1) 氧化石墨烯粉体预处理:将高氧化度小尺寸氧化石墨烯粉体经60℃烘干6小时、过200目筛。
(2)制备氧化石墨烯苯乙烯分散液:称取18.5g氧化石墨烯粉体、量取2L(重1850g)苯乙烯、称取重量3.3kg规格分别为0.4-0.6mm及0.9-1.0mm(比例2:1)锆珠依次加至研磨机内,充分研磨10h后得到氧化石墨烯苯乙烯分散液。
(3)制备氧化石墨烯/PS复合膜:将氧化石墨烯苯乙烯分散液涂成1mm的膜,并在室温下通风干燥处理24h,得到致密且韧性良好的氧化石墨烯/PS复合膜。
(4)将步骤3)的氧化石墨烯/PS复合膜在惰性的保护性气体的环境下,经2500℃高温处理60h后,得到致密性良好的石墨烯/PS复合导热膜。
该石墨烯/PS复合导热膜的导热系数为1490W/m·K。
实施例2
制备方法包括如下步骤:
(1)氧化石墨烯粉体预处理:将高氧化度小尺寸氧化石墨烯粉体经60℃烘干6小时、过200目筛。
(2)制备氧化石墨烯苯乙烯分散液:称取1.11g氧化石墨烯粉体、量取40ml(重37g)苯乙烯、148g规格为1.8-2.0mm的锆珠依次加至研磨机内,充分研磨3h,制得的GO/苯乙烯分散液的SEM图见图1,GO/苯乙烯分散液显微放大150倍后的图像见图5。
(3)制备氧化石墨烯/PS复合膜:将氧化石墨烯苯乙烯分散液涂成2mm的膜,并在室温下通风干燥处理24h,得到致密且韧性良好的氧化石墨烯/PS复合膜。氧化石墨烯/PS复合膜实物图见图2。
(4)将步骤3)的氧化石墨烯/PS复合膜在惰性的保护性气体的环境下,经2800℃高温处理60h后,得到致密性良好的石墨烯/PS复合导热膜。
该石墨烯/PS复合导热膜的导热系数为1520W/m·K。
实施例3
制备方法包括如下步骤:
(1)氧化石墨烯粉体预处理:将高氧化度小尺寸氧化石墨烯粉体经60℃烘干6小时、过200目筛。
(2)制备氧化石墨烯苯乙烯分散液:称取2.22g氧化石墨烯粉体、量取40ml(重37g)苯乙烯、148g规格为1.8-2.0mm的锆珠依次加至研磨机内,开启研磨机,共研磨4h得GO/苯乙烯分散液;
(3)制备氧化石墨烯/PS复合膜:将氧化石墨烯苯乙烯分散液涂成2mm的膜,并在室温下通风干燥处理24h,得到致密且韧性良好的氧化石墨烯/PS复合膜。
(4)将步骤3)的氧化石墨烯/PS复合膜在惰性的保护性气体的环境下,经2500℃高温处理70h后,得到致密性良好的石墨烯/PS复合导热膜。
该石墨烯/PS复合导热膜的导热系数为1500W/m·K。
实施例4
制备方法包括如下步骤:
(1)氧化石墨烯粉体预处理:将高氧化度小尺寸氧化石墨烯粉体经60℃烘干3小时、过200目筛。
(2)制备氧化石墨烯苯乙烯分散液:称取0.37g氧化石墨烯粉体、量取400ml(重370g)苯乙烯、370g规格为0.9-1.0mm锆珠依次加至研磨机内,充分研磨1h得GO/苯乙烯分散液。
(3)制备氧化石墨烯/PS复合膜:将氧化石墨烯苯乙烯分散液涂成3mm的膜,并在室温下通风干燥处理6h后用压平,得到致密且韧性良好的氧化石墨烯/PS复合膜。
(4)将步骤3)的氧化石墨烯/PS复合膜在惰性的保护性气体的环境下,经3000℃高温处理10h后,得到致密性良好的石墨烯/PS复合导热膜。
该石墨烯/PS复合导热膜的导热系数为1200W/m·K。
由图1、图5可以看出,经充分研磨后,氧化石墨烯均匀的分散在苯乙烯中,这使得苯乙烯小分子能进入到氧化石墨烯层间形成稳定均匀的氧化石墨烯苯乙烯分散液,且氧化石墨烯内部表面上的环氧基、羟基、羰基与苯乙烯能够更加充分接触。由图2可知,此方法制备的氧化石墨烯苯乙烯分散液经研磨过程中的局部高温引发苯乙烯微聚合,后经充分的室温通风干燥后,可以形成致密柔韧的GO/聚苯乙烯复合膜,这为后期进一步制备形成致密柔韧的石墨烯/PS复合导热膜打下了关键性的基础。
另外,将实施例2的制备方法应用于电子产品上最终形成的石墨烯/PS复合导热膜见图6,可见,膜表面无破裂无细缝,非常柔韧致密。
上述实施例中,所用原料氧化石墨烯为山东利特纳米科技有限公司自主研发的新型502型氧化石墨烯粉体,其主要指标为横向尺寸200nm~5μm,纯度≥99wt%,氧含量30-45%。厚度为1~10原子层,含水率3%以下。
上述石墨烯导热膜的导热系数的测试为:采用热导仪测试复合材料膜面向热扩散系数,然后计算出导热系数=热扩散系数*密度*比热容。
对比例1
本对比例的制备方法同实施例2,所不同的是,采用小分子型甲醇做溶剂代替苯乙烯。所得氧化石墨烯/甲醇分散液的SEM图见图3,制得的氧化石墨烯/甲醇复合膜实物图见图4。
由图3和图4结果可知,甲醇做溶剂,氧化石墨烯虽能均匀的分散,但氧化石墨烯之间无连接,导致成膜后膜脆、易破碎。由此可见,苯乙烯在本申请的制备方法中的作用并非常规溶剂所能达到的效果。
对比例2
本对比例的制备方法同实施例2,所不同的是,实施例2中氧化石墨烯在苯乙烯内的加入的比例是3.0wt.%,本对比例中氧化石墨烯在苯乙烯内的加入的比例是6.5wt.%。所得氧化石墨烯/苯乙烯分散液的显微放大150倍后如图7。
由图7结果可知,氧化石墨烯/苯乙烯分散液内氧化石墨烯粉体添加量过高,分散液内出现氧化石墨烯局部团聚现象,这将导致增加了石墨烯/PS复合膜的缺陷,降低了复合导热膜的导热性。
由上述对比可知,本发明中所采用的以苯乙烯为溶剂无法被其他有机溶剂所代替,且氧化石墨烯与苯乙烯相结合的配方是本发明中制备致密柔韧的碳基复合导热膜的关键技术。

Claims (6)

1.一种致密柔韧的石墨烯/PS复合导热膜的制备方法,其特征在于,其原料由氧化石墨烯粉体和苯乙烯组成,由如下步骤组成:
(1)氧化石墨烯粉体预处理:将氧化石墨烯粉体在一定温度下烘干,并过筛;
(2)制备氧化石墨烯苯乙烯分散液:将规定量的氧化石墨烯粉体、苯乙烯、锆珠加至研磨机内,充分研磨1-10h后得到氧化石墨烯苯乙烯分散液;
其中,氧化石墨烯在苯乙烯内的加入的比例范围是0.1wt.%-6.0wt.%;
(3)制备氧化石墨烯/PS复合膜:将氧化石墨烯苯乙烯分散液涂成1-3mm厚的膜,并在室温下通风干燥处理6-36h,得到氧化石墨烯/PS复合膜;
(4)将步骤(3)的氧化石墨烯/PS复合膜在惰性保护气体的环境下,经2500-3000℃高温处理10-70h后,得到致密柔韧的石墨烯/PS复合导热膜。
2.根据权利要求1所述的致密柔韧的石墨烯/PS复合导热膜的制备方法,其特征在于,所述步骤(1)中氧化石墨烯粉体在60℃下烘干3-6小时。
3.根据权利要求1所述的致密柔韧的石墨烯/PS复合导热膜的制备方法,其特征在于,所述步骤(1)中氧化石墨烯粉体烘干后过200目筛。
4.根据权利要求1所述的致密柔韧的石墨烯/PS复合导热膜的制备方法,其特征在于,所述步骤(2)中苯乙烯与锆珠的质量比=1:(1-4)。
5.根据权利要求1所述的致密柔韧的石墨烯/PS复合导热膜的制备方法,其特征在于,所述步骤(2)中锆珠的规格选用直径0.4-0.6mm、0.9-1.0mm或1.8-2.0mm中的至少一种。
6.根据权利要求1所述的致密柔韧的石墨烯/PS复合导热膜的制备方法,其特征在于,所得石墨烯/PS复合导热膜的导热系数为600-1550W/m·K。
CN202110760495.8A 2021-07-06 2021-07-06 一种致密柔韧的石墨烯/ps复合导热膜的制备方法 Active CN113387700B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110760495.8A CN113387700B (zh) 2021-07-06 2021-07-06 一种致密柔韧的石墨烯/ps复合导热膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110760495.8A CN113387700B (zh) 2021-07-06 2021-07-06 一种致密柔韧的石墨烯/ps复合导热膜的制备方法

Publications (2)

Publication Number Publication Date
CN113387700A CN113387700A (zh) 2021-09-14
CN113387700B true CN113387700B (zh) 2022-10-18

Family

ID=77625170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110760495.8A Active CN113387700B (zh) 2021-07-06 2021-07-06 一种致密柔韧的石墨烯/ps复合导热膜的制备方法

Country Status (1)

Country Link
CN (1) CN113387700B (zh)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115566A (zh) * 2011-01-06 2011-07-06 西安理工大学 高阻隔性氧化石墨烯和聚合物纳米复合膜的制备方法
KR101224290B1 (ko) * 2011-02-11 2013-01-21 한국과학기술원 그래핀 필름을 이용한 블록 공중합체 필름 제조방법 및 이에 의하여 제조된 블록 공중합체 필름
CN102731733B (zh) * 2011-04-08 2016-05-04 中国科学院上海应用物理研究所 一种高分子接枝的氧化石墨烯及其制备方法
CN102827315B (zh) * 2012-08-30 2015-03-25 合肥工业大学 一种氧化石墨烯/聚苯乙烯纳米复合材料及其制备方法
CN106744842A (zh) * 2013-04-16 2017-05-31 中国科学院福建物质结构研究所 一种制备石墨烯材料的方法及其在化学储能和/或转化中的用途
CN104973590B (zh) * 2014-04-11 2017-02-08 中国科学院上海硅酸盐研究所 一种氧化石墨烯分散高质量石墨粉、石墨烯,制备高导热、高导电薄膜的方法
CN105330791A (zh) * 2015-10-28 2016-02-17 武汉理工大学 相容性可控的氧化石墨烯剥离用表面活性剂的制备方法
CN105731435B (zh) * 2016-01-25 2017-11-28 浙江碳谷上希材料科技有限公司 一种高强柔性石墨烯复合导热膜及其制备方法
CN107739491A (zh) * 2017-11-22 2018-02-27 陕西盛迈石油有限公司 一种石墨烯/聚苯乙烯导电复合材料的制备方法
CN108342026A (zh) * 2018-03-23 2018-07-31 长春工业大学 一种由石墨与苯乙烯制备石墨烯-聚苯乙烯复合材料的方法
CN109233124B (zh) * 2018-06-27 2020-02-11 天津大学 一种聚苯乙烯-氧化石墨烯复合块体材料、石墨烯基多孔块体材料及其制备方法
CN109012580A (zh) * 2018-07-18 2018-12-18 山东利特纳米技术有限公司 一种石墨烯-活性炭多层多孔材料的制备方法
CN109233103B (zh) * 2018-09-20 2021-04-13 浙江弥格科技有限公司 一种改性氧化石墨烯复合聚丙烯包装薄膜的制备方法
CN110452321A (zh) * 2019-07-30 2019-11-15 山东鲁泰控股集团有限公司 一种石墨烯/苯乙烯复合材料的制备方法
CN112028060B (zh) * 2020-08-28 2021-09-28 清华大学深圳国际研究生院 导热膜的制备方法

Also Published As

Publication number Publication date
CN113387700A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
Pan et al. In-situ synthesis of hierarchically porous and polycrystalline carbon nanowires with excellent microwave absorption performance
CN108251076B (zh) 碳纳米管-石墨烯复合散热膜、其制备方法与应用
Du et al. Multifunctional carbon nanofiber-SiC nanowire aerogel films with superior microwave absorbing performance
Luo et al. Microwave-absorbing polymer-derived ceramics from cobalt-coordinated poly (dimethylsilylene) diacetylenes
Zhang et al. In situ stringing of metal organic frameworks by SiC nanowires for high-performance electromagnetic radiation elimination
Nasrin et al. In‐situ synergistic 2D/2D MXene/BCN heterostructure for superlative energy density supercapacitor with super‐long life
Du et al. Preparation and preliminary property study of carbon nanotubes films by electrophoretic deposition
JP5992001B2 (ja) リチウムイオン電池用一酸化ケイ素複合負極材、その製造方法及びリチウムイオン電池
CN109912912B (zh) 一种柔性、电绝缘氟化石墨烯导热复合膜及其制备和应用
Wang et al. Highly electroconductive mesoporous activated carbon fibers and their performance in the ionic liquid-based electrical double-layer capacitors
Han et al. Efficient microwave absorption with Vn+ 1CnTx MXenes
Liu et al. Amorphous carbon-matrix composites with interconnected carbon nano-ribbon networks for electromagnetic interference shielding
Koh et al. Effective hybrid graphene/carbon nanotubes field emitters by electrophoretic deposition
Singh et al. Investigation of chemical bonding and electronic network of rGO/PANI/PVA electrospun nanofiber
Koh et al. Effective large-area free-standing graphene field emitters by electrophoretic deposition
CN105819710A (zh) 一种石墨烯/玄武岩复合材料及其制备方法
Jang et al. Particle size effect in porous film electrodes of ligand-modified graphene for enhanced supercapacitor performance
Qian et al. Scalable Assembly of High‐Quality Graphene Films via Electrostatic‐Repulsion Aligning
Zhou et al. High-performance polyimide nanocomposites with core-shell AgNWs@ BN for electronic packagings
Cheng et al. Preparation of silver/carbon fiber/polyaniline microwave absorption composite and its application in epoxy resin
CN111908452A (zh) 一种石墨烯碳纳米管复合高导热膜及其制备方法
CN113735597B (zh) 原位负载氮掺杂石墨烯的聚合物转化陶瓷基吸波材料的制备方法
Geng et al. Enhanced electromagnetic wave absorption properties of ZIF-67 modified polymer-derived SiCN ceramics by in situ construction of multiple heterointerfaces
Chen et al. Anisotropically enhancing thermal conductivity of epoxy composite with a low filler load by an AlN/C fiber skeleton
CN113387700B (zh) 一种致密柔韧的石墨烯/ps复合导热膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Preparation method of a dense and flexible graphene/PS composite thermal conductivity film

Effective date of registration: 20231025

Granted publication date: 20221018

Pledgee: Rizhao Bank Co.,Ltd. Jining Rencheng sub branch

Pledgor: SHANDONG LEADER NANO TECHNOLOGY Co.,Ltd.

Registration number: Y2023980062614

PE01 Entry into force of the registration of the contract for pledge of patent right