CN113385145B - 复合材料及其制备方法和应用 - Google Patents

复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN113385145B
CN113385145B CN202110695129.9A CN202110695129A CN113385145B CN 113385145 B CN113385145 B CN 113385145B CN 202110695129 A CN202110695129 A CN 202110695129A CN 113385145 B CN113385145 B CN 113385145B
Authority
CN
China
Prior art keywords
zif
cofs
composite material
preparation
cofs composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110695129.9A
Other languages
English (en)
Other versions
CN113385145A (zh
Inventor
徐东辉
刘广洋
张璇
高明坤
花雨薇
陈鸽
黄晓冬
田明硕
李凌云
许晓敏
张延国
林桓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences
Original Assignee
Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences filed Critical Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences
Priority to CN202110695129.9A priority Critical patent/CN113385145B/zh
Publication of CN113385145A publication Critical patent/CN113385145A/zh
Application granted granted Critical
Publication of CN113385145B publication Critical patent/CN113385145B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及功能材料技术领域,具体而言,涉及一种复合材料及其制备方法和应用。本发明的Fe3O4‑ZIF‑8/COFs复合材料的制备方法,包括以下步骤:Fe3O4‑ZIF‑8、均苯三甲醛、联苯胺、有机溶剂和催化剂的混合物进行反应。本发明通过原位聚合法制备得到Fe3O4‑ZIF‑8/COFs复合材料,该方法简单易行,得到的复合材料具有超顺磁性和高的比面积,能快速有效地吸附目标物,同时具有较好的抗干扰能力。

Description

复合材料及其制备方法和应用
技术领域
本发明涉及功能材料技术领域,具体而言,涉及一种复合材料及其制备方法和应用。
背景技术
莱菔硫烷(sulforaphane,SF)是一种异硫氰酸盐,以硫代葡萄糖苷的形式存在于十字花科蔬菜中,如卷心菜、花椰菜和羽衣甘蓝,在花椰菜尤其是花椰菜芽中含量很高。莱菔硫烷因其对健康的益处而引起医学界的兴趣,被广泛研究。研究表明,萝卜硫素可以预防各种类型的癌症,比如前列腺癌、皮肤癌、乳腺癌等;具有很好的抗氧化能力,通过抗氧化能力减轻肝损伤,通过其抗氧化能力对炎症有很好的治疗效果,防止心肌损伤,对子宫内膜异位症有很好的治疗和镇痛效果;可以改善肥胖并发症,改善男性生殖功能障碍;还可以降低心血管疾病的风险,具有神经保护作用,改善记忆力,治疗癫痫,并且对阿尔兹海默症有很好的治疗效果;有助于自闭症和骨质疏松症。
目前常规的检测SF的方法有液相色谱法(LC)、质谱法(MS)、液相色谱质谱联用法(LC-MS\MS)、高效液相色谱法(HPLC)、反相高效液相色谱法(rHPLC)、高效液相色谱串联质谱法(HPLC-MS\MS)、超高效液相色谱串联质谱法(UPHPLC-MS\MS)等。HPLC-MS\MS因其兼具了高效与经济特性,检测灵敏度高与高通量等特性被广泛应用。
SF常见的萃取方法中最基本的有溶剂萃取法,操作简单、成本低,但是有机溶剂用量过多,而有机溶剂大多数是有毒的,且通过内源途径得到的SF不易控,采用外源性则可以很好的解决这个问题。为了增加效率,可以引入超声和微波辅助的方法,不仅提高效率,还通过高压均质,减小粒径可进一步提高产量;高效液相色谱法与高速逆流色谱法可以完美的纯化得到SF,但是其对仪器要求过高,同时难以应用于大规模生产;而固相萃取法(SPE)兼顾了高效、成本低等特点,但是液质分离依旧费时费力。
有鉴于此,特提出本发明。
发明内容
本发明的一个目的在于提供一种Fe3O4-ZIF-8/COFs复合材料的制备方法,通过原位聚合法将Fe3O4、ZIF-8和COF结合起来,制备了Fe3O4-ZIF-8/COFs复合材料,该方法简单易行。
本发明的另一个目的在于提供一种所述的Fe3O4-ZIF-8/COFs复合材料的制备方法制备得到的Fe3O4-ZIF-8/COFs复合材料。该复合材料具有超顺磁性和高的比面积,能快速有效的吸附目标物,同时具有较好的抗干扰能力。
本发明的另一个目的在于提供一种莱菔硫烷的富集与分离方法,包括以下步骤:如上所述Fe3O4-ZIF-8/COFs复合材料和含有莱菔硫烷的待处理液的混合物进行涡旋处理和振荡处理,再进行磁分离。该方法简单、高效。
为了实现本发明的上述目的,特采用以下技术方案:
一种Fe3O4-ZIF-8/COFs复合材料的制备方法,包括以下步骤:
Fe3O4-ZIF-8、均苯三甲醛、联苯胺、有机溶剂和催化剂的混合物进行反应。
优选地,所述催化剂包括冰醋酸;
优选地,所述有机溶剂包括二甲基亚砜。
优选地,所述Fe3O4-ZIF-8、所述均苯三甲醛、所述联苯胺和所述催化剂的用量比为(0.3~0.7)g:(0.04~0.2)g:(0.04~0.2)g:(1.5~6)mL。
优选地,所述反应的温度为15~25℃;
优选地,所述反应的时间为25~35min。
优选地,所述混合物的制备包括:先将所述Fe3O4-ZIF-8、所述均苯三甲醛、所述联苯胺和所述有机溶剂预混搅拌25~35min,再加入所述催化剂。
优选地,对所述反应后的混合体系进行磁分离,收集固形物进行洗涤;
优选地,所述洗涤包括:采用二甲基亚砜洗涤1~2次,再采用乙醇洗涤2~3次。
优选地,所述Fe3O4-ZIF-8的制备方法包括以下步骤:
锌盐和Fe3O4于水中搅拌,再加入2-甲基咪唑溶液进行搅拌;
优选地,所述锌盐和Fe3O4于水中搅拌的时间为25~30min;
优选地,所述加入2-甲基咪唑溶液进行搅拌的时间为50~65min;
优选地,所述锌盐包括Zn(NO3)2·6H2O;
优选地,所述Zn(NO3)2·6H2O、所述2-甲基咪唑和所述Fe3O4的质量比为(0.12~0.48):(0.21~1.84):(0.1~0.3)。
如上所述的Fe3O4-ZIF-8/COFs复合材料的制备方法制备得到的Fe3O4-ZIF-8/COFs复合材料;
优选地,所述Fe3O4-ZIF-8/COFs复合材料的比表面积为54~58m2/g,孔体积为0.37~0.4cm3/g。
莱菔硫烷的富集与分离方法,包括以下步骤:
采用如上所述Fe3O4-ZIF-8/COFs复合材料对液体环境中的莱菔硫烷进行富集,再进行磁分离;
优选地,所述富集的方法包括:所述Fe3O4-ZIF-8/COFs复合材料分散于所述液体环境中后进行振荡处理;
优选地,通过涡旋处理实现所述分散。
优选地,所述涡旋处理的时间为50~65s;
优选地,所述振荡处理的时间为8~12min。
与现有技术相比,本发明的有益效果为:
(1)本发明的Fe3O4-ZIF-8/COFs复合材料的制备方法,通过原位聚合法将Fe3O4、ZIF-8和COF结合起来,制备得到Fe3O4-ZIF-8/COFs复合材料,该方法简单易行。
(2)本发明的所述的Fe3O4-ZIF-8/COFs复合材料的制备方法制备得到的Fe3O4-ZIF-8/COFs复合材料,具有超顺磁性,高的比面积,热稳定性好,并且具有抗酸耐碱性,能够快速有效的吸附目标物,同时具有较好的抗干扰能力。
(3)本发明的莱菔硫烷的富集与分离方法简单、高效。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为Fe3O4、ZIF-8、COFs和Fe3O4-ZIF-8/COFs的SEM表征图;
图2为Fe3O4、ZIF-8、COFs和Fe3O4-ZIF-8/COFs的X射线图;
图3为Fe3O4、ZIF-8、COFs和Fe3O4-ZIF-8/COFs的傅里叶红外光谱图;
图4为Fe3O4、Fe3O4-ZIF-8和Fe3O4-ZIF-8/COFs的晶体的磁滞回线图;
图5为Fe3O4-ZIF-8/COFs的N2吸附-解吸等温线。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
根据本发明的一个方面,本发明涉及一种Fe3O4-ZIF-8/COFs复合材料的制备方法,包括以下步骤:
Fe3O4-ZIF-8、均苯三甲醛、联苯胺、有机溶剂和催化剂的混合物进行反应。
采用磁性固相萃取法(MSPE)为目前最优提取分离SF的方法,MSPE具有许多优点,例如吸附剂和目标分析物之间的接触面积大、短时间内的高富集效率、容易的分离过程和有机溶剂的低消耗。
ZIF-8具有沸石拓扑结构,其中二价金属阳离子通过咪唑酸阴离子连接到四面体骨架上,导致大的表面积和孔体积以及独特的固有生物降解性。具有高的化学和热稳定性,易于合成,大的比表面积和孔隙率的ZIF-8已成功应用于催化、气体分离、染料吸附、水处理领域和药载与释放,还具有抗菌性能。
共价有机框架(COFs)是一类新兴的结晶多孔材料,它是由轻元素(氢、硼、碳、氮、氧、硅)通过基于共价键的构件连接而成。COFs具有密度低、孔径可调、孔隙率规则、比表面积大、化学稳定性和热稳定性高的特点。使其广泛应用于吸附、催化、气体储存和光电。此外,COFs一般表现出疏水性行为,由于大的π电子系统的脱位,可以与芳香环相关化合物形成强烈的π-π定点相互作用。然而,现有的合成磁性COFs的策略通常需要苛刻的反应条件和长的反应时间,因此,开发一种简单的方法来合成COFs是非常重要的。COFs在分离领域中常用于分离气体、离子排斥、油水分离等;在吸附领域中常用于萃取酚、水处理、吸附染料、吸附放射性物质等;还应用于催化领域,燃料电池和点化学存储,还能应用于癌症的治疗。
本发明的方法简单易行,成功合成了高比表面积三维网状晶体复合材料Fe3O4-ZIF-8/COF,既保留了ZIF-8的三位拓扑结构,又引入了COF的化学稳定性、耐酸碱和热稳定性等特点,同时引入磁性粒子,减轻了繁琐的液质分离步骤。
优选地,所述催化剂包括冰醋酸。
优选地,所述有机溶剂包括二甲基亚砜(DMSO)。
优选地,所述Fe3O4-ZIF-8、所述均苯三甲醛、所述联苯胺和所述催化剂的用量比为(0.3~0.7)g:(0.04~0.2)g:(0.04~0.2)g:(1.5~6)mL。
在一种实施方式中,所述Fe3O4-ZIF-8、所述均苯三甲醛、所述联苯胺和所述催化剂的用量比为还可以选择0.3g:0.04g:0.04g:1.5mL、0.5g:0.1g:0.1g:3mL、0.6g:0.12g:0.15g:4mL或0.7g:0.2g:0.2g:6mL。
优选地,所述反应的温度为15~25℃。
本发明的原料于室温条件下进行搅拌反应。在一种实施方式中,所述反应的温度为15~25℃,还可以选择15℃、16℃、17℃、18℃、19℃、20℃、21℃、22℃、23℃、24℃或25℃。
优选地,所述反应的时间为25~35min。
在一种实施方式中,所述反应时间为25~35min,还可以选择25min、26min、27min、28min、29min、30min、31min、32min、33min、34min或35min。
优选地,所述混合物的制备包括:先将所述Fe3O4-ZIF-8、所述均苯三甲醛、所述联苯胺和所述有机溶剂预混搅拌25~35min,再加入所述催化剂。
在一种实施方式中,所述Fe3O4-ZIF-8、所述均苯三甲醛、所述联苯胺和所述有机溶剂预混搅拌25min、26min、27min、28min、29min、30min、31min、32min、33min、34min或35min。
优选地,对所述反应后的混合体系进行磁分离,收集固形物进行洗涤。
优选地,所述洗涤包括:采用二甲基亚砜洗涤1~2次,再采用乙醇洗涤2~3次。
优选地,所述Fe3O4-ZIF-8的制备方法包括以下步骤:
锌盐和Fe3O4于水中搅拌,再加入2-甲基咪唑溶液进行搅拌。
优选地,所述锌盐和Fe3O4于水中搅拌的时间为25~30min。
在一种实施方式中,所述锌盐和Fe3O4于水中搅拌的时间为25~30min,还可以选择25min、26min、27min、28min、29min或30min。
优选地,所述加入2-甲基咪唑溶液进行搅拌的时间为50~65min。
在一种实施方式中,所述加入2-甲基咪唑溶液进行搅拌的时间为50~65min,还可以选择50min、51min、52min、53min、54min、55min、56min、57min、58min、59min、60min、61min、62min、63min、64min或65min。
优选地,所述锌盐包括Zn(NO3)2·6H2O。
优选地,所述Zn(NO3)2·6H2O、所述2-甲基咪唑和所述Fe3O4的质量比为(0.12~0.48):(0.21~1.84):(0.1~0.3)。
在一种实施方式中,所述Zn(NO3)2·6H2O、所述2-甲基咪唑和所述Fe3O4的质量比为0.12:0.21:0.1、0.15:0.25:0.15、0.2:0.5:0.18、0.25:1:0.2、0.3:1.5:0.25或0.48:1.84:0.3。
根据本发明的另一个方面,本发明还涉及如上所述的Fe3O4-ZIF-8/COFs复合材料的制备方法制备得到的Fe3O4-ZIF-8/COFs复合材料。
优选地,所述Fe3O4-ZIF-8/COFs复合材料的比表面积为54~58m2/g,孔体积为0.37~0.4cm3/g。Fe3O4-ZIF-8/COFs复合材料的平均孔径为23.43018nm。
本发明的Fe3O4-ZIF-8/COFs复合材料具有超顺磁性、高的比面积,热稳定性好,并且具有抗酸耐碱性,能快速有效的吸附目标物,同时具有较好的抗干扰能力。
根据本发明的另一个方面,本发明还涉及莱菔硫烷的富集与分离方法,包括以下步骤:
采用如上所述Fe3O4-ZIF-8/COFs复合材料对液体环境中的莱菔硫烷进行富集,再进行磁分离。
优选地,所述富集的方法包括:所述Fe3O4-ZIF-8/COFs复合材料分散于所述液体环境中后进行振荡处理。
优选地,通过涡旋处理实现所述分散。
优选地,所述涡旋处理的时间为50~65s。
在一种实施方式中,所述涡旋处理的时间还可以选择50s、51s、52s、53s、54s、55s、56s、57s、58s、59s、60s、61s、62s、63s、64s或65s。
优选地,所述振荡处理的时间为8~12min。
在一种实施方式中,所述振荡处理的时间还可以选择8min、9min、10min、11min或12min。
在一种优选地实施方式中,所述Fe3O4-ZIF-8/COF复合粉体的制备方法,包括以下步骤:
(a)Fe3O4的制备:
称取FeCl3·6H2O溶于10mL超纯水,称取FeSO4·7H2O溶于10mL超纯水,将两者混合超声溶解,0.22μm的膜进行过滤;将过滤后的混合液转移至含有高纯水的500mL的三口烧瓶中,在氮气保护下80℃恒温磁力搅拌30min之后再加入浓度为28%的氨水,60~80℃恒温继续磁力搅拌30min;反应充分后,冷却至室温;利用磁铁吸附Fe3O4,用乙醇、水交替洗涤,至上清液清澈,洗去多余未合成的物质及杂质;其中,FeCl3·6H2O、FeSO4·7H2O和高纯水用量比为(0.45~1.8)g:(0.3~1.2)g:(160~320)mL;
(b)Fe3O4-ZIF-8的制备
在万分尺天平上准确称取一定量Zn(NO3)2·6H2O并溶于20mL超纯水中,称取一定量2-甲基咪唑并溶于20mL超纯水中;将制备得到的Fe3O4加入上述Zn(NO3)2·6H2O溶液在室温下搅拌25~35min,然后加入上述2-甲基咪唑溶液并在室温下继续搅拌50~65min,磁分离并倒出溶液保留反应产物,将反应产物用水和乙醇各洗涤两次得到Fe3O4-ZIF-8,在真空冷冻下干燥;Zn(NO3)2·6H2O、2-甲基咪唑和Fe3O4的质量比为(0.12~0.48):(0.21~1.84):(0.1~0.3);
(c)Fe3O4-ZIF-8/COFs的制备
在万分天平上准确的称取一定量Fe3O4-ZIF-8、均苯三甲醛和联苯胺,将均苯三甲醛和联苯胺分别溶于40mL的DMSO中,Fe3O4-ZIF-8放入锥形瓶中,并加入80mL的DMSO,超声5min使其均匀分散,加入均苯三甲醛和联苯胺的DMSO溶液,室温下搅拌25~35min,加入冰醋酸,继续搅拌25~35min。磁分离并倒出溶液保留反应产物,将反应产物分别用DMSO洗涤一次,之后用乙醇洗涤两次到最终产物Fe3O4-ZIF-8/COFs,真空冷冻干燥;所述Fe3O4-ZIF-8、所述均苯三甲醛、所述联苯胺和所述催化剂的用量比为(0.3~0.7)g:(0.04~0.2)g:(0.04~0.2)g:(1.5~6)mL。
下面将结合具体的实施例对本发明作进一步的解释说明。
实施例1
Fe3O4-ZIF-8/COFs复合粉体的制备方法,包括以下步骤:
(a)Fe3O4的制备
在千分天平上准确称取1.2g的FeCl3·6H2O溶于10mL超纯水,0.7g的FeSO4·7H2O溶于10mL超纯水,上述两种液体进行混合超声溶解,再用0.22μm的膜进行过滤,过滤后的混合液转移至含有240mL水的500mL三口烧瓶中,在氮气保护下80℃恒温磁力搅拌30min,再加入10mL浓度为28%的氨水,80℃恒温继续磁力搅拌30min;反应充分后,冷却至室温;利用磁铁吸附Fe3O4,用乙醇、水交替洗涤,至上清液清澈,洗去多余未合成的物质及杂质;
(b)Fe3O4-ZIF-8的制备
在万分尺天平上准确称取0.3g的Zn(NO3)2·6H2O并溶于20mL超纯水中,称取0.82g2-甲基咪唑并溶于20mL超纯水中;向步骤(a)得到的Fe3O40.15g中加入上述Zn(NO3)2·6H2O溶液,在室温下搅拌30min,再加入上述2-甲基咪唑溶液并在室温下继续搅拌1h,磁分离并倒出溶液保留反应产物,将反应产物用水和乙醇各洗涤两次得到Fe3O4-ZIF-8,在真空冷冻下干燥;
(c)Fe3O4-ZIF-8/COFs的制备
在万分天平上准确的称取400mg的Fe3O4-ZIF-8、0.0972g均苯三甲醛和0.1658g联苯胺;0.0972g均苯三甲醛和0.1658g联苯胺分别溶于40mL的DMSO中;Fe3O4-ZIF-8放入锥形瓶中,并向三口瓶中加入80mL的DMSO,超声5min使其均匀分散,加入上述均苯三甲醛的DMSO溶液和联苯胺的DMSO溶液,室温下搅拌30min,加入4mL冰醋酸,继续搅拌30min;磁分离并倒出溶液保留反应产物,将反应产物分别用DMSO洗涤一次,之后用乙醇洗涤两次到最终产物Fe3O4-ZIF-8/COFs,真空冷冻干燥。
实验例
1、SEM表征图
通过原位生长法将具有与沸石相似的三位拓扑结构的ZIF-8与具有耐酸耐碱,稳定性好的二维COFs进行结合,并引入磁性,制得具有高比表面积、热稳定性好、抗酸耐碱性的磁性复合材料Fe3O4-ZIF-8/COFs。为确定材料成功合成,对其进行表征,如图1所示,其中,图1中的A为Fe3O4的TEM图像,从图中可以看出代表性的透射电子显微镜图像表明,Fe3O4纳米粒子几乎是球形的,大小约为10纳米;图1中的B为ZIF-8的TEM图像,从图中可以明显看到具有立体结构的ZIF-8成功合成;图1中的C为COFs的TEM图像,从图中可以明显看出,直径1nm的球状的团簇形态的COFs成功合成;图1中的D为Fe3O4-ZIF-8/COFs复合材料的TEM图像,可以看到立体的ZIF-8与球状的COFs紧密的结合在一起,并附着在Fe3O4的球状表面,综合证明了Fe3O4-ZIF-8/COFs复合材料的成功合成。
2、XRD表征图
图2为Fe3O4、ZIF-8、COFs、Fe3O4-ZIF-8和Fe3O4-ZIF-8/COFs的晶体的XRD表征图;在图2中,从上到下的X射线衍射图依次为ZIF-8X的射线衍射图、COFs的X的射线衍射图、Fe3O4-ZIF-8/COFs的X射线衍射图、Fe3O4-ZIF-8的X射线衍射图、Fe3O4的X射线衍射图。由图2可知,Fe3O4纳米粒子、COFs和ZIF-8的特征峰均在Fe3O4-ZIF-8/COFs复合材料中检测到。具体来说,ZIF-8、Fe3O4-ZIF-8和Fe3O4-ZIF-8/COFs在14.0(112)和15.1(222)处的衍射峰与ZIF-8之前的报告一致;在20.3°的位置为COFs的特征峰,这与之前报道的一致;Fe3O4、Fe3O4-ZIF-8和Fe3O4-ZIF-8/COFs在30.04(220)、35.42(311)、43.16(400)、53.72(422)、56.92(511)、62.60(516)和74.2(440)处的衍射峰均属于Fe3O4的特征峰。
3、傅里叶红外光谱图
图3为Fe3O4、ZIF-8、COFs、Fe3O4-ZIF-8和Fe3O4-ZIF-8/COFs的晶体的傅里叶红外光谱图;图2中,从上到下的图谱依次表示Fe3O4的傅里叶红外光谱图、Fe3O4-ZIF-8的傅里叶红外光谱图、Fe3O4-ZIF-8/COFs的傅里叶红外光谱图、COFs的傅里叶红外光谱图、ZIF-8的傅里叶红外光谱图。Fe3O4、Fe3O4-ZIF-8和Fe3O4-ZIF-8/COFs在582.85cm-1、1268.65cm-1和3434.27cm-1左右均出现特征峰,分别为Fe3O4的Fe-O和O-H的红外光光谱特征峰。与Fe3O4相比,ZIF-8、Fe3O4-ZIF-8和Fe3O4-ZIF-8/COFs复合材料的光谱显示出与ZIF-8结构相关的附加吸附带,在500-1350cm-1和1350-1500cm-1范围内,分别发现了对应于咪唑环平面弯曲和拉伸的条带,因此Fe3O4-ZIF-8成功合成;在1607cm-1处的带归因于碳氮拉伸模式,这证明了COFs已成功地涂在Fe3O4-ZIF-8纳米粒子的表面。同时,Fe3O4-ZIF-8/COFs、Fe3O4-ZIF-8和Fe3O4相比,Fe3O4的特征拉伸均在其中出现,且强度仅是稍有下降,表明Fe3O4在后续合成过程中,结构保存完整,因此,Fe3O4-ZIF-8/COFs复合材料已经成功制备。
4、磁滞回线图
图4为Fe3O4、Fe3O4-ZIF-8和Fe3O4-ZIF-8/COFs的晶体的磁滞回线图。为确定复合材料磁性能,我们通过VSM对Fe3O4、Fe3O4-ZIF-8和Fe3O4-ZIF-8/COFs进行表征。所有的材料都具有超顺磁性,Fe3O4、Fe3O4-ZIF-8和Fe3O4-ZIF-8/COFs的饱和磁化强度值分别为67.74emu/g、60.35emu/g和53.33emu/g。虽然与Fe3O4相比,Fe3O4-ZIF-8和Fe3O4-ZIF-8/COFs的饱和磁化强度均有所下降,但下降幅度不大,这也可以证明Fe3O4、ZIF-8与COFs是处于相互交联的一种状态,这种交联方式,可最大程度的保证磁性能,应该注意的是,虽然磁性略有下降,但Fe3O4-ZIF-8/COFs复合材料仍然表现出强磁化,这表明Fe3O4-ZIF-8/COFs复合材料完全可以满足磁分离和回收的工作。
5、Fe3O4-ZIF-8/COF的N2吸附-解吸等温线
在77K下进行N2吸附解吸研究,以评估Fe3O4-ZIF-8/COFs的多孔结构。如图5所示,Fe3O4-ZIF-8/COFs复合材料表现出典型的Ⅰ型吸附,从图5中可以看出在P/P0=0.85的位置有明显的拐点,在低压下吸附量较少,在高压下快速吸收,表现出孔填充特征。计算Brunauer-Emmett-Teller(BET)比表面积和孔体积分别为54.7793m2/g和0.372220cm3/g。Fe3O4-ZIF-8/COFs的平均孔径为23.43018nm。一般来说,表面积和孔容越高,可以为吸附目标分析物提供更多的活性位点,使Fe3O4-ZIF-8/COFs成为一种具有高吸附量的富集吸附剂。由于材料和分析物之间的亲水性相互作用,莱菔硫烷可以吸附在Fe3O4-ZIF-8/COFs上。吸附也受到孔隙填充效应的影响,Fe3O4-ZIF-8/COFs的介孔体积(0.372220cm3/g)可以减弱空间位阻效应,促进吸附过程,而Fe3O4-ZIF-8/COFs网络的大表面积(54.7793m2/g)提供了丰富的吸附位点,可以显著增强范德华力。
6、Fe3O4-ZIF-8/COFs复合材料对莱菔硫烷的富集与分离方法
在万分之一的天平上准确称取50mg的Fe3O4-ZIF-8/COFs的复合材料,放置于含有莱菔硫烷的溶液4mL;涡旋1min致使材料均匀分散在溶液里;将含有4mL溶液的离心管放置在振荡器上,振荡10min后利用磁铁吸附复合材料,取上清液,膜过滤后用HPLC-MS-MS对剩余莱菔硫烷的浓度进行定量检测;通过下面公式计算材料的吸附量。
Qe=(C0-Ce)×V/M;
其中,Qe为静态结合容量(mg/g);C0为溶液的初始莱菔硫烷浓度(mg/L);Ce为材料吸附后的莱菔硫烷浓度(mg/L);V为初始莱菔硫烷溶液的体积(mL);M为材料的重量(mg)。
实际样品的测定如下:
通过对苹果汁和橙汁的分析,进一步评估了本发明的方法的可行性,用MSPE-HPLC-MS进行分析,结果表1所示。在用Fe3O4-ZIF-8/COFs处理之前,两种水果样品中均没检出莱菔硫烷,同时分别添加了10μg/kg、50μg/kg、100μg/kg三个水平的莱菔硫烷,进行回收率评价。其中,苹果的回收率为76.6%~78.2%,RSD为0.29%~1.24%;橙汁的回收率为72.6%~75.8%,RSD为0.28%~0.94%。综上所述,本发明所构建的以Fe3O4-ZIF-8/COFs为萃取吸附剂结合HPLC-MS-MS提取检测莱菔硫烷的方法具有高的稳定性和灵敏度,可用于实际样品的检测。
表1水果中莱菔硫烷的添加回收结果
Figure BDA0003127936820000151
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,但本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (15)

1. Fe3O4-ZIF-8/COFs复合材料的制备方法,其特征在于,包括以下步骤:
Fe3O4-ZIF-8、均苯三甲醛、联苯胺、有机溶剂和催化剂的混合物进行反应;
所述催化剂包括冰醋酸;
所述Fe3O4-ZIF-8、所述均苯三甲醛、所述联苯胺和所述催化剂的用量比为(0.3~0.7)g:(0.04~0.2)g:(0.04~0.2)g:(1.5~6)mL;
所述反应的温度为15~25℃;
所述反应的时间为25~35min。
2.根据权利要求1所述的Fe3O4-ZIF-8/COFs复合材料的制备方法,其特征在于,所述有机溶剂包括二甲基亚砜。
3.根据权利要求1所述的Fe3O4-ZIF-8/COFs复合材料的制备方法,其特征在于,所述混合物的制备包括:先将所述Fe3O4-ZIF-8、所述均苯三甲醛、所述联苯胺和所述有机溶剂预混搅拌25~35min,再加入所述催化剂。
4.根据权利要求1所述的Fe3O4-ZIF-8/COFs复合材料的制备方法,其特征在于,对所述反应后的混合体系进行磁分离,收集固形物进行洗涤。
5.根据权利要求4所述的Fe3O4-ZIF-8/COFs复合材料的制备方法,其特征在于,所述洗涤包括:采用二甲基亚砜洗涤1~2次,再采用乙醇洗涤2~3次。
6.根据权利要求1所述的Fe3O4-ZIF-8/COFs复合材料的制备方法,其特征在于,所述Fe3O4-ZIF-8的制备方法包括以下步骤:
锌盐和Fe3O4于水中搅拌,再加入2-甲基咪唑溶液进行搅拌。
7.根据权利要求6所述的Fe3O4-ZIF-8/COFs复合材料的制备方法,其特征在于,所述锌盐和Fe3O4于水中搅拌的时间为25~30min。
8.根据权利要求6所述的Fe3O4-ZIF-8/COFs复合材料的制备方法,其特征在于,所述加入2-甲基咪唑溶液进行搅拌的时间为50~65min。
9.根据权利要求6所述的Fe3O4-ZIF-8/COFs复合材料的制备方法,其特征在于,所述锌盐包括Zn(NO3)2·6H2O。
10.根据权利要求9所述的Fe3O4-ZIF-8/COFs复合材料的制备方法,其特征在于,所述Zn(NO3)2·6H2O、所述2-甲基咪唑和所述Fe3O4的质量比为(0.12~0.48):(0.21~1.84):(0.1~0.3)。
11.如权利要求1~10中任一项所述的Fe3O4-ZIF-8/COFs复合材料的制备方法制备得到的Fe3O4-ZIF-8/COFs复合材料。
12.根据权利要求11所述的Fe3O4-ZIF-8/COFs复合材料,其特征在于,所述Fe3O4-ZIF-8/COFs复合材料的比表面积为54~58m2/g,孔体积为0.37~0.4cm3/g。
13.莱菔硫烷的富集与分离方法,其特征在于,包括以下步骤:
采用权利要求11所述Fe3O4-ZIF-8/COFs复合材料对液体环境中的莱菔硫烷进行富集,再进行磁分离;
所述富集的方法包括:所述Fe3O4-ZIF-8/COFs复合材料分散于所述液体环境中后进行振荡处理;
通过涡旋处理实现所述分散。
14.根据权利要求13所述的莱菔硫烷的富集与分离方法,其特征在于,所述涡旋处理的时间为50~65s。
15.根据权利要求13所述的莱菔硫烷的富集与分离方法,其特征在于,所述振荡处理的时间为8~12min。
CN202110695129.9A 2021-06-23 2021-06-23 复合材料及其制备方法和应用 Active CN113385145B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110695129.9A CN113385145B (zh) 2021-06-23 2021-06-23 复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110695129.9A CN113385145B (zh) 2021-06-23 2021-06-23 复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113385145A CN113385145A (zh) 2021-09-14
CN113385145B true CN113385145B (zh) 2023-03-28

Family

ID=77623591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110695129.9A Active CN113385145B (zh) 2021-06-23 2021-06-23 复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113385145B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114471492B (zh) * 2022-01-18 2024-04-12 中国农业科学院蔬菜花卉研究所 一种复合材料及其制备方法和应用
CN115646465B (zh) * 2022-11-08 2024-04-30 中国农业科学院蔬菜花卉研究所 一种多孔复合材料、其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2888235B1 (fr) * 2005-07-07 2007-09-14 Nutrinov Sa Procede d'extraction de sulforaphane a partir de broyat de crucifere contenant de la glucoraphanine
CN107175053A (zh) * 2017-05-27 2017-09-19 福州大学 一种核壳结构的共价有机骨架复合微球的制备方法
CN108465489B (zh) * 2018-03-07 2020-08-18 武汉理工大学 一种Fe3O4@ZIF-8核壳式复合材料及其制备方法和催化应用
US20210016245A1 (en) * 2018-03-14 2021-01-21 Deepak Pahwa METHOD FOR IN-SITU SYNTHESIS OF METAL ORGANIC FRAMEWORKS (MOFs), COVALENT ORGANIC FRAMEWORKS (COFs) AND ZEOLITE IMIDAZOLATE FRAMEWORKS (ZIFs), AND APPLICATIONS THEREOF
CN111558398A (zh) * 2020-05-28 2020-08-21 皖西学院 一种Fe3O4@ZIF-8复合材料及其制备、应用
CN111604035B (zh) * 2020-06-04 2023-06-16 中国农业科学院蔬菜花卉研究所 三维石墨烯/COFs复合材料、及其制备方法和应用
CN111729650A (zh) * 2020-07-02 2020-10-02 闽江学院 四氧化三铁@共价有机框架吸附材料及其在去除废水中有机染料方面的应用
CN112108120B (zh) * 2020-09-22 2023-07-25 宁夏医科大学 磁性层状双氢氧化物-金属有机骨架物复合材料及其制备方法和应用
CN112604715B (zh) * 2020-11-27 2023-02-03 苏州段造纳米科技有限公司 一种离子交换型cof@mof/m复合材料及其制备方法

Also Published As

Publication number Publication date
CN113385145A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
CN113385145B (zh) 复合材料及其制备方法和应用
Ballav et al. L-cysteine doped polypyrrole (PPy@ L-Cyst): a super adsorbent for the rapid removal of Hg+ 2 and efficient catalytic activity of the spent adsorbent for reuse
Wang et al. Magnetic Cu-MOFs embedded within graphene oxide nanocomposites for enhanced preconcentration of benzenoid-containing insecticides
Rocío-Bautista et al. A magnetic-based dispersive micro-solid-phase extraction method using the metal-organic framework HKUST-1 and ultra-high-performance liquid chromatography with fluorescence detection for determining polycyclic aromatic hydrocarbons in waters and fruit tea infusions
Lu et al. Synthesis and adsorption properties investigation of Fe3O4@ ZnAl-LDH@ MIL-53 (Al) for azole fungicides removal from environmental water
Li et al. A novel benzimidazole-functionalized 2-D COF material: Synthesis and application as a selective solid-phase extractant for separation of uranium
Jia et al. Attapulgite modified with covalent organic frameworks as the sorbent in dispersive solid phase extraction for the determination of pyrethroids in environmental water samples
Ai et al. Hierarchical porous BiOI architectures: facile microwave nonaqueous synthesis, characterization and application in the removal of Congo red from aqueous solution
Zhang et al. Flower-like Co3O4/C3N5 composite as solid-phase microextraction coating for high-efficiency adsorption and preconcentration of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in water
Dai et al. Rubidium ion capture with composite adsorbent PMA@ HKUST-1
Tian et al. One-pot sustainable synthesis of magnetic MIL-100 (Fe) with novel Fe 3 O 4 morphology and its application in heterogeneous degradation
Tian et al. Using shell-tunable mesoporous Fe3O4@ HMS and magnetic separation to remove DDT from aqueous media
Atta et al. Removal of thorium from water using modified magnetite nanoparticles capped with rosin amidoxime
Liu et al. Adsorptive removal of humic acid from aqueous solution by micro-and mesoporous covalent triazine-based framework
Han et al. Fabrication of stable multivariate metal-organic frameworks with excellent adsorption performance toward bisphenols from environmental samples
Yang et al. Hierarchical 3D ordered meso-/macroporous metal-organic framework produced through a facile template-free self-assembly
He et al. Suspending ionic single-atom catalysts in porphyrinic frameworks for highly efficient aerobic oxidation at room temperature
Wang et al. Three-dimensional hollow porous raspberry-like hierarchical Co/Ni@ carbon microspheres for magnetic solid-phase extraction of pyrethroids
Guo et al. Facile synthesis of conjugated microporous polymer with spherical structure for solid phase extraction of phenyl urea herbicides
Kareem et al. Synthesis and characterization of metal organic frameworks for gas storage
Lu et al. Enhanced removal efficiency towards azole fungicides from environmental water using a metal organic framework functionalized magnetic lignosulfonate
Liang et al. Banana-peel-derived magnetic porous carbon as effective adsorbent for the enrichment of six bisphenols from beverage and water samples
Zhou et al. A novel magnetic double MOF composite is synthesized for removing azole fungicides economically and efficiently
Tian et al. Multifunctional Fe3O4@ nSiO2@ mSiO2–Fe core–shell microspheres for highly efficient removal of 1, 1, 1-trichloro-2, 2-bis (4-chlorophenyl) ethane (DDT) from aqueous media
Gao et al. Design of magnetic multivariate metal–organic framework for high-efficient adsorption and rapid magnetic separation of bisphenol pollutants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant