CN113377078A - 一种基于核主成分回归的工业过程故障检测方法及系统 - Google Patents

一种基于核主成分回归的工业过程故障检测方法及系统 Download PDF

Info

Publication number
CN113377078A
CN113377078A CN202110433646.9A CN202110433646A CN113377078A CN 113377078 A CN113377078 A CN 113377078A CN 202110433646 A CN202110433646 A CN 202110433646A CN 113377078 A CN113377078 A CN 113377078A
Authority
CN
China
Prior art keywords
key performance
subspace
principal component
performance index
component regression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110433646.9A
Other languages
English (en)
Other versions
CN113377078B (zh
Inventor
任玉伟
亓利
伊晓云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Normal University
Original Assignee
Shandong Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Normal University filed Critical Shandong Normal University
Priority to CN202110433646.9A priority Critical patent/CN113377078B/zh
Publication of CN113377078A publication Critical patent/CN113377078A/zh
Application granted granted Critical
Publication of CN113377078B publication Critical patent/CN113377078B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0262Confirmation of fault detection, e.g. extra checks to confirm that a failure has indeed occurred
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24065Real time diagnostics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

本发明提供一种基于核主成分回归的工业过程故障检测方法及系统,包括:根据工业过程中的正常运行数据构建核主成分回归模型;对核主成分回归模型进行奇异值分解,得到关键性能指标相关子空间和关键性能指标无关子空间,并分别计算各自的控制限;获取工业过程中的输入变量;基于核主成分回归模型计算输入变量在关键性能指标相关子空间和关键性能无关子空间的统计量,并分别与各自的控制限进行比较;根据比较结果判断输入变量是否正常,以此得到故障检测结果。解决传统核主成分回归方法中无法对与关键性能指标相关变量的监控问题,提高检测率,降低误检率。

Description

一种基于核主成分回归的工业过程故障检测方法及系统
技术领域
本发明涉及工业过程的故障检测技术领域,特别是涉及一种基于核主成分回归的工业过程故障检测方法及系统。
背景技术
随着大数据的到来,基于数据驱动的故障检测应用越来越广泛,考虑到数据通常包含多变量形式的信息,多元方法被广泛用于捕捉变量之间的关系。此外,多元统计过程监控技术对于现代工业过程中的故障检测和诊断是有效的。常见的多元统计方法有主成分分析、偏最小二乘法、独立成分分析。这些方法仅使用离线训练数据来建立通用模型,然后使用该模型来监控异常操作数据。
工业过程中的关键性能指标,如产品质量变量或关键设备的核心参数至关重要。从安全和经济效益的角度来看,工业过程需要考虑关键性能指标的故障检测和诊断方法;然而,关键性能指标很难在机器运行过程中被实时检测到,因为所需的时间延迟很大。因此,有必要在关键性能指标和过程测量之间建立一个模型。
现有的关键性能指标相关过程监控方法包括基于主成分回归方法、基于偏最小二乘法的方法、基于典型相关分析的方法。在现有的方法中,基于主成分回归的方法是应用比较广泛。此外,非线性在实际工业过程中很常见,标准主成分回归技术在处理非线性过程监控时面临困难,这可以通过使用核方法技术来解决。在非线性主成分回归的基础上,传统的核主成分回归算法将输入空间分解为主部分和残差部分;在核主成分回归模型中,主子空间和剩余子空间是倾斜的,因此,与关键性能指标无关的主要过程变量(称为与关键性能指标无关的信息)可以包含在主子空间中;另一方面,与关键性能指标相关的信息将包含在剩余子空间中。这一缺点使得常见的统计数据不适用于过程监控。
综上所述,现有技术中对于在核主成分回归的关键性能指标的监控上尚缺乏有效的解决方案。
发明内容
为了解决上述问题,本发明提出了一种基于核主成分回归的工业过程故障检测方法及系统,基于性能指标相关的核主成分回归方法是在传统核主成分回归基础上考虑在子空间中的有用信息,对核矩阵进行奇异值分解,将核空间分为关键性能指标相关子空间和关键性能指标无关子空间,解决传统核主成分回归方法中无法对与关键性能指标相关变量的监控问题,提高检测率,降低误检率。
为了实现上述目的,本发明采用如下技术方案:
第一方面,本发明提供一种基于核主成分回归的工业过程故障检测方法,包括:
根据工业过程中的正常运行数据构建核主成分回归模型;
对核主成分回归模型进行奇异值分解,得到关键性能指标相关子空间和关键性能指标无关子空间,并分别计算各自的控制限;
获取工业过程中的输入变量;
基于核主成分回归模型计算输入变量在关键性能指标相关子空间和关键性能无关子空间的统计量,并分别与各自的控制限进行比较;
根据比较结果判断输入变量是否正常,以此得到故障检测结果。
第二方面,本发明提供一种基于核主成分回归的工业过程故障检测系统,包括:
模型构建模块,被配置为根据工业过程中的正常运行数据构建核主成分回归模型;
分解模块,被配置为对核主成分回归模型进行奇异值分解,得到关键性能指标相关子空间和关键性能指标无关子空间,并分别计算各自的控制限;
数据获取模块,被配置为获取工业过程中的输入变量;
统计量计算模块,被配置为基于核主成分回归模型计算输入变量在关键性能指标相关子空间和关键性能无关子空间的统计量,并分别与各自的控制限进行比较;
故障检测模块,被配置为根据比较结果判断输入变量是否正常,以此得到故障检测结果。
第三方面,本发明提供一种电子设备,包括存储器和处理器以及存储在存储器上并在处理器上运行的计算机指令,所述计算机指令被处理器运行时,完成第一方面所述的方法。
第四方面,本发明提供一种计算机可读存储介质,用于存储计算机指令,所述计算机指令被处理器执行时,完成第一方面所述的方法。
与现有技术相比,本发明的有益效果是:.
本发明提出的基于关键性能指标的核主成分回归工业过程的故障检测方法,解决了传统核主成分回归方法中无法对与关键性能指标相关变量的监控问题,提高检测率,降低误检率;与其他常用的多元统计方法比如偏最小二乘法相比,减少递归过程,提高运算效率,使得对工厂异常数据的检测更加的高效。
本发明附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1提供的基于核主成分回归的工业过程故障检测流程图;
图2为本发明实施例1提供的田纳西-伊斯曼过程工厂模型图;
图3为本发明实施例1提供的田纳西-伊斯曼过程的控制变量;
图4为本发明实施例1提供的田纳西-伊斯曼过程采样时间为三分钟的测量变量;
图5为本发明实施例1提供的田纳西-伊斯曼过程的成分测量变量;
图6为本发明实施例1提供的田纳西-伊斯曼过程故障类型;
图7(a)-7(b)为本发明实施例1提供的田纳西-伊斯曼过程故障类型1的实验结果图;
图8(a)-8(b)为本发明实施例1提供的田纳西-伊斯曼过程故障类型4的实验结果图。
具体实施方式
下面结合附图与实施例对本发明做进一步说明。
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
实施例1
如图1所示,本实施例提供一种基于核主成分回归的工业过程故障检测方法,包括以下步骤:
步骤1:根据工业过程中的正常运行数据构建核主成分回归模型;
步骤2:对核主成分回归模型进行奇异值分解,得到关键性能指标相关子空间和关键性能指标无关子空间,并分别计算各自的控制限;
步骤3:获取工业过程中的输入变量;
步骤4:基于核主成分回归模型计算输入变量在关键性能指标相关子空间和关键性能无关子空间的统计量,并分别与各自的控制限进行比较;
步骤5:根据比较结果判断输入变量是否正常,以此得到故障检测结果。
本实施例采用田纳西-伊斯曼过程作为验证工业过程故障检测方法的数据源,目前在过程监控领域田纳西-伊斯曼过程应用十分普遍,被视为过程监控仿真研究的基准过程。田纳西-伊斯曼过程最早出现于上世纪90年代,是由伊斯曼化学品公司的Downs和Vogel提出的化工模型,其基于一个真实的化工过程,此过程包括反应器、冷凝器、压缩机、分离器和汽提塔五个主要单元和A~H八种成分,仿真应用时,田纳西-伊斯曼过程采用如图2所示的工厂模型,各个反应如下:
A(气)+C(气)+D(气)→G(液) 主产物
A(气)+C(气)+E(气)→H(液) 主产物
A(气)+E(气)→F(液) 副产物
3D(气)→2F(液) 副产物
其中,产物G、H是目标产物,产物F为反应过程中产生的杂质,所以需要检测反应中各个含量的变化,保证得到的目标产物的转化率最高。
田纳西-伊斯曼过程共包括12个控制变量(如图3所示)和41个测量变量(如图4-图5所示),其中所有的控制变量XMV(1)~XMV(12)和过程变量中的XMEAS(1)~XMEAS(22)每3分钟采样一次,成分测量变量XMEAS(23)~XMEAS(36)每6分钟采样一次,剩下的XMEAS(37)~XMEAS(41)每15分钟采样一次,所有测量值均包含高斯噪声。
田纳西-伊斯曼过程仿真有公开的数据集,训练集和测试集数据共包含了田纳西-伊斯曼过程中除去XMV(12)外的52个变量,即:x=[XMEAS(1),XMEAS(41),XMV(1),XMV(11)]。训练集和测试集数据都是在22次不同仿真运行后产生的数据,其中1次为无故障运行数据(故障0),其余21次均对应不同故障情况,如图6所示;训练集数据含500次观测结果,而测试集的观测数据总数为960次,故障从第161次观测引入。
关键性能指标是指最终影响产品质量的参数信息。比如:化工流程最终产品的纯度信息、生产模型的效率信息或者压缩机功率信息等。取决于是否为关键性能指标的标准在于其值得改变,是否影响最终产品的使用。在本实例田纳西-伊斯曼过程中,其最终目的是获取产物G和产物H。所以,在本实例中产物G和产物H纯度指标为关键性能指标。最终产物的温度、流量等指标则为非关键性能指标。
本实施例将基于关键性能指标的核主成分回归应用到田纳西-伊斯曼工业过程故障检测中,具体地:
在步骤1中,首先获取到田纳西-伊斯曼工业过程的正常输入变量和输出变量作为训练数据,将正常的数据进行标准化处理;再将标准化的输入数据通过高斯核函数映射到高维空间之中去,获得其对应的核矩阵并进行标准化处理,计算标准化的核矩阵的得分矩阵和与输出矩阵的系数矩阵构造回归模型。
具体地:步骤1.1:本实施例选取所有的控制变量XMV(1)~XMV(11)和过程变量的XMEAS(1)~XMEAS(22)总共33维数据作为输入变量X,选取产物中G、H物质的测量变量(XMEAS(40),XMEAS(41))作为输出变量Y,并获取前480组采样构成训练矩阵;
正常输入矩阵X表示为n×m=33×480矩阵,如式(1)所示,正常输出矩阵Y表示为n×l=480×2矩阵,如式(2)所示:
Figure BDA0003028996520000071
Figure BDA0003028996520000072
步骤1.2:对获得的正常输入数据X和历史正常输出数据Y进行标准化处理,得到标准化后的输入数据
Figure BDA0003028996520000073
和标准化后的输出数据
Figure BDA0003028996520000074
步骤1.3:将得到的标准化历史正常输入数据
Figure BDA0003028996520000081
通过非线性变换φ(x)映射到高维空间;利用高斯核函数,求出标准化后的输入数据
Figure BDA0003028996520000082
的核矩阵K,如式(3):
Figure BDA0003028996520000083
其中,c是高斯核函数参数,在本实例中c取值为18000。
通过高斯核函数最终得到的核矩阵为n×n=480×480矩阵如式(4):
Figure BDA0003028996520000084
步骤1.4:同样的,将得到的核矩阵K通过式(5)进行标准化处理,得到标准化后的核矩阵
Figure BDA0003028996520000085
Figure BDA0003028996520000086
其中,In是n维的单位矩阵,1n是n维的列向量。其元素都是1。
步骤1.5:将标准的核矩阵
Figure BDA0003028996520000087
进行主成分分析,获得主成分个数以及得到其得分矩阵;可由式(6)获得:
Figure BDA0003028996520000088
求出标准化核矩阵
Figure BDA0003028996520000089
的特征值,将
Figure BDA00030289965200000810
的特征值λ从大到小排列,取出前A个特征值组成对角矩阵
Figure BDA00030289965200000811
以及特征值对应的特征向量
Figure BDA00030289965200000812
A的选取可由特征值λi>0的个数或者由
Figure BDA00030289965200000813
的方法来选取。
步骤1.6:通过标准化核矩阵
Figure BDA00030289965200000814
的前A维的特征值和特征向量,通过式(7)求出对应的得分矩阵T:
Figure BDA0003028996520000091
步骤1.7:对得分矩阵T和Y进行最小二乘回归,即通过式(8)求出得分矩阵T和Y回归系数Q:
QT=(TTT)-1TTY (8)
步骤1.8:对于新的输入样本Xnew,对应Y的预测值为:
Figure BDA0003028996520000092
步骤2:步骤1所示的为传统的主成分回归模型,在传统的主成分回归模型中,忽略了对影响工厂较大的关键性能指标进行检测,残差空间的关键性能无关数据不仅会降低故障的检测率,也会增加故障的误检率,若与关键性能无关的正常数据过多,会降低与关键性能指标相关的异常数据的统计量,降低故障检测率;相反,若与关键性能指标无关的异常数据过多,则会增加整个系统的误报率。
故,本实施例在传统的核主成分回归的基础上,对回归模型的主空间进行奇异值分解,将其分为与关键性能指标相关和与关键性能无关两部分空间,并分别进行相关检测,计算各自的控制限;
具体地:步骤2.1:在传统核主成分回归模型式(9)中,分离出空间M,即令:
M=PΛ-1/2(TTT)-1TTY (10)
步骤2.2:将主空间M通过式(11)进行奇异值分解,即:
Figure BDA0003028996520000101
将M分成关键性能指标相关空间ΓM以及关键性能指标无关空间
Figure BDA0003028996520000102
两个正交空间,如式(12)-(13)所示:
Figure BDA0003028996520000103
Figure BDA0003028996520000104
步骤2.3:将输入变量对应的核矩阵分解成关键性能指标相关和关键性能指标无关的两部分,如式(14):
Figure BDA0003028996520000105
步骤3-步骤5中,根据式(1-2),获取田纳西-伊斯曼工厂的测试数据,将新采样的输入数据映射到高位空间knew,将knew根据式(14)分别计算出对应空间的得分向量
Figure BDA0003028996520000106
以及对应的统计量
Figure BDA0003028996520000107
然后根据训练数据所计算出的控制限,判别所采集的工厂数据是正常数据还是异常数据,若为异常数据,则可以根据所在空间判断出为与关键性能有关的异常数据还是与关键性能无关的异常数据。
具体地,步骤3.1:获取田纳西-伊斯曼工厂的测试数据,每采样一次获得的xnew输入变量,根据式(3)的高斯核函数进行映射得到新的核矩阵knew
步骤3.2:将knew通过式(5)进行标准化处理得到
Figure BDA0003028996520000108
步骤3.3:将得到的测试数据的核矩阵knew,根据式(14)分别算出所在关键性能指标相关和关键性能指标无关的两个正交空间中的得分矩阵,如式(15):
Figure BDA0003028996520000111
步骤3.4:根据式(15)计算出对应空间中的得分矩阵,计算出采样数据的过程检测霍斯特林统计量T2,如式(16):
Figure BDA0003028996520000112
步骤3.4:通过正常的训练数据给出置信水平1-α,分别算出与关键性能指标相关空间中的控制限和与关键性能指标无关的控制限,如式(17)-(18):
Figure BDA0003028996520000113
Figure BDA0003028996520000114
在本实施例中,α取0.01,m为输入变量的维数33,l为输出变量的维数2,n为训练样本的个数为480。
步骤3.5:将采样数据算出的统计量与步骤3.4给出的控制限比较,最终得出所采样的数据是故障数据还是正常数据:
Figure BDA0003028996520000115
Figure BDA0003028996520000116
Figure BDA0003028996520000117
在田纳西-伊斯曼工厂含有故障的数据集中,编号为IDV(1)、IDV(2)、IDV(5)、IDV(6)、IDV(7)、IDV(8)、IDV(12)和IDV(13)的故障数据是与关键性能指标相关的故障,而编号为IDV(3)、IDV(4)、IDV(9)、IDV(11)、IDV(14)和IDV(15)是与KPI无关的故障数据;本次实验选取与关键性能相关的故障IDV(1)为例,如图7(a)-7(b)所示,故障IDV(1)的数据集含有960条采样记录,前160条为正常数据,故障在第161次采样中引入。该故障为阶跃故障,横坐标为采样个数,纵坐标为统计量。
如图7(a)-7(b)所示,基于性能相关的核主成分回归方法能有效地分离出于性能相关故障与性能无关故障,并且横坐标在160之前统计量几乎都在控制限以下,横坐标从故障引用第161次采样开始统计量高于控制限,达到故障检测的标准;而图8(a)-8(b)则为与关键性能指标无关的故障IDV(4),可以看出基于关键性能指标的核主成分回归算法能有效地检测出与关键性能无关的故障,并且对于故障IDV(4)中与关键性能相关的故障检测率较低,降低误检率,提高检测系统的鲁棒性。
实施例2
本实施例提供一种基于核主成分回归的工业过程故障检测系统,包括:
模型构建模块,被配置为根据工业过程中的正常运行数据构建核主成分回归模型;
分解模块,被配置为对核主成分回归模型进行奇异值分解,得到关键性能指标相关子空间和关键性能指标无关子空间,并分别计算各自的控制限;
数据获取模块,被配置为获取工业过程中的输入变量;
统计量计算模块,被配置为基于核主成分回归模型计算输入变量在关键性能指标相关子空间和关键性能无关子空间的统计量,并分别与各自的控制限进行比较;
故障检测模块,被配置为根据比较结果判断输入变量是否正常,以此得到故障检测结果。
此处需要说明的是,上述模块对应于实施例1中所述的步骤,上述模块与对应的步骤所实现的示例和应用场景相同,但不限于上述实施例1所公开的内容。需要说明的是,上述模块作为系统的一部分可以在诸如一组计算机可执行指令的计算机系统中执行。
在更多实施例中,还提供:
一种电子设备,包括存储器和处理器以及存储在存储器上并在处理器上运行的计算机指令,所述计算机指令被处理器运行时,完成实施例1中所述的方法。为了简洁,在此不再赘述。
应理解,本实施例中,处理器可以是中央处理单元CPU,处理器还可以是其他通用处理器、数字信号处理器DSP、专用集成电路ASIC,现成可编程门阵列FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据、存储器的一部分还可以包括非易失性随机存储器。例如,存储器还可以存储设备类型的信息。
一种计算机可读存储介质,用于存储计算机指令,所述计算机指令被处理器执行时,完成实施例1中所述的方法。
实施例1中的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器、闪存、只读存储器、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本领域普通技术人员可以意识到,结合本实施例描述的各示例的单元即算法步骤,能够以电子硬件或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

1.一种基于核主成分回归的工业过程故障检测方法,其特征在于,包括:
根据工业过程中的正常运行数据构建核主成分回归模型;
对核主成分回归模型进行奇异值分解,得到关键性能指标相关子空间和关键性能指标无关子空间,并分别计算各自的控制限;
获取工业过程中的输入变量;
基于核主成分回归模型计算输入变量在关键性能指标相关子空间和关键性能无关子空间的统计量,并分别与各自的控制限进行比较;
根据比较结果判断输入变量是否正常,以此得到故障检测结果。
2.如权利要求1所述的一种基于核主成分回归的工业过程故障检测方法,其特征在于,对核主成分回归模型进行奇异值分解的过程包括:在核主成分回归模型中分离出主空间,对主空间进行奇异值分解,得到关键性能指标相关子空间和关键性能指标无关子空间,基于此对输入变量对应的核矩阵分解为关键性能指标相关和关键性能指标无关的两部分。
3.如权利要求1所述的一种基于核主成分回归的工业过程故障检测方法,其特征在于,所述关键性能指标相关子空间和关键性能指标无关子空间为正交空间。
4.如权利要求1所述的一种基于核主成分回归的工业过程故障检测方法,其特征在于,计算各自的控制限的过程包括:根据正常运行数据得到置信水平,根据置信水平计算关键性能指标相关子空间和关键性能指标无关子空间各自的控制限。
5.如权利要求1所述的一种基于核主成分回归的工业过程故障检测方法,其特征在于,所述统计量的计算过程包括:对输入变量分别计算在关键性能指标相关子空间和关键性能无关子空间的得分矩阵,根据得分矩阵得到在两个子空间的统计量。
6.如权利要求1所述的一种基于核主成分回归的工业过程故障检测方法,其特征在于,统计量与控制限的比较过程包括:若输入变量在关键性能指标相关子空间和关键性能无关子空间的统计量均大于各自的控制限,则输入变量为异常数据,否则输入变量为正常数据。
7.如权利要求1所述的一种基于核主成分回归的工业过程故障检测方法,其特征在于,根据比较结果判断输入变量是否正常,若输入变量为异常数据,则根据所在子空间判断出是关键性能指标相关的异常数据还是与关键性能指标无关的异常数据。
8.一种基于核主成分回归的工业过程故障检测系统,其特征在于,包括:
模型构建模块,被配置为根据工业过程中的正常运行数据构建核主成分回归模型;
分解模块,被配置为对核主成分回归模型进行奇异值分解,得到关键性能指标相关子空间和关键性能指标无关子空间,并分别计算各自的控制限;
数据获取模块,被配置为获取工业过程中的输入变量;
统计量计算模块,被配置为基于核主成分回归模型计算输入变量在关键性能指标相关子空间和关键性能无关子空间的统计量,并分别与各自的控制限进行比较;
故障检测模块,被配置为根据比较结果判断输入变量是否正常,以此得到故障检测结果。
9.一种电子设备,其特征在于,包括存储器和处理器以及存储在存储器上并在处理器上运行的计算机指令,所述计算机指令被处理器运行时,完成权利要求1-7任一项所述的方法。
10.一种计算机可读存储介质,其特征在于,用于存储计算机指令,所述计算机指令被处理器执行时,完成权利要求1-7任一项所述的方法。
CN202110433646.9A 2021-04-20 2021-04-20 一种基于核主成分回归的工业过程故障检测方法及系统 Active CN113377078B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110433646.9A CN113377078B (zh) 2021-04-20 2021-04-20 一种基于核主成分回归的工业过程故障检测方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110433646.9A CN113377078B (zh) 2021-04-20 2021-04-20 一种基于核主成分回归的工业过程故障检测方法及系统

Publications (2)

Publication Number Publication Date
CN113377078A true CN113377078A (zh) 2021-09-10
CN113377078B CN113377078B (zh) 2023-04-07

Family

ID=77569896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110433646.9A Active CN113377078B (zh) 2021-04-20 2021-04-20 一种基于核主成分回归的工业过程故障检测方法及系统

Country Status (1)

Country Link
CN (1) CN113377078B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964021A (zh) * 2010-09-29 2011-02-02 东北大学 基于递归核主元分析的青霉素发酵过程故障监测方法
WO2014073261A1 (ja) * 2012-11-09 2014-05-15 株式会社 東芝 プロセス監視診断装置、プロセス監視診断プログラム
CN103995515A (zh) * 2014-05-27 2014-08-20 东北大学 一种基于公共子空间分离的电熔镁炉运行故障检测方法
CN109145256A (zh) * 2018-11-14 2019-01-04 南通大学 基于规范变量非线性主成分分析的非线性动态过程监测方法
US20190188584A1 (en) * 2017-12-19 2019-06-20 Aspen Technology, Inc. Computer System And Method For Building And Deploying Models Predicting Plant Asset Failure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964021A (zh) * 2010-09-29 2011-02-02 东北大学 基于递归核主元分析的青霉素发酵过程故障监测方法
WO2014073261A1 (ja) * 2012-11-09 2014-05-15 株式会社 東芝 プロセス監視診断装置、プロセス監視診断プログラム
CN103995515A (zh) * 2014-05-27 2014-08-20 东北大学 一种基于公共子空间分离的电熔镁炉运行故障检测方法
US20190188584A1 (en) * 2017-12-19 2019-06-20 Aspen Technology, Inc. Computer System And Method For Building And Deploying Models Predicting Plant Asset Failure
CN109145256A (zh) * 2018-11-14 2019-01-04 南通大学 基于规范变量非线性主成分分析的非线性动态过程监测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUANG WANG,ETC: "Nonlinear Fault Detection Based on An Improved Kernel Approach", 《IEEE》 *
GUANG WANG,ETC: "Quality-related fault detection using linear and nonlinear principal component regression", 《SCIENCEDIRECT》 *
李强,等: "基于并发改进偏最小二乘的质量相关和过程相关的故障诊断", 《控制理论与应用》 *

Also Published As

Publication number Publication date
CN113377078B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
Li et al. Data-driven root cause diagnosis of faults in process industries
Fan et al. Data-driven approach for fault detection and diagnostic in semiconductor manufacturing
CN108762228B (zh) 一种基于分布式pca的多工况故障监测方法
CN108803520B (zh) 一种基于变量非线性自相关性剔除的动态过程监测方法
CN104699077B (zh) 一种基于嵌套迭代费舍尔判别分析的故障变量隔离方法
CN112418277A (zh) 旋转机械零部件剩余寿命预测方法、系统、介质、设备
CN111368428B (zh) 一种基于监控二阶统计量的传感器精度下降故障检测方法
Liu et al. Fault detection and diagnosis using Bayesian network model combining mechanism correlation analysis and process data: Application to unmonitored root cause variables type faults
CN105404280A (zh) 基于自回归动态隐变量模型的工业过程故障检测方法
CN112000081B (zh) 基于多块信息提取和马氏距离的故障监测方法及系统
CN104537220A (zh) 基于主元分析和d-s证据理论的故障诊断方法
CN111680725A (zh) 基于重构贡献的气体传感器阵列多故障隔离算法
CN111639304B (zh) 基于Xgboost回归模型的CSTR故障定位方法
CN113377078B (zh) 一种基于核主成分回归的工业过程故障检测方法及系统
Zhu et al. Concurrent monitoring and diagnosis of process and quality faults with canonical correlation analysis
Wang et al. Least squares and contribution plot based approach for quality-related process monitoring
CN111382792B (zh) 一种基于双稀疏字典稀疏表示的滚动轴承故障诊断方法
Dong et al. Dynamic-inner canonical correlation analysis based process monitoring
CN110411724B (zh) 一种旋转机械故障诊断方法、装置、系统及可读存储介质
CN116305733B (zh) 一种基于全局和局部特征提取的质量相关故障检测方法
Xie et al. Fault detection based on probabilistic kernel partial least square regression for industrial processes
WO2019080489A1 (zh) 一种基于并发偏最小二乘的过程故障检测方法
JP5569324B2 (ja) 操業条件管理装置
CN113076211B (zh) 一种基于故障重构的质量相关故障诊断及误报警反馈方法
Li et al. Fault Detection Using Common and Specific Variable Decomposition for Nonlinear Multimode Process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant