CN113366305A - 湿敏复合材及湿度传感器 - Google Patents

湿敏复合材及湿度传感器 Download PDF

Info

Publication number
CN113366305A
CN113366305A CN202080011049.0A CN202080011049A CN113366305A CN 113366305 A CN113366305 A CN 113366305A CN 202080011049 A CN202080011049 A CN 202080011049A CN 113366305 A CN113366305 A CN 113366305A
Authority
CN
China
Prior art keywords
humidity
moisture
humidity sensor
sensitive composite
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080011049.0A
Other languages
English (en)
Other versions
CN113366305B (zh
Inventor
驹崎友亮
植村圣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of CN113366305A publication Critical patent/CN113366305A/zh
Application granted granted Critical
Publication of CN113366305B publication Critical patent/CN113366305B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • G01N27/225Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity by using hygroscopic materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • C08K2003/162Calcium, strontium or barium halides, e.g. calcium, strontium or barium chloride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

提供湿度传感器用的具有伸缩性的湿敏复合材以及该湿度传感器,所述湿度传感器能够作为可穿戴设备应用于衣物。湿敏复合材的特征在于,在由多孔质有机硅树脂形成的基材的内部的封闭的气孔中容纳有具有潮解性的无机化合物。另外,湿度传感器的特征在于,是将由湿敏复合材形成的块体夹入到一对由透湿性原材形成的对置电极间而成的,所述湿敏复合材是在由多孔质有机硅树脂形成的基材的内部的封闭的气孔中容纳有具有潮解性的无机化合物而成的。

Description

湿敏复合材及湿度传感器
技术领域
本发明涉及使湿敏材料在多孔性材料中复合化而成的湿敏复合材及使用其的湿度传感器,尤其涉及具有伸缩性的湿敏复合材及使用其的湿度传感器。
背景技术
作为检测空间中的湿度变化的湿敏(湿度)传感器之一,已知有能够通过变色来视觉辨认湿度变化的湿敏指示器。其中,可以使用由湿敏复合材形成的涂料,所述湿敏复合材是通过将根据湿度而使颜色变化的材料与其他材料组合而成的。
例如,在专利文献1中,作为湿敏指示器的涂料,公开了包含给电子性显色化合物、常温下为固体的酸性化合物、潮解物质、多孔性粒子和水系树脂乳液的涂料。在此,利用的是多孔性粒子比潮解物质先吸收湿气,如果多孔性粒子的吸湿量接近于饱和,则潮解物质开始吸湿而发生流动化。多孔性粒子的添加量越增加,越向湿敏指示器的检测湿度高的区域移动,发生变色或消色。
另外,还已知有以电的变化的形式检测空间中的湿度的变化的湿敏传感器。
例如,在专利文献2中公开了在多孔性的羟基磷灰石中组合了氯化钙、氯化铵等无机卤化物而成的湿度传感器用的湿敏复合材。对该湿敏复合材的成形体赋予一对电极,根据该电极间的阻抗值的变动,能够检测与成形体接触的气体中的相对湿度的变动。
然而,如非专利文献1所述,关于中暑的预防等中使用的暑热指数、评价环境的不快指数,在要监测感到暑热、不快的人或其附近的情况下,考虑对人穿着的衣服等赋予湿敏传感器。其中也叙述了,也可以使用湿敏复合材,根据使陶瓷与聚合物复合化而成的湿敏复合材,耐水性和耐室温高湿性优异,能够长期在高湿度气氛中稳定地使用。具体而言,公开了用聚合物对以二氧化钛/氧化铜为基体的陶瓷烧成体进行了涂覆处理的湿敏复合材。
现有技术文献
专利文献
专利文献1:日本特开2011-185745号公报
专利文献2:日本特开平2-86101号公报
非专利文献
非专利文献1:《使用湿敏复合材的湿度传感器的开发及电子电路设计》;若林英亲、歌代一朗著;电路技术杂志,第4卷(1989)第7期,第353~359页。
发明内容
发明要解决的课题
如上所述,提出了对人穿着的衣服等赋予湿敏传感器的方案。在作为该可穿戴设备的湿敏传感器中,要求追随人的动作,给出稳定的湿度测定。即,要求具有伸缩性,并且伴随该伸缩而对湿度响应性没有大的影响。
本发明是鉴于上述这样的状况而完成的,其目的在于提供一种湿度传感器用的具有伸缩性的湿敏复合材以及该湿度传感器,所述湿度传感器能够作为可穿戴设备应用于衣物。
用于解决课题的手段
本发明的湿敏复合材的特征在于,在由多孔质有机硅树脂形成的基材的内部的封闭的气孔中容纳有具有潮解性的无机化合物。
根据该发明,能够提供一种追随人的动作而给出稳定的湿度测定的湿敏传感器等湿敏性部件(构件)。
在上述发明中,其特征可以在于,上述气孔为以大致球状分散的独立气孔。根据该发明,能够提供一种给出稳定的湿度测定的湿敏传感器。
在上述发明中,其特征可以在于,上述无机化合物为金属氯化物氯化钙。另外,上述金属氯化物可以为锂、镁、钾、钙的氯化物中的任一种或其组合。根据该发明,能够提供一种给出稳定的湿度测定的湿敏传感器。
另外,本发明的湿度传感器的特征在于,是通过将由湿敏复合材形成的块体夹入到一对由透湿性原材形成的对置电极间而成的,所述湿敏复合材是在由多孔质有机硅树脂形成的基材的内部的封闭的气孔中容纳有具有潮解性的无机化合物而成的。
根据该发明,能够追随人的动作而给出稳定的湿度测定。
在上述发明中,其特征可以在于,通过介电常数的变化来给出周围的湿度变化。根据该发明,能够给出稳定的湿度测定。
在上述发明中,其特征可以在于,上述气孔为以大致球状分散的独立气孔。根据该发明,能够给出稳定的湿度测定。
在上述发明中,其特征可以在于,上述无机化合物为金属氯化物氯化钙。另外,上述金属氯化物可以为锂、镁、钾、钙的氯化物中的任一个或其组合。根据该发明,能够给出稳定的湿度测定。
附图说明
图1是作为本发明的实施例的湿敏复合材的剖视图。
图2是作为本发明的实施例的湿度传感器的侧视图。
图3是表示湿度传感器的相对湿度与相对介电常数的实部的关系的图表。
图4是表示湿度传感器的相对湿度与相对介电常数的虚部的关系的图表。
图5是表示无机化合物的相对湿度与静电电容的关系的图表,图5的(a)是所测定的静电电容的图表,图5的(b)是静电电容相对于湿度30%时的静电电容之比的图表。
具体实施方式
以下,使用图1和图2对作为本发明的1个实施例的湿敏复合材和湿度传感器进行说明。
如图1所示,湿敏复合材10在由多孔质有机硅树脂形成的基材1的内部具备多个封闭的气孔2。气孔2各自在内部容纳有具有潮解性的无机化合物3。需要说明的是,作为气孔2,例如优选为相互不连通而封闭的独立气孔。另外,该独立气孔还优选呈大致球状地分散。
作为具有潮解性的无机化合物3,例如可举出溴化镁、氯化镁、氯化钙、氯化钾、溴化钙、氯化钠、硫酸镁、硫酸钙、溴化钠、硝酸钙、硝酸镁和它们的水合物,如后所述,根据期望的湿敏的程度,可以使用它们中的1个或组合使用。适宜为金属氯化物,优选为锂、镁、钾、钙的氯化物中的任一个或其组合。
在此,由多孔质有机硅树脂形成的基材1使水蒸气透过,但不使成为液体的水透过。因此,湿敏复合材10可以利用无机化合物3吸收侵入到独立的气孔2内的水蒸气而生成潮解液,并将潮解液保持在气孔2内。
基于潮解性物质的水蒸气的吸收和释放是与水蒸气分压相应的平衡现象,因此湿敏复合材10吸收大量的水蒸气并以潮解液的形式保持于内部,直至与周围的水蒸气分压保持平衡为止。另一方面,潮解液保持在封闭的气孔2内而不会泄漏,另外,也不会使湿敏复合材10发生电短路。
即,通过检测湿敏复合材10所保持的潮解液的量,能够得到湿度传感器。
例如,如图2所示,通过将湿敏复合材10的块体夹入一对对置电极11和12,能够得到湿度传感器20。需要说明的是,优选对置电极11和12中的至少一个由透湿性原材形成。即,通过检测基于湿敏复合材10所保持的潮解液的量的介电常数的变化,能够检测周围的水蒸气分压的变化,能够检测湿度变化。
特别是,以有机硅树脂为基材1的湿敏复合材10具有挠性、伸缩性,能够柔软地变形。因此,湿度传感器20通过将对置电极11和12设置为具有挠性和伸缩性的原材,能够作为可穿戴设备而适当地安装于衣物。并且,通过追随人的动作,能够给出稳定的湿度测定。能够利用湿敏复合材10得到各种湿敏性部件(构件)。
接下来,使用图3和图4对实际制作使用了湿敏复合材10的湿度传感器20的例子进行说明。
作为成为基材1的有机硅树脂,使用PDMS(聚二甲基硅氧烷)。另外,作为无机化合物3,使用氯化钙。
首先,将浓度0~30重量%的氯化钙水溶液与PDMS预聚物以重量比1∶2混合,充分搅拌,由此得到分散有氯化钙水溶液的乳液。需要说明的是,浓度0重量%的氯化钙水溶液为水。将该乳液以约10μm的厚度旋涂在板状的Al电极上,加热使其固化。在固化的氯化钙-PDMS复合膜上溅射Au,制作厚度20nm的透湿电极。即,制作湿度传感器20,该湿度传感器20是利用(透湿)电极夹持氯化钙-PDMS复合膜上的结构的元件。
将制作出的湿度传感器20设置于25℃的恒温槽内,一边使恒温槽的内部的湿度变化至30~95%,一边测定湿度传感器20的静电电容,由此得到湿度传感器20相对于湿度的相对介电常数。
如图3所示,对于相对介电常数的实部(εr’)而言,在不含有氯化钙的情况下(0wt%)数值几乎不变化,与此相对,在包含氯化钙的情况下随着湿度的上升而数值增加,特别是在相对湿度80%以上,数值急剧增加。
另外,如图4所示,相对介电常数的虚部(εr”)的数值随着湿度的上升而增加,但与实部相比为非常小的值。
由上可知,制作出的湿度传感器20将氯化钙作为无机化合物3封闭在气孔2内,即使为高湿度区域,也不会发生所生成的潮解液的泄漏、与此相伴的短路。
此外,改变无机化合物3来制造基于湿敏复合材10的湿度传感器20,对分别调查了静电电容相对于湿度的变化的结果进行说明。作为无机化合物3使用的物质是与上述氯化钙同样为金属氯化物的氯化锂、氯化钾、氯化镁这3种,在湿敏复合材料10中分别包含9重量%。需要说明的是,作为成为湿敏复合材10的基材1的有机硅树脂,使用PDMS。对于使用了各个湿敏复合材10的湿度传感器20,测定了相对湿度30%、60%、90%的静电电容。
在图5的(a)和图5的(b)中分别示出所测定的静电电容和将湿度30%时的静电电容设为1时的静电电容之比。使用氯化锂的情况A(以下称为A)、使用氯化钾的情况B(以下称为B)和使用氯化镁的情况C(以下称为C)均存在相对湿度越高则静电电容越大的趋势。关于A、B,在相对湿度30%至60%之间的变化小,在相对湿度60%至90%之间变化大。特别是,虽然绝对值不同,但在将湿度30%时的静电电容设为1时的静电电容之比(参照图5的(b))中,A、B均显示出非常接近的变化。在C中,相对湿度30%至90%的整体的变化量与A和B相比较小,但整体上变化呈线性。
以上,对本发明的实施例和基于此的变形例进行了说明,但本发明并不限于此,只要是本领域技术人员,就能够在不脱离本发明的主旨或所附的技术方案的情况下做出各种替代实施例和改变例。
附图标记说明
1:基材
2:气孔
3:无机化合物
10:湿敏复合材
20:湿度传感器

Claims (9)

1.一种湿敏复合材,其特征在于,在由多孔质有机硅树脂形成的基材的内部的封闭的气孔中容纳有具有潮解性的无机化合物。
2.根据权利要求1所述的湿敏复合材,其特征在于,所述气孔为以大致球状分散的独立气孔。
3.根据权利要求2所述的湿敏复合材,其特征在于,所述无机化合物为金属氯化物。
4.根据权利要求3所述的湿敏复合材,其特征在于,所述金属氯化物为锂、镁、钾、钙的氯化物中的任一种或其组合。
5.一种湿度传感器,其特征在于,是将由湿敏复合材形成的块体夹入到一对由透湿性原材形成的对置电极间而成的,所述湿敏复合材是在由多孔质有机硅树脂形成的基材的内部的封闭的气孔中容纳有具有潮解性的无机化合物而成的。
6.根据权利要求5所述的湿度传感器,其特征在于,通过介电常数的变化来给出周围的湿度变化。
7.根据权利要求6所述的湿度传感器,其特征在于,所述气孔为以大致球状分散的独立气孔。
8.根据权利要求7所述的湿度传感器,其特征在于,所述无机化合物为金属氯化物。
9.根据权利要求8所述的湿度传感器,其特征在于,所述金属氯化物为锂、镁、钾、钙的氯化物中的任一种或其组合。
CN202080011049.0A 2019-02-15 2020-02-12 湿度传感器 Active CN113366305B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019-025696 2019-02-15
JP2019025696 2019-02-15
PCT/JP2020/005375 WO2020166616A1 (ja) 2019-02-15 2020-02-12 感湿複合材及び湿度センサ

Publications (2)

Publication Number Publication Date
CN113366305A true CN113366305A (zh) 2021-09-07
CN113366305B CN113366305B (zh) 2024-08-23

Family

ID=72044459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080011049.0A Active CN113366305B (zh) 2019-02-15 2020-02-12 湿度传感器

Country Status (5)

Country Link
US (1) US20220128501A1 (zh)
EP (1) EP3926336A4 (zh)
JP (1) JP7316676B2 (zh)
CN (1) CN113366305B (zh)
WO (1) WO2020166616A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117940766A (zh) * 2022-03-31 2024-04-26 株式会社村田制作所 多孔感湿构件、湿度传感器和呼吸检知系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123507A (ja) * 1997-05-02 1999-01-29 Yamatake Honeywell Co Ltd 感湿素子およびその製造方法
JPH11156141A (ja) * 1997-11-28 1999-06-15 Taiheiyo Cement Corp 乾燥剤
US6126312A (en) * 1997-05-02 2000-10-03 Yamatake-Honeywell Co., Ltd. Moisture sensitive element and method of manufacturing the same
US20020190840A1 (en) * 2001-05-31 2002-12-19 Ngk Spark Plug Co., Ltd. Humidity sensor
JP2005031090A (ja) * 2004-07-13 2005-02-03 Espec Corp 湿度センサおよびその製法
JP2008012432A (ja) * 2006-07-05 2008-01-24 Mitsubishi Paper Mills Ltd 分散液、シート状物及び調湿用シート状物
CN101438149A (zh) * 2006-03-06 2009-05-20 德普腊斯工程股份有限公司 湿度传感器
US20130031666A1 (en) * 2009-03-30 2013-01-31 Shunyuan Xiao Engineering broad-spectrum disease resistance against haustorium-forming pathogens using rpw8 as a delivery vehicle
US20170350846A1 (en) * 2016-06-03 2017-12-07 Texas Instruments Incorporated Sensing Capacitor with a Permeable Electrode
JP2018150206A (ja) * 2017-03-14 2018-09-27 株式会社東芝 セラミックス多孔質体、水蒸気分離体、及び調湿装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656455A (en) * 1984-07-20 1987-04-07 Toyama Prefecture Humidity-sensing element
JPH0286101A (ja) 1988-09-22 1990-03-27 Sekisui Plastics Co Ltd 高感度の感湿素子材料
JPH02253822A (ja) * 1989-03-27 1990-10-12 Daiken Trade & Ind Co Ltd 除湿装置
JPH04122434A (ja) * 1990-09-11 1992-04-22 Siegel:Kk 機能性物質を含む多孔質体並びにその製造方法
JPH04339772A (ja) * 1991-05-09 1992-11-26 Toyo Seikan Kaisha Ltd ライナー付容器蓋及びその製造方法
JP2008207502A (ja) * 2007-02-28 2008-09-11 Kyodo Printing Co Ltd 包装材料
JP2011185745A (ja) 2010-03-09 2011-09-22 Kyodo Printing Co Ltd 湿度インジケータとその製造方法、該製造方法に用いる湿度インジケータ用塗料
AU2011258144A1 (en) * 2010-05-26 2012-12-13 Multisorb Technologies, Inc. Silicone polymer desiccant composition and method of making the same
ES2382277B1 (es) * 2010-11-10 2013-05-06 Consejo Superior De Investigaciones Científicas (Csic) Material con transmisión óptica variable y dispositivo que comprende dicho material.
US10336606B2 (en) * 2016-02-25 2019-07-02 Nxp Usa, Inc. Integrated capacitive humidity sensor
JP6544745B2 (ja) * 2017-03-28 2019-07-17 有限会社杜のいちご 園芸作物の温室栽培方法およびその栽培装置
JP6466014B1 (ja) * 2018-07-26 2019-02-06 株式会社アトムワーク 熱緩衝組成物及び水分含有組成物を有する被服

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123507A (ja) * 1997-05-02 1999-01-29 Yamatake Honeywell Co Ltd 感湿素子およびその製造方法
US6126312A (en) * 1997-05-02 2000-10-03 Yamatake-Honeywell Co., Ltd. Moisture sensitive element and method of manufacturing the same
JPH11156141A (ja) * 1997-11-28 1999-06-15 Taiheiyo Cement Corp 乾燥剤
US20020190840A1 (en) * 2001-05-31 2002-12-19 Ngk Spark Plug Co., Ltd. Humidity sensor
JP2005031090A (ja) * 2004-07-13 2005-02-03 Espec Corp 湿度センサおよびその製法
CN101438149A (zh) * 2006-03-06 2009-05-20 德普腊斯工程股份有限公司 湿度传感器
JP2008012432A (ja) * 2006-07-05 2008-01-24 Mitsubishi Paper Mills Ltd 分散液、シート状物及び調湿用シート状物
US20130031666A1 (en) * 2009-03-30 2013-01-31 Shunyuan Xiao Engineering broad-spectrum disease resistance against haustorium-forming pathogens using rpw8 as a delivery vehicle
US20170350846A1 (en) * 2016-06-03 2017-12-07 Texas Instruments Incorporated Sensing Capacitor with a Permeable Electrode
JP2018150206A (ja) * 2017-03-14 2018-09-27 株式会社東芝 セラミックス多孔質体、水蒸気分離体、及び調湿装置

Also Published As

Publication number Publication date
WO2020166616A1 (ja) 2020-08-20
US20220128501A1 (en) 2022-04-28
EP3926336A1 (en) 2021-12-22
JP7316676B2 (ja) 2023-07-28
JPWO2020166616A1 (ja) 2021-12-09
EP3926336A4 (en) 2022-10-26
CN113366305B (zh) 2024-08-23

Similar Documents

Publication Publication Date Title
Blank et al. Recent trends of ceramic humidity sensors development: A review
Lee et al. Humidity sensors: a review
Zhao et al. Flexible bimodal sensor for simultaneous and independent perceiving of pressure and temperature stimuli
US3255324A (en) Moisture responsive resistance device
US7552635B2 (en) Humidity sensor capable of self-regulating temperature compensation and manufacturing method thereof
US4613422A (en) Ambient sensing devices
JP2017521679A5 (zh)
US5001453A (en) Humidity sensor
Hossein-Babaei et al. Alteration of pore size distribution by sol–gel impregnation for dynamic range and sensitivity adjustment in Kelvin condensation-based humidity sensors
US9671359B2 (en) Resistive type humidity sensor based on porous magnesium ferrite pellet
Yadav Classification and applications of humidity sensors: a review
CN113366305A (zh) 湿敏复合材及湿度传感器
Alizadeh et al. Synthesis of nanosized sulfate-modified α-Fe 2 O 3 and its use for the fabrication of all-solid-state carbon paste pH sensor
Cunha et al. A surfactant dispersed N-doped carbon sphere-poly (vinyl alcohol) composite as relative humidity sensor
US4280115A (en) Humidity sensor
Michalska et al. Screen-printed disposable reference electrodes
CA2547613C (en) A self-condensing ph sensor
CA1228895A (en) Ambient sensing devices
US3522732A (en) Sensing element for hygrometers
WO2006136641A1 (es) Dispositivo sensor de humedad basado en nanopartículas de óxido de hierro soportadas en sepiolita, su procedimiento de fabricación y sus aplicaciones.
GB2172999A (en) A humidity measurement or control instrument
JP2707246B2 (ja) 湿度センサ
SU881552A1 (ru) Датчик давлени
Lall et al. Process Development and Performance Analysis of Additively Printed Humidity Sensor using Aerosol Jet Printing
Ge et al. Plant‐Inspired Dual‐Functional Sensor for Monitoring Pulse and Sweat Volume

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant