CN113363456B - 超薄锂膜复合体及其制备方法 - Google Patents

超薄锂膜复合体及其制备方法 Download PDF

Info

Publication number
CN113363456B
CN113363456B CN202110905800.8A CN202110905800A CN113363456B CN 113363456 B CN113363456 B CN 113363456B CN 202110905800 A CN202110905800 A CN 202110905800A CN 113363456 B CN113363456 B CN 113363456B
Authority
CN
China
Prior art keywords
lithium
layer
ultra
film
lithium film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110905800.8A
Other languages
English (en)
Other versions
CN113363456A (zh
Inventor
孙兆勇
郇庆娜
韩秀娜
孔德钰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Energy Lithium Co ltd
Original Assignee
China Energy Lithium Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Energy Lithium Co ltd filed Critical China Energy Lithium Co ltd
Priority to CN202110905800.8A priority Critical patent/CN113363456B/zh
Publication of CN113363456A publication Critical patent/CN113363456A/zh
Application granted granted Critical
Publication of CN113363456B publication Critical patent/CN113363456B/zh
Priority to US17/756,690 priority patent/US20240204262A1/en
Priority to EP21895919.5A priority patent/EP4156334A1/en
Priority to KR1020227039911A priority patent/KR20230024260A/ko
Priority to JP2022570587A priority patent/JP7537791B2/ja
Priority to PCT/CN2021/138805 priority patent/WO2023015804A1/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种超薄锂膜复合体及其制备方法。该复合体具有:承载层,和位于所述承载层的至少一个表面上并且与所述承载层复合在一起的超薄锂膜,所述超薄锂膜是具有孔径为5~200微米的通孔的均匀薄膜,具有0.5‑20微米的均匀厚度,厚度公差在±0.5µm以内;超薄锂膜与承载层的界面处形成有固体电解质界面层,超薄锂膜和承载层之间具有0.1~15N·m‑1的粘结力。

Description

超薄锂膜复合体及其制备方法
技术领域
本发明涉及储能技术领域,尤其涉及一种可用于二次电池的超薄锂膜复合体及其制备方法。
背景技术
锂电池因其能量密度高,循环寿命长和适用温度范围广的优点而被广泛的应用于航空航天,计算机,移动通讯设备,机器人和电动汽车等领域。随着社会的发展,科技的进步,对于锂电池的能量密度和循环寿命要求越来越高,而目前单纯以石墨为负极的锂离子电池难以满足社会的预期,所以需要开发新型具有更高比容量的正负极材料。对于负极材料而言,进行预锂化工作,可有效提高电池比能量并增加电池寿命。锂金属具有高的比容量(3860 mAh/g,为石墨负极的10倍)和最低的氧化还原电位(-3.04 V VS标准氢电位)。采用修饰过的金属锂对传统石墨、硅碳负极进行预锂化处理,一方面可以提高电池的首次库伦效率,增加电池的比能量,另一方面表面修饰层可以有效减少金属锂的损耗,并延长电池的循环寿命,这使得锂离子电池将有更广阔的应用领域。
虽然预锂化(锂补偿)有如此优势,但是要精确控制其在电池中用量,并保持补锂材料的稳定性,鉴于此,对负极预锂化提出了更高的要求。目前现有锂离子电池所采用的正极材料均为含锂材料(例如钴酸锂,磷酸铁锂,三元材料等),正极所含锂已能够满足锂离子电池充放电需求,而负极补锂仅需提供少量的锂以弥补循环过程中的锂损失,即可提高电池的能量密度和循环寿命。由于负极预嵌锂的量非常少,通常对于补锂用的锂膜,其厚度只需0.5微米至15微米。宁德时代新能源的中国专利申请CN201610102992.8中,在补锂过程中将锂粉撒在极片表面,辊压后进行预锂化,锂用量很少。但是,该补锂方法尚无法实现对补锂量的精确控制,而且工艺复杂,成本较高,更重要的是安全性很难控制。天津中能锂业的中国专利申请CN112151758A中,发明的超薄锂膜预制件及其制备方法,提出一种超薄锂膜补锂的方法,该方法能有效解决金属锂补锂量精确控制问题,但是金属锂稳定性还有待进一步优化,鉴于此,需要一种能够既能控制补锂量又能增加稳定性,并实现电池的长循环、高能量密度的技术。
发明内容
发明人出人意料地发现:对于负极预锂化所用的超薄锂膜而言,通过在承载层表面设置功能化层,该功能化层能够与金属锂反应形成人工固体电解质界面层(人工SEI层),不仅可以使超薄锂膜以合适的粘结力复合在承载层上(其粘结力水平既能确保超薄锂膜附着于承载层,又可以容易地从承载层转移到其他基材例如锂电池负极上),而且在从承载层转移到其他基材时人工SEI层保留在超薄锂膜上,从而可以对金属锂膜进行有效的保护,提高稳定性,增加电池的循环性能。基于这些发现,完成了本发明。
因此,本发明一个方面旨在提供一种超薄锂膜复合体,所述超薄锂膜复合体具有:承载层和位于所述承载层的至少一个表面上并且与所述承载层复合在一起的超薄锂膜,所述超薄锂膜是具有孔径为5~200微米的通孔的均匀薄膜,具有0.5-20微米的均匀厚度,厚度公差在±0.5µm以内;所述超薄锂膜与所述承载层的界面处具有固体电解质界面(SEI)层,并且所述超薄锂膜和所述承载层之间的粘结力在0.1~15N·m-1范围内。
本发明的超薄锂膜复合体是一种连续或间歇、有通孔、承载层(薄膜基材)支撑、宽度厚度可调(控制锂膜尺寸和压力)的复合带材。
本发明中,超薄锂膜为均匀薄膜是指超薄锂膜具有完整的薄膜形状(没有明显的褶皱和变形,有齐整的边缘)且具有均匀厚度。优选地,超薄锂膜具有在整个锂膜中是均匀分布的通孔。
可选地,本发明的超薄锂膜在长度方向上是连续或者间歇的;或者在宽度方向上是连续或者间歇的。
可选地,长度方向上的间歇锂膜包括长度可控的空白区和金属锂层区,金属锂层区长度范围1~2000mm,空白区长度范围1~200mm,优选1~100mm。
可选的,宽度方向上的间歇锂膜中,锂膜部分宽度在1~200mm,锂膜间歇部分具有0.5~10mm的间距。
可选地,超薄锂膜复合体的锂膜表面光亮,为金属银白色,锂含量为99.90~99.95%,锂膜主体(内部)的锂元素含量可以为99.95%~99.99%。锂膜厚度范围为0.5-15微米,优选1-10微米,更优选5微米以下,厚度公差为±0.5µm,优选±0.1µm。
可选地,超薄锂膜具有均匀分布的孔径为5~200微米的通孔。
可选地,超薄锂膜的通孔孔径可以为10-50微米。
可选地,超薄锂膜的孔隙率为0.1%~20%,优选0.1%-10%,更优选0.5%-5%。
可选地,超薄锂膜的通孔的形状为圆孔或类圆孔,孔间距为5~1000微米,优选5~200微米,更优选5~50微米。
可选择,形成超薄锂膜的材料包括金属锂或者锂合金,锂合金是锂与硅、镁、铝、铟、硼、锡、镓、钇、银、铜、铅、铋、钠、碳、锗、钛、铬、钴、钨、铁、铌、镍、金、钡、镉、铯、钙、锰、氮、铂、硫、铊、锶、碲、锌、锑、锆中一种或多种的合金
可选地,承载层材料为聚合物:例如尼龙、纤维素,高强度薄膜化的聚烯烃(聚乙烯、聚丙烯、聚苯乙烯),聚酯;无机氧化物:例如三氧化二铝;无机导体:例如石墨、碳纳米管、石墨烯;金属集流体:例如铜、铝;所述承载层可以为单层或多层复合。
可选地,承载层的厚度为1-500微米,优选5-100微米,更优选10-50微米。
可选地,超薄锂膜与承载层的界面处的SEI层中包含碳酸锂、氧化锂、氢氧化锂、氮化锂、氟化锂、磷酸锂和烷基锂中的一种或多种物质。
可选地,超薄锂膜与承载层的界面处还包含应力调节材料,所述应力调节材料包括二甲基聚硅氧烷、含氢硅油、冲剪油、液体石蜡、甲基硅油、乳化甲基硅油、含氢甲基硅油、硅脂、聚乙烯蜡中的一种或多种的组合。
可选地,承载层与超薄锂膜之间的粘结力为1-10N•m-1,优选1-5N•m-1。所述承载层与超薄锂膜之间的粘结力能够确保超薄锂膜稳定复合在承载层上,又可以容易地从承载层转移到其他基材例如锂电池负极上。
本发明的另一个方面旨在提供一种制备上述超薄锂膜复合体的方法,所述方法包括:
在承载层的至少一个表面上形成功能化层,所述功能化层含有能够与金属锂反应形成SEI层的物质;
采用卷对卷工艺,将厚度为10~250µm的金属锂带材轧制并复合在承载层的形成有功能化层的表面上,获得超薄锂膜复合体。
可选地,所述功能化层通过将含有能够与金属锂反应形成SEI层的物质的分散体以喷涂、浸涂、转移涂、挤出涂、刮刀涂、帘式涂或丝网印刷方式施加到承载层的至少一个表面上而形成。
可选地,所述能够与金属锂反应形成SEI层的物质包括全氟正戊烷、全氟三戊胺、聚磷酸、聚偏氟乙烯、六氟磷酸锂、氟化铜、氟乙烯碳酸酯、碳酸乙烯酯、碳酸二甲酯、氢氟酸、碳酸甲乙酯、聚氯乙烯、聚丙烯腈、聚氧化乙烯中的至少一种。
可选地,所述分散体中还包含二甲基聚硅氧烷、含氢硅油、冲剪油、液体石蜡、甲基硅油、乳化甲基硅油、含氢甲基硅油、硅脂、聚乙烯蜡、2-丙烯基-2-甲氧基乙酯、丙烯酸正丙酯、甲苯、正丁醇、聚乙烯醇、丁酮、异丙酸、3-吲哚丙酸、羧甲基纤维素中的一种物质。
可选地,金属锂带材的厚度为10~100µm,优选10~50µm。
可选地,在将所述分散体施加到承载层上后,在所施加的分散体干燥前,进行金属锂带材的轧制和复合。
可选地,轧制包括冷轧、热轧和复合轧制,其中热轧控制温度范围60~120℃,复合轧制优选先热轧再冷轧。
可选地,轧制的压力范围是0.1~150Mpa,优选80~120Mpa。
可选地,轧辊表面具有防粘材料,防粘材料包括:聚乙烯、聚甲醛、有机硅聚合物、陶瓷。
可选地,采用最大张力范围为0.1~10N的辊进行收卷,其中的支撑辊自身带动力。
通过控制轧制过程,本发明以简单的工艺获得了负载有超薄锂膜的复合体,金属锂膜表面平整,超薄锂膜与承载层的界面处具有人工SEI层。该复合体可以容易地转移到锂电池负极上,并且具有提高的预锂化效果,实现电池的高能量密度、长循环的效果。
附图说明
图1为一种根据本发明的压力复合生产连续超薄锂膜复合体的工艺示意图。
图2为宽度方向间歇超薄锂膜复合体的一个示意图。
图3为长度方向间歇超薄锂膜复合体的一个示意图。
图4显示了生产间歇超薄锂膜复合体的一个工艺示意图。
图5显示了在载体材料上喷涂功能试剂的工艺示意图。
图6 显示了本申请实施例1制备的5微米厚光滑超薄锂膜复合体产品。
图7显示了原始(对比例1,左图)和人工SEI修饰(实施例2,右图)的5微米超薄锂膜复合体产品SEM图。
图8显示了本申请实施例1的超薄锂膜复合体产品的能谱图。
图9 显示了本申请实施例1、2,对比例2的超薄锂产品放电曲线图。
简称术语:
P 基材 N 空白区 L 金属锂层 PL (连续)锂箔 PNL 间歇式锂箔。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
图1显示了一种根据本发明的压力复合生产连续超薄锂膜预制件的工艺示意图。如图1所示,使用金属锂带材和担载带材作为原料,通过放卷设备进行放卷,所述放卷设备至少包括金属锂带材放卷辊11和分别用于支撑放卷的金属锂带和担载带材的两个放卷支撑辊12;原料锂带和担载带材经过放卷支撑辊12后进入轧机20;轧机20至少包括一对轧辊21和轧辊21上的防粘涂层22,所述轧机20的轧制压力和轧辊21之间的辊缝缝隙可以进行微调;轧辊21上的防粘涂层22的材质可以选自聚乙烯、聚甲醛、有机硅聚合物、陶瓷等其中的一种或几种;经过压力复合,将担载带材和锂材复合在一起,形成超薄锂膜预制件产品;轧机20的出口侧设置有收卷装置,所述收卷装置至少包括支撑辊31、张力控制辊32和收卷辊33;其中支撑辊31带有动力,可以利用微小拉力将超薄锂膜预制件牵引前进;所述张力控制辊32可以上下移动或摆动,既可以控制预制件张力又可以根据张力控制辊32的高度或摆动角度用于控制收卷辊33的收卷速度。
图2是宽度方向上的间歇锂膜示意图,图3是长度方向上的间歇锂膜示意图。
图4是生产间歇锂膜的生产装置,所述间歇式锂箔生产装置包括放卷装置100、刮除装置200和收卷装置300,还包括控制收卷速度和刮除装置的工作时间间隔的控制装置(未示出)。其中,放卷装置100包括放卷轴101、磁粉制动器102、放卷支撑辊104、放卷纠偏检测传感器105和放卷纠偏装置103;刮除装置200包括刮刀201、刮刀驱动装置202、刮刀垫板203和支撑辊(204、205);收卷装置300包括收卷轴301、收卷电机302、收卷纠偏装置303、收卷支撑辊304和收卷纠偏检测传感器305;另外,可选地还设置有测长传感器401。
放卷装置100上的放卷轴101用于锂箔PL的放卷,与放卷轴101连接的磁粉制动器102可以控制放卷张力的大小;放卷支撑辊104用于支撑锂箔PL以恒定的倾角进入刮除装置200和便于放卷纠偏检测传感器105精确对锂箔PL进行纠偏检测。刮除装置200上的支撑辊204/205分别保证进出该装置的带材倾角恒定,不受其他工艺环节影响;刮刀垫板203用于支撑锂箔PL,保持锂箔PL的平整状态;刮刀驱动装置202用于驱动刮刀201实现上下方向的快速移动。收卷装置300上包括收卷轴301、收卷电机302;收卷轴301用于间歇式锂箔PNL的收卷,收卷轴301由收卷电机302进行驱动。
具体使用方法和流程为:将带基材支撑的电池级锂箔PL安装到放卷轴101上并固定;将锂箔PL依次穿过放卷支撑辊104、放卷纠偏检测传感器105、刮除装置的支撑辊204和205、收卷纠偏检测传感器305、收卷支撑辊304,然后缠绕到收卷轴301上并固定。开启设备,使收卷装置300上的收卷电机302运转,带动收卷轴301转动,从而将锂箔PL从放卷装置100端经过刮除装置200后实现收卷;在收卷装置300进行收卷的过程中,通过控制刮除装置200中的刮刀驱动装置202实现刮刀201间歇性的上下运动,从而将锂箔PL上部分金属锂层进行刮除,形成间歇式锂箔PNL,通过控制刮刀宽度和个数来生产宽度方向的间隙锂膜。
图5是在载体材料上喷涂功能试剂的示意图,配制溶液加入溶液池1,通过喷涂头2在承载层3上进行预处理,使功能试剂附着在承载层上。通过放卷辊4和收卷辊5进行承载层的收放卷。
以下,采用上述的工艺设备,通过实施例更具体地说明本发明。在如下实施例之中所采用的各种产品结构参数、各种反应参与物及工艺条件均是较为典型的范例,但经过本案发明人大量试验验证,于上文所列出的其它不同结构参数、其它类型的反应参与物及其它工艺条件也均是适用的,并也均可达成本发明所声称的技术效果。
实施例1:
采用锂含量为99.95%、厚度为20微米的金属锂带材和厚度为50微米的聚乙烯膜(聚乙烯膜表面具有通过用含全氟正戊烷和氢硅油的丁酮溶液喷涂与金属锂的接触面而形成的功能化层),辅助放卷和收卷装置,采用冷轧方式,控制压力100Mpa,得到厚度为5微米(厚度公差为±0.5微米)的表面光滑(与承载层分离后的表面)的超薄锂膜复合体产品(如图6),表面能谱如图8所示,表面出现了Si、N、F的峰,表明人工SEI修饰的成功。
实施例2:
采用锂含量为99.95%、厚度为20微米的金属锂带材和厚度为50微米的聚乙烯膜(聚乙烯膜表面具有通过用聚磷酸的甲苯溶液喷涂与金属锂的接触面而形成的功能化层),辅助放卷和收卷装置,采用热轧方式,温度80℃,控制压力120Mpa,得到厚度为5微米(厚度公差为±0.5微米)的表面平整(与承载层分离后的表面)的超薄锂膜复合体产品(如图7右,SEM图)。
对比例1:
采用锂含量为99.95%、厚度为20微米的金属锂带材和厚度为50微米的聚乙烯膜(聚乙烯膜表面具有通过用含氢硅油的甲苯溶液喷涂与金属锂的接触面而形成的应力控制层),辅助放卷和收卷装置,采用热轧方式,温度80℃,控制压力120Mpa,得到厚度为5微米(厚度公差为±0.5微米)的表面(与承载层分离后的表面)不平整的超薄锂膜复合体产品(如图7左,SEM图)。
实施例3:-电性能测试
使用实施例1所得的5微米的超薄锂复合体产品,冲成直径为15.6cm的极片,与金属锂圆片组成半电池,采用1M LiPF6,EC/DMC/EMC(1/1/1) (杉杉电解液)作为电解液,电池的放电数据(1C)表明,经表面功能化修饰的金属锂,经过200循环,表现出优秀的容量保持率,为89.0%,如图9曲线a所示。
实施例4:-电性能测试
使用实施例2所得的5微米的超薄锂复合体产品,冲成直径为15.6cm的极片,与金属锂圆片组成半电池,采用1M LiPF6,EC/DMC/EMC(1/1/1) (杉杉电解液)作为电解液,电池的放电数据(1C)表明,经表面功能化修饰的金属锂,经过200循环,也表现出优秀的容量保持率,为88.1%。如图9曲线b所示。
对比例2:
使用对比例1的5微米的超薄锂复合体产品,冲成直径为15.6cm的极片,与金属锂圆片组成半电池,采用1M LiPF6,EC/DMC/EMC(1/1/1) (杉杉电解液)作为电解液,电池的放电数据(1C)表明,未经表面功能化修饰的金属锂,经过200循环后的容量保持率仅为77%(如图9曲线c所示),远低于经过修饰的金属锂。
实施例4-石墨补锂测试:
首先制备石墨电极,将石墨粉(贝特瑞):乙炔黑AB (贝特瑞): 羧甲基纤维素钠CMC(上海海逸):丁苯橡胶SBR(上海海逸)=94:3:1:2,分散在去离子水中,控制固含量35%,粘度2000~3000cp,搅拌时间6h,使用涂布机单面涂布在10μm铜膜上,烘干制得50μm石墨极片。然后使用实施例2所得的5微米的超薄锂复合体产品,应力控制层处理(控制粘结力2N/m),使用15MPa压力将锂膜贴合压力转移至石墨电极表面,剥离承载层,冲成直径为15.6cm的极片,与锂膜组成半电池,采用1M LiPF6,EC/DMC/EMC(1/1/1) (杉杉电解液)作为电解液。与没有进行预锂化的半电池相比,在通过使用超薄锂复合体对石墨负极进行预锂化的半电池中,石墨负极的首次效率从91.8%提升到100%,首效大幅度提高,并且循环1500次,无容量衰减。
应当理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (11)

1. 一种超薄锂膜复合体,其特征在于所述复合体包括:
承载层;和
位于所述承载层的至少一个表面上并且与所述承载层复合在一起的超薄锂膜,所述超薄锂膜是具有孔径为5~200微米的通孔的均匀薄膜,具有0.5-20微米的均匀厚度,厚度公差在±0.5µm以内,
其中所述超薄锂膜与所述承载层的界面处具有固体电解质界面层,
所述承载层的材料包括聚合物、无机氧化物和无机导体中的至少一种,其中所述聚合物选自聚酰亚胺、尼龙、纤维素、高强度薄膜化的聚烯烃和聚酯;所述无机氧化物包括三氧化二铝;所述无机导体选自石墨、碳纳米管和石墨烯,并且
所述超薄锂膜和所述承载层之间的粘结力在0.1~10 N·m-1范围内。
2.根据权利要求1所述的超薄锂膜复合体,其特征在于:形成所述超薄锂膜的材料包括金属锂或者锂合金,所述锂合金为锂与硅、镁、铝、铟、硼、锡、镓、钇、银、铜、铅、铋、钠、碳、锗、钛、铬、钴、钨、铁、铌、镍、金、钡、镉、铯、钙、锰、氮、铂、硫、铊、锶、碲、锌、锑、锆中至少一种的合金。
3.根据权利要求1所述的超薄锂膜复合体,其特征在于:所述固体电解质界面层包含碳酸锂、氧化锂、氢氧化锂、氮化锂、氟化锂、磷酸锂和烷基锂中的一种或多种物质。
4.根据权利要求1所述的超薄锂膜复合体,其特征在于:所述超薄锂膜满足以下条件中的至少一个:
在长度方向上是连续或者间歇的;
通孔的形状为圆孔或类圆孔;
通孔间距为5-1000微米;
超薄锂膜的厚度为1-10微米。
5.根据权利要求4所述的超薄锂膜复合体,其特征在于:
在长度方向上间歇的超薄锂膜包括长度可控的空白区和金属锂层区,所述金属锂层区的长度范围为1-2000mm,所述空白区的长度范围为1-200mm;
在宽度方向上间歇的超薄锂膜具有宽度在1-200mm范围内的超薄锂膜部分,锂膜之间的间歇部分具有0.5-10mm的宽度。
6.根据权利要求1所述的超薄锂膜复合体,其特征在于:所述承载层具有单层或多层复合结构。
7.一种制备如权利要求1-6中任一项所述的超薄锂膜复合体的方法,其特征在于:所述方法包括:
在承载层的至少一个表面上形成功能化层,所述功能化层含有能够与金属锂反应形成固体电解质界面层的物质;
采用卷对卷工艺,将厚度为10~250µm的金属锂带材轧制并复合在承载层的形成有功能化层的表面上,获得超薄锂膜复合体。
8.根据权利要求7所述的方法,其特征在于:所述功能化层通过将含有能够与金属锂反应形成固体电解质界面层的物质的分散体以喷涂、浸涂、转移涂、挤出涂、刮刀涂、帘式涂或丝网印刷方式施加到承载层的至少一个表面上而形成。
9.根据权利要求8所述的方法,其特征在于:所述能够与金属锂反应形成固体电解质界面层的物质包括全氟正戊烷、全氟三戊胺、聚磷酸、聚偏氟乙烯、六氟磷酸锂、氟化铜、氟乙烯碳酸酯、碳酸乙烯酯、碳酸二甲酯、氢氟酸、碳酸甲乙酯、聚氯乙烯、聚丙烯腈、聚氧化乙烯中的至少一种。
10.根据权利要求9所述的方法,其特征在于:所述分散体中还包含二甲基聚硅氧烷、含氢硅油、冲剪油、液体石蜡、甲基硅油、乳化甲基硅油、含氢甲基硅油、硅脂、聚乙烯蜡、2-丙烯基-2-甲氧基乙酯、丙烯酸正丙酯、甲苯、正丁醇、聚乙烯醇、丁酮、异丙酸、3-吲哚丙酸、羧甲基纤维素中的至少一种物质。
11.根据权利要求7所述的方法,其特征在于:所述轧制为冷轧、热轧或复合轧制,其中热轧控制温度范围60~120℃。
CN202110905800.8A 2021-08-09 2021-08-09 超薄锂膜复合体及其制备方法 Active CN113363456B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202110905800.8A CN113363456B (zh) 2021-08-09 2021-08-09 超薄锂膜复合体及其制备方法
US17/756,690 US20240204262A1 (en) 2021-08-09 2021-12-16 Ultra-thin lithium film laminate and method for preparing the same
EP21895919.5A EP4156334A1 (en) 2021-08-09 2021-12-16 Ultrathin lithium film composite and preparation method therefor
KR1020227039911A KR20230024260A (ko) 2021-08-09 2021-12-16 초박형 리튬막 복합체 및 이의 제조 방법
JP2022570587A JP7537791B2 (ja) 2021-08-09 2021-12-16 超薄リチウム膜積層体及びその製造方法
PCT/CN2021/138805 WO2023015804A1 (zh) 2021-08-09 2021-12-16 超薄锂膜复合体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110905800.8A CN113363456B (zh) 2021-08-09 2021-08-09 超薄锂膜复合体及其制备方法

Publications (2)

Publication Number Publication Date
CN113363456A CN113363456A (zh) 2021-09-07
CN113363456B true CN113363456B (zh) 2021-11-12

Family

ID=77540695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110905800.8A Active CN113363456B (zh) 2021-08-09 2021-08-09 超薄锂膜复合体及其制备方法

Country Status (6)

Country Link
US (1) US20240204262A1 (zh)
EP (1) EP4156334A1 (zh)
JP (1) JP7537791B2 (zh)
KR (1) KR20230024260A (zh)
CN (1) CN113363456B (zh)
WO (1) WO2023015804A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363456B (zh) * 2021-08-09 2021-11-12 天津中能锂业有限公司 超薄锂膜复合体及其制备方法
CN114147192A (zh) * 2021-12-07 2022-03-08 电子科技大学长三角研究院(湖州) 一种倾斜自流延制备超薄锂带/箔的方法及装置
CN116533605A (zh) * 2023-02-10 2023-08-04 天津中能锂业有限公司 一种锂碳复合带及其制备方法
CN116826025B (zh) * 2023-08-22 2023-12-01 天津中能锂业有限公司 锂复合体及其制备方法
CN117477069B (zh) * 2023-12-26 2024-05-24 深圳欣界能源科技有限公司 一种用于锂离子电池的负极材料及锂离子电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109390633A (zh) * 2017-08-08 2019-02-26 中国电子科技集团公司第十八研究所 一种微型固态薄膜锂电池的制备方法
CN110729451A (zh) * 2018-07-17 2020-01-24 惠州比亚迪电池有限公司 正极片及其制备方法、锂离子电池和车辆

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214061B1 (en) * 1998-05-01 2001-04-10 Polyplus Battery Company, Inc. Method for forming encapsulated lithium electrodes having glass protective layers
CN109328413A (zh) 2016-06-21 2019-02-12 应用材料公司 用于改良的锂金属循环的界面层
US10944103B2 (en) 2017-11-09 2021-03-09 Applied Materials, Inc. Ex-situ solid electrolyte interface modification using chalcogenides for lithium metal anode
CN109786750A (zh) * 2018-12-11 2019-05-21 厦门大学 一种具有固态电解质界面相的集流体及制造方法
CN112151758A (zh) * 2019-06-28 2020-12-29 天津中能锂业有限公司 超薄锂膜预制件及其制备方法
CN112151763A (zh) 2019-06-28 2020-12-29 天津中能锂业有限公司 锂离子电池负极预锂化的方法及其锂离子电池
CN210123779U (zh) 2019-06-28 2020-03-03 天津中能锂业有限公司 通孔锂膜预制件、复合负极及储能装置
EP3840086A1 (en) 2019-12-20 2021-06-23 Arkema France Alkali metal electrodes and methods for preparing the same
CN213864531U (zh) * 2020-09-15 2021-08-03 天津中能锂业有限公司 间歇式锂箔及其生产装置
CN112820858A (zh) 2021-01-07 2021-05-18 北京理工大学 一种磷硫基界面膜保护的锂金属负极及其制备方法
CN112786842A (zh) 2021-01-29 2021-05-11 山东威固新能源科技有限公司 一种含人工固态电解质界面层的碱金属负极及其制备方法和应用
CN113036077A (zh) 2021-03-05 2021-06-25 中山大学 一种人工固相电解质界面膜修饰的锂电池负极及其制备方法和应用
CN113036079B (zh) * 2021-03-24 2022-11-25 蜂巢能源科技(无锡)有限公司 一种固态电池用负极及其制备方法和应用
CN113363456B (zh) * 2021-08-09 2021-11-12 天津中能锂业有限公司 超薄锂膜复合体及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109390633A (zh) * 2017-08-08 2019-02-26 中国电子科技集团公司第十八研究所 一种微型固态薄膜锂电池的制备方法
CN110729451A (zh) * 2018-07-17 2020-01-24 惠州比亚迪电池有限公司 正极片及其制备方法、锂离子电池和车辆

Also Published As

Publication number Publication date
CN113363456A (zh) 2021-09-07
WO2023015804A1 (zh) 2023-02-16
JP7537791B2 (ja) 2024-08-21
US20240204262A1 (en) 2024-06-20
JP2023539976A (ja) 2023-09-21
KR20230024260A (ko) 2023-02-20
EP4156334A1 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
CN113363456B (zh) 超薄锂膜复合体及其制备方法
CN210123779U (zh) 通孔锂膜预制件、复合负极及储能装置
CN109997261B (zh) 包含硅颗粒的大型电池组阳极
JP4753870B2 (ja) リチウムイオン二次電池の製造法
US9871240B2 (en) Electrospinning for integrated separator for lithium-ion batteries
JP2010027673A (ja) シート電極の製造方法及び製造装置
CN102549814A (zh) 高性能电极
CN116826025B (zh) 锂复合体及其制备方法
KR20110042318A (ko) 비수전해질 이차전지용 음극 및 그 제조방법 및 비수전해질 이차전지
EP1876662B1 (en) Electrode mixture paste coating method and coater
WO2020258842A1 (zh) 超薄锂膜预制件及其制备方法
JP2014139887A (ja) 非水系二次電池極板の製造方法、非水系二次電池極板、非水系二次電池、および移動体
CN113823760A (zh) 超薄锂条预制件、复合负极及其制备方法和电池
CN105531865A (zh) 锂离子二次电池的制造方法、锂离子二次电池的制造装置和锂离子二次电池
CN105355449A (zh) 一种电极的制备方法及装置
CN112117437A (zh) 金属锂可控成核及生长的锂金属复合电极及其制备方法
JP2016115576A (ja) リチウムイオン電池の製造方法、リチウムイオン電池の製造装置およびリチウムイオン電池
JP2011243345A (ja) リチウムイオン電池用電極とその製造方法
CN213864531U (zh) 间歇式锂箔及其生产装置
CN219040510U (zh) 多孔锂膜复合体
CN114597331A (zh) 超薄锂膜复合体及其制备方法
CN113614956B (zh) 印刷锂箔和膜
WO2022116075A1 (zh) 超薄锂膜复合体及其制备方法
JP2002361152A (ja) 両面塗布装置及び電池用電極の製造方法
CN115020649A (zh) 极片补锂装置和极片补锂方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant