CN113355339B - 一种大型基因簇的无痕定点改造方法及其应用 - Google Patents

一种大型基因簇的无痕定点改造方法及其应用 Download PDF

Info

Publication number
CN113355339B
CN113355339B CN202010147911.2A CN202010147911A CN113355339B CN 113355339 B CN113355339 B CN 113355339B CN 202010147911 A CN202010147911 A CN 202010147911A CN 113355339 B CN113355339 B CN 113355339B
Authority
CN
China
Prior art keywords
gene
spinosyn
gene cluster
traceless
butene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010147911.2A
Other languages
English (en)
Other versions
CN113355339A (zh
Inventor
王海龙
宋超逸
栾霁
符军
张友明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202010147911.2A priority Critical patent/CN113355339B/zh
Publication of CN113355339A publication Critical patent/CN113355339A/zh
Application granted granted Critical
Publication of CN113355339B publication Critical patent/CN113355339B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及一种大型基因簇的无痕定点改造方法及其应用。本发明中的无痕定点改造方法首先利用Redαβ线环重组将含有目标DNA‑正向筛选标记‑反向筛选标记组成的基因盒插入靶位点得到重组载体,其中正向筛选标记‑反向筛选标记两侧带有特异性限制酶切位点和末端同源臂;随后重组载体经特异性限制酶切线状化,暴露出末端同源臂;最后在核酸外切酶介导的体外退火作用下,线状DNA分子通过末端同源臂环化完成DNA的无痕修饰。本发明中的无痕定点改造方法可以高效的编辑生物合成途径,在大型聚酮基因簇中进行DNA插入、删除等无痕定点修饰,从而有目的的改变聚酮骨架结构或进行糖基修饰,为聚酮化合物生物合成途径的改造提供了便利。

Description

一种大型基因簇的无痕定点改造方法及其应用
技术领域
本发明涉及一种大型基因簇的无痕定点改造方法及其应用,属于分子生物学技术领域。
背景技术
生物合成途径的重编程是丰富天然产物结构的重要途径。聚酮化合物的生物合成基因簇中存在大量重复序列,导致其中基因的无痕定点改造非常困难。多杀菌素(Spinosad)是从刺糖多孢菌Saccharopolyspora spinosa中分离到的聚酮类次级代谢产物,其主要活性成分为spinosyn A和spinosyn D。由于多杀菌素广谱高效的杀虫活性,独特的杀虫机理,优良的环境安全性和较低的哺乳动物毒性,美国陶氏益农公司将其开发为多种商业化绿色生物杀虫剂。多杀菌素的生物合成涉及23个基因,包括5个I型聚酮合酶(polyketide synthase,PKS)基因,4个聚酮链分子内交联基因,8个糖基合成相关基因,2个糖基转移酶基因和4个糖基甲基化转移酶基因。中国专利文献CN109486848A(申请号201811407515.8)公开了一种多操纵子人工基因簇的构建方法,利用了DNA组装技术和组成型启动子驱动的过表达策略,将多杀菌素合成途径中的23个基因按功能分为五组,分别置于不同组成型强启动子的控制下,构建了人工基因簇,与原始基因簇相比,人工基因簇在异源宿主中多杀菌素的产量提高了328倍。
近年来,人们通过化学合成、生物转化和遗传操纵等策略尝试改变多杀菌素的化学结构,寻找具有更强杀虫活性和更广杀虫谱的新型多杀菌素衍生物。通过化学合成或半合成的方法,迄今已经发现了超过1000种多杀菌素衍生物,但它们的杀虫活性均低于spinosyn A。由于多杀菌素的部分基团,特别C-21位的取代基无法进行化学修饰,Sheehan等人通过对刺糖多孢菌的遗传操纵,将多杀菌素PKS基因中的装载模块替换为红霉素PKS的装载模块,在发酵携带杂合基因簇的工程菌株时,向培养基中饲喂了一系列羧酸底物,由此获得了16个新的多杀菌素衍生物,其中21-环丁基-spinosyn A及其半合成产物5,6-二氢-21-环丁基-spinosyn A的杀虫活性较spinosyn A有所提升。
丁烯基多杀菌素(丁烯基-spinosyn A和丁烯基-spinosyn D的混合物)是从须糖多孢菌Saccharopolyspora pogona分离到的多杀菌素衍生物,其C-21的乙基被丁烯基取代后,杀虫活性获得提升。比对须糖多孢菌的丁烯基多杀菌素基因簇(bus)和刺糖多孢菌的多杀菌素基因簇(spn)发现,DNA序列和蛋白序列同源性分别高达91-97%和81-97%,且相应基因的转录方向和排列顺序也完全一样。两基因簇的最大差异在于spnA基因比busA基因短5,301bp,而这段5,301bp序列编码丁烯基多杀菌素聚酮合酶1b延伸模块的酰基转移酶(AT)、脱氢酶(DH)、酮基还原酶(KR)和酰基载体蛋白(ACP)结构域以及聚酮合酶1a延伸模块中的酮基合成酶(KS)结构域。丁烯基多杀菌素聚酮合酶1b延伸模块导致丁烯基多杀菌素的C-21位比多杀菌素多两个碳原子。
I型PKS是由多个模块构成的多酶复合体,它通过催化酰基-CoA底物通过缩合反应以碳-碳键相连形成聚酮化合物的骨架。在进行PKS基因的模块替换时,需要避免引入额外序列对蛋白表达和PKS功能的影响,因此无痕定点修饰是PKS基因编辑的最佳方案。然而,PKS中相同功能结构域编码序列高度同源的特点,导致了依赖于同源重组的基因工程技术难以实现对大型多模块PKS基因簇的无痕定点改造。尽管以往的研究中,通过反向筛选和同源重组实现了对载体中含有重复序列的16kb plu3263非核糖体多肽合成酶基因和170kb人BRD4基因的无痕点改造(Wang,H.et al.Improved seamless mutagenesis byrecombineering using ccdB for counterselection.Nucleic Acids Res.42,e37(2014).),但是优化后的策略仍然不能实现对大型多模块PKS基因的无痕修饰。
乙基多杀菌素(Spinetoram)是多杀菌素的第二代产品,它不仅保留了多杀菌素环境友好和低哺乳动物毒性等优点,而且杀虫活性更高、杀虫谱更广。乙基多杀菌素于2008年获得美国总统绿色化学挑战奖。乙基多杀菌素是3’-O-乙基-5,6-二氢-spinosyn J和3’-O-乙基-spinosyn L的混合物,能够以spinosyn J/L(3’-氧-脱甲基-spinosyn A/D)为原料,经化学修饰获得。
组合生物合成是丰富天然产物结构的有效方法。然而,刺糖多孢菌极低的转化效率阻碍了组合生物合成技术在多杀菌素结构衍生中的应用。近期,已有文献报道了完整多杀菌素生物合成基因簇的克隆,并且在白色链霉菌(Streptomyces albus)和红色糖多孢菌(Saccharopolyspora erythraea)中实现了异源表达。这些研究为应用组合生物学技术改造多杀菌素基因簇,开发多杀菌素衍生物提供了更易操纵的异源表达平台。
发明内容
针对现有技术的不足,本发明提供了一种大型基因簇的无痕定点改造方法及其应用,该方法结合了Redαβ蛋白介导的线状-环状同源重组(线环重组)、正反向筛选和核酸外切酶介导的体外退火,可以在大肠杆菌中高效的实现对大型聚酮基因簇PKS基因及非PKS区域的无痕定点插入或删除。
术语说明:
Redαβ线环重组:λ噬菌体重组蛋白Redα和Redβ可以在大肠杆菌细胞内高效介导线状DNA和环状DNA之间发生同源重组,其中Redα是5’-3’核酸外切酶,Redβ是单链DNA退火蛋白。
本发明的技术方案如下:
一种大型基因簇的无痕定点改造方法,该方法首先利用Redαβ线环重组将含有目标DNA-正向筛选标记-反向筛选标记组成的基因盒插入靶位点得到重组载体,其中正向筛选标记-反向筛选标记两侧带有特异性核酸内切酶酶切位点和末端同源臂;随后重组载体经特异性核酸内切酶酶切线状化,暴露出末端同源臂;最后在核酸外切酶介导的体外退火作用下,线状DNA分子通过末端同源臂环化完成DNA的无痕修饰。
上述大型基因簇的无痕定点改造方法在化合物结构衍生中的应用。
根据本发明优选的,所述化合物为聚酮化合物;进一步优选的为多杀菌素。
本发明一个优选的技术方案,上述大型基因簇的无痕定点改造方法在多杀菌素结构衍生中的应用,包括步骤如下:
(1)利用线线重组技术构建得到含有目的基因busA(4,245-9,546)、ampccdB正反向筛选标记基因的基因盒,其中ampccdB正反向筛选标记基因的两侧带有PacI酶切位点以及末端同源臂;
(2)利用Redαβ线环重组技术将步骤(1)含有目的基因busA(4,245-9,546)、ampccdB正反向筛选标记基因的基因盒插入多杀菌素基因簇的靶位点spnA(4,245-4,300),得到重组载体;
(3)PacI酶切步骤(2)的重组载体,切除ampccdB基因,暴露末端同源臂,得到线状质粒载体,利用T4 DNA聚合酶介导线状质粒载体通过末端同源臂进行体外退火恢复环状,得到表达丁烯基多杀菌素的重组基因簇,完成多杀菌素的结构衍生。
根据本发明优选的,步骤(1)中所述末端同源臂的长度为20-80bp。
根据本发明优选的,步骤(3)中所述线状质粒载体在体外退火时的用量为100-400ng。
一种上述应用中构建得到的表达丁烯基多杀菌素的重组基因簇。
一种含有上述重组基因簇的丁烯基多杀菌素生产菌。
本发明一个优选的技术方案,上述大型基因簇的无痕定点改造方法在多杀菌素结构衍生中的应用,包括步骤如下:
1)利用PCR扩增技术得到含有ampccdB正反向筛选标记基因的基因盒,其中ampccdB正反向筛选标记基因的两侧带有PacI酶切位点以及末端同源臂;
2)利用Redαβ线环重组技术将步骤1)含有ampccdB正反向筛选标记基因的基因盒插入多杀菌素基因簇的靶位点,将spnK基因替换为含有ampccdB正反向筛选标记基因的基因盒,得到重组载体;
3)PacI酶切步骤2)的重组载体,切除ampccdB基因,暴露末端同源臂,得到线状质粒载体,利用T4 DNA聚合酶介导线状质粒载体通过末端同源臂进行体外退火恢复环状,得到表达spinosyn J和spinosyn L的重组基因簇,完成多杀菌素的结构衍生。
根据本发明优选的,步骤1)中所述末端同源臂的长度为20-80bp。
根据本发明优选的,步骤3)中所述线状质粒载体在体外退火时的用量为100-400ng。
一种上述应用中构建得到的表达spinosyn J和spinosyn L的重组基因簇。
一种含有上述重组基因簇的spinosyn J和spinosyn L生产菌。
本发明中未作详细说明的步骤均按照现有技术操作。
本发明的技术特点及有益效果:
1、本发明利用组合生物合成策略进行多杀菌素结构衍生,提供了一种大型基因簇的无痕定点改造方法,即RedEx技术。该技术结合了Redαβ蛋白介导的线状-环状同源重组(线环重组)、正反向筛选和核酸外切酶介导的体外退火,可以在大肠杆菌中高效的实现对大型聚酮基因簇PKS基因及非PKS区域的无痕定点插入或删除。在本发明中,应用RedEx技术,将BusA蛋白的AT1b-KS1a结构域无痕插入到SpnA蛋白第一个延伸模块的KS结构域和AT结构域之间;同样应用RedEx技术实现了多杀菌素基因簇中编码3’-O-甲基化转移酶的spnK基因的无痕敲除。多杀菌素重组基因簇在白色链霉菌J1074中分别产生了2.36mg·L-1的丁烯基-spinosyn A和7.34mg·L-1的spinosyn J。
2、本发明应用RedEx技术将多杀菌素的C-21取代基由乙基变成丁烯基,实现了多杀菌素结构衍生。丁烯基多杀菌素作为自然产生的多杀菌素衍生物,它不仅保留了多杀菌素环境友好和低哺乳动物毒性等优点,而且杀虫活性更高、杀虫谱更广,对于多杀菌素难以控制的果树和坚果害虫苹果蠹蛾和重要烟草害虫烟青虫具有良好的生物防治作用。
3、本发明应用RedEx技术实现了spnK基因的无痕敲除,敲除了spnK基因的多杀菌素基因簇可以合成spinosyn J和spinosyn L,以spinosyn J和spinosyn L为原料,经化学修饰可以获得乙基多杀菌素(Spinetoram)。乙基多杀菌素作为多杀菌素的第二代产品,保持了多杀菌素类杀虫剂高效低毒特点的同时,具有与丁烯基多杀菌素类似的广谱杀虫的特性,具有更好的开发前景。
4、除了自然分离的化合物,对已有化合物进行结构衍生也是获得新结构或新活性的重要途径。化学修饰有时难以完成结构复杂的聚酮化合物的结构改造,而随着对聚酮化合物生物合成机制的研究不断深入,通过编辑生物合成途径,有目的改造天然产物结构的组合生物合成策略的优势越发突出,此时,生物合成途径的高效重编程技术显得尤为重要。本发明中的RedEx技术可以高效的编辑生物合成途径,在大型聚酮基因簇中进行DNA插入、删除等无痕定点修饰,从而有目的的改变聚酮骨架结构或进行糖基修饰,获得高活性多杀菌素衍生物,为聚酮化合物生物合成途径的改造提供了便利。
附图说明
图1为spnA基因、busA基因和杂合spnbusA基因序列比对图;
图2为在spnA基因中无痕插入busA基因AT1b-KS1a结构域的三种策略示意图;
图3为RedEx技术构建pBAC-spnNEWbusA的示意图;
图4为杂合基因簇spnNEWbusA在白色链霉菌J1074中产生的丁烯基多杀菌素的HPLC-MS检测图谱;图中,a为丁烯基多杀菌素的HPLC-MS谱图,b为丁烯基多杀菌素的标志离子峰谱图;
图5为杂合基因簇spnNEWbusA在白色链霉菌J1074中产生的丁烯基-spinosyn A的产量-时间曲线,图中,横坐标为发酵天数,纵坐标为丁烯基-spinosyn A产量,单位mg·L-1
图6为异源表达的丁烯基-spinosyn A的1H-NMR(600MHz,CDCl3)图谱
图7为异源表达的丁烯基-spinosyn A的13C-NMR(150MHz,CDCl3)图谱;
图8为pBAC-spnNEWJL重组子酶切验证电泳图;图中,1-6泳道为随机挑选的单菌落,7泳道为pBAC-spnNEW-ampccdBdelK,箭头表示为正确克隆;
图9为RedEx技术无痕敲除spnK基因构建pBAC-spnNEWJL的示意图;
图10为杂合基因簇spnNEWJL在白色链霉菌J1074中产生的spinosyn J和L的HPLC-MS检测图谱;图中,a为spinosyn J和L的HPLC-MS谱图,b为spinosyn J和L的标志离子峰谱图;
图11为杂合基因簇spnNEWJL在白色链霉菌J1074中产生的spinosyn J的产量-时间曲线,图中,横坐标为发酵天数,纵坐标为spinosyn J产量,单位mg·L-1
图12为异源表达的spinosyn J的1H-NMR(600MHz,CDCl3)图谱;
图13为异源表达的spinosyn J的13C-NMR(150MHz,CDCl3)图谱。
具体实施方式
下面结合实施例和附图对本发明的技术方案作进一步说明,但是本发明的保护范围并不仅限于此。
本发明在前期研究中发现,在丁烯基多杀菌素基因簇中,13,032bp的busA基因(GenBank ID:AX600586.1)编码一个装载模块和两个延伸模块,而多杀菌素基因簇7,788bp的spnA基因(GenBank ID:AY007564.1)仅编码一个装载模块和一个延伸模块。在busA基因中,5’端的4,245bp编码装载模块和KS1b结构域,3’端的3,486bp编码了AT1a、KR1a和ACP1a结构域,这两部分序列在spnA基因中都有对应序列。然而,busA基因中编码AT1b、DH1b、KR1b、ACP1b和KS1a结构域的5,301bp在spnA基因中没有对应序列(图1)。
专利文献CN109486848A(申请号201811407515.8)利用ExoCET多片段组装技术,将多杀菌素生物合成涉及的23个基因置于链霉菌组成型强启动子控制下,构建了由7个操纵子组成的79kb人工基因簇spnNEW,多杀菌素人工基因簇spnNEW在白色链霉菌J1074中的多杀菌素产量较原始基因簇提高了328倍。为了测试能否通过改造多杀菌素人工基因簇spnNEW,使其合成丁烯基多杀菌素,首先尝试了基于正向筛选和反向筛选的两步线环重组的方法,将spnA基因中装载模块和第一个延伸模块间的4,245-4,300bp间隔序列替换为busA基因中编码AT1b-KS1a结构域的5,301bp序列,以期将多杀菌素A的C-21位乙基替换为丁烯基。
聚酮基因簇中编码相同功能结构域的DNA序列同源性很高,形成大量重复序列,在设计线环重组同源臂时,一定要避开这些重复序列。因此在设计同源臂时,首先借助UniproUGENE软件分析了spn PKS基因中大于35bp的正向重复序列,结果显示,整个spn PKS基因中共有68对大于35bp的正向重复序列,其中19对与spnA基因的序列相对应(表1)。
表1.spnA基因中大于35bp的正向重复序列
Figure BDA0002401408590000051
Figure BDA0002401408590000061
因为位于4,245-4,300bp两侧的正向重复序列不能用于线环重组,所以选取spnA基因4,113bp上游和5,625bp下游的各50bp作为线环重组同源臂。两步线环重组的策略如图2a所示,在第一轮线环重组中,将spnA基因中的4,113-5,625bp序列替换为ampccdB正反向筛选标记元件spnA(4,063-4,112)-ampccdB-spnA(5,626-5,675);在第二轮线环重组中,ampccdB基因被busA片段(spnA(4,063-4,112)-spnA(4,113-4,244)-busA(4,245-9,546)-spnA(4,301-5,625)-spn A(5,626-5,675))替换,完成杂合基因簇的构建。然而,第二轮线环重组中,没有得到正确的重组子。随后又尝试在第二轮线环重组中采用省略Redα的策略(Wang,H.et al.Improved seamless mutagenesis by recombineering using ccdB forcounterselection.Nucleic Acids Res.42,e37(2014).),但仍然无法得到正确的重组子。通过分析重组DNA的限制性酶切图谱发现,所有重组DNA都是正向重复序列间发生分子内重组的产物,导致无法得到正确的重组子。
接下来又尝试了线环重组与线线重组相结合的策略(图2b),在第一步线环重组底物ampccdB正反向筛选标记两侧放置了pBAC-spnNEW中不存在的PacI限制性酶切位点,线环重组获得的正确BAC载体经PacI酶切线状化,暴露出50bp与busA片段末端同源的同源臂,再利用RecET介导的体内线线重组或T4 DNA聚合酶介导的体外退火将线状化BAC载体与busA片段组装为杂合基因簇。然而,该策略仍然无法得到正确的重组子。结果表明,RecET介导的细胞内线线重组利用正向重复序列促使线状化BAC载体发生自身环化,产生了大量含有因分子内重组而变小的BAC。T4 DNA聚合酶体外退火处理的实验组没有菌落产生,这表明T4DNA聚合酶体外退火既无法将大片段DNA(102kb线状BAC载体和6.6kb busA片段)拼接起来,也无法利用分子内的正向重复序列作为同源臂使线状DNA发生自身环化。
综合以上结果,本发明设计了一种大型基因簇的无痕定点改造方法,即RedEx技术(图2c),利用了Redαβ蛋白介导的线环重组、ampccdB正反向筛选和核酸外切酶体外退火介导的线状BAC载体自身环化,完成对大型聚酮基因簇的PKS基因及非PKS区域进行DNA的无痕定点插入或删除。
实施例中涉及的菌种及其培养条件:
大肠杆菌GBdir-gyrA462-pir116来源于大肠杆菌GBdir-gyrA462,是在大肠杆菌GBdir-gyrA462染色体上gyrA基因下游插入了R6K复制子拷贝数上调基因—pir116基因的工程菌株,可以使R6K质粒在大肠杆菌中维持高拷贝,而大肠杆菌GBdir-gyrA462的构建方法参考文献:Wang,H.et al.RecET direct cloning and Redαβrecombineering ofbiosynthetic gene clusters,large operons or single genes for heterologousexpression.Nat.Protoc.11,1175-90(2016);
大肠杆菌GBred-gyrA462的构建方法参考文献:Wang,H.et al.Improvedseamless mutagenesis by recombineering using ccdB forcounterselection.Nucleic Acids Res.42,e37(2014);
大肠杆菌GB2005:在HS996染色体上删除了与编码核酸外切酶的Redα功能类似的内源性recET基因和DLP12前噬菌体基因ybcC,其构建方法参考文献:Fu,J.etal.Efficient transfer of two large secondary metabolite pathway gene clustersinto heterologous hosts bytransposition.Nucleic Acids Res.36,e113(2008);
白色链霉菌J1074:天然产物异源表达常用宿主菌,其构建方法参考文献:Zaburannyi,N.,Rabyk,M.,Ostash,B.,Fedorenko,V.&Luzhetskyy,A.Insights intonaturally minimised Streptomyces albus J1074 genome.BMC Genomics15,97(2014);
其中大肠杆菌的培养采用LB培养基,37℃,培养所需各抗生素工作浓度如下:氯霉素15μg·mL-1、卡那霉素15μg·mL-1、氨苄青霉素100μg·mL-1、阿泊拉霉素20μg·mL-1
白色链霉菌J1074培养条件为30℃;孢子产生和接合转移采用甘露醇大豆粉培养基(MS培养基),接合子的培养采用脑心浸出液培养基(BHI培养基);各抗生素工作浓度如下:阿泊拉霉素40μg·mL-1,萘啶酮酸25μg·mL-1
实施例中涉及的DNA片段:
两侧连接BstZ17I酶切位点的DNA片段spnA(4,113-4,244)-busA(4,245-9,546)-spnA(4,301-5,625)由苏州金唯智生物科技有限公司合成并克隆到pUC57-kan载体中。
pR6K-oriT-phiC31质粒:带有阿泊拉霉素抗性,oirT位点,phiC31位点特异性重组酶基因(int)和其识别位点(attP)的pR6K质粒,构建方法参考文献:Wang,H.et al.RecETdirect cloning and Redαβrecombineering of biosynthetic gene clusters,largeoperons or single genes for heterologous expression.Nat.Protoc.11,1175-90(2016);
p15A-ccdB-amp质粒的构建方法参考文献:Wang,H.et al.Improved seamlessmutagenesis by recombineering using ccdB for counterselection.Nucleic AcidsRes.42,e37(2014);
所用引物均由生工生物工程(上海)股份有限公司合成。
实施例中PCR产物和酶切产物回收使用的通用型DNA纯化回收试剂盒购自天根生化科技(北京)有限公司。
实施例中未详细说明的实验方法均按照本领域常规操作进行。
实施例1、利用RedEx技术在spnA基因中无痕插入busA AT1b-KS1a结构域
1、携带20bp末端同源臂的NDA片段ampccdB-busA20的制备:
以pR6K-oriT-phiC31质粒为模板进行PCR扩增,PCR扩增的引物如下,下划线为BstZ17I酶切位点:
R6K-2:5’-AACGCGCTGCGTGAATCTTCCGCCGGCGACATGGGCAGGCGTGTCGAAGCGAAGTTCTGGGGCGCCGTCGAGCACGAAGAGTATACAGTTCAACCTGTTGATAGTACG-3’,
R6K-3:5’-CCAGAAGTCGGCTCATCCACGTGCAACGTGCGCGGTAGCTGCCCGTGCCGCATCGCCATCACCATCTTCATGACGCCGGCGTATACTGTCAGCCGTTAAGTGTTCCTGTG-3’,
再以上述PCR产物为模板进行PCR扩增,得到R6K复制子,PCR扩增的引物如下:
R6K-1:5’-GCTGCCCACCTACGCCTTCCAACGACAGCGGTACTGGCTGAACGCGCTGCGTGAATCTTC-3’,
R6K-3:5’-CCAGAAGTCGGCTCATCCACGTGCAACGTGCGCGGTAGCTGCCCGTGCCGCATCGCCATCACCATCTTCATGACGCCGGCGTATACTGTCAGCCGTTAAGTGTTCCTGTG-3’。
以p15A-ccdB-amp质粒为模板进行PCR扩增,得到ampccdB正反向筛选标记基因,PCR扩增的引物如下,下划线为PacI酶切位点:
ampccdB20-1:5’-AGCTACCGCGCACGTTGCACGTGGATGAGCCGACTTCTGGTTAATTAATTTGTTTATTTTTCTAAATAC-3’,
ampccdB20-2:5’-CTCCGTAAGGAGTTGAACCGTCCCCGCCGACCAATCCACCCCAGAAGTCGGCTCATCCACTTAATTAATTTGTTCAAAAAAAAGCCCGCTC-3’。
将上述得到的R6K复制子、ampccdB正反向筛选标记基因和DNA片段spnA(4,113-4,244)-busA(4,245-9,546)-spnA(4,301-5,625)在大肠杆菌GBdir-gyrA462-pir116中三片段线线重组,构建得到R6K质粒,将R6K质粒经BstZ17I酶切消化回收制备得到NDA片段ampccdB-busA20:spnA(4,033-4,112)-PacI-ampccdB-PacI-spnA(4,093-4,112)-spnA(4,113-4,244)-busA(4,245-9,546)-spnA(4,301-5,625)-spnA(5,626-5,705)。
2、Redαβ蛋白介导的线环重组
按照专利文献CN109486848A(申请号201811407515.8)构建得到多杀菌素人工基因簇载体pBAC-spnNEW,将pBAC-spnNEW电转化到大肠杆菌GBred-gyrA462细胞中。然后将500ngDNA片段spnA(4,033-4,112)-PacI-ampccdB-PacI-spnA(4,093-4,112)-spnA(4,113-4,244)-busA(4,245-9,546)-spnA(4,301-5,625)-spnA(5,626-5,705)电转化上述大肠杆菌GBred-gyrA462+pBAC-spnNEW细胞中,通过L-阿拉伯糖诱导表达的Redαβ重组酶介导的线环重组将DNA片段ampccdB-busA20插入到pBAC-spnNEW中,获得pBAC-spnNEW-ampccdBinspnA重组质粒。重组子经氨苄青霉素抗性平板筛选后,挑取单菌落,用XmnI酶切分析筛选正确的重组子。
3、酶切线状化及核酸外切酶介导的体外退火
将重组质粒pBAC-spnNEW-ampccdBinspnA经PacI酶切线状化,切除ampccdB基因并暴露出20bp末端同源臂(spnA(4,093-4,112));将200ng经PacI酶切消化回收的线状化的pBAC-spnNEW-ampccdBinspnA与0.2U T4 DNA聚合酶(New England BioLabs,cat.no.M0203)反应体系混合,T4 DNA聚合酶介导线状DNA通过20bp的末端同源臂进行体外退火恢复环状质粒,退火反应体系总体积为20μL,在PCR仪中25℃处理1h,然后升温至75℃处理20min,再冷却到50℃处理30min,最后4℃保藏。退火反应体系经透析膜(Merck-Millipore,cat.no.VSWP01300)除盐30min后,取5μL电转化到大肠杆菌GB2005细胞中,进而获得含有杂合基因簇spnNEWbusA的重组子pBAC-spnNEWbusA。大肠杆菌GB2005细胞对CcdB毒蛋白敏感,未被PacI酶切线状化的质粒载体,由于携带毒性基因ccdB,不能在大肠杆菌GB2005细胞中增殖。插入busA基因AT1b-KS1a结构域编码区的pBAC-spnNEWbusA重组子经氯霉素抗性平板筛选后,挑取单菌落,用XmnI酶切分析筛选正确的重组子。重组子pBAC-spnNEWbusA的构建示意图如图3所示。
实施例2、丁烯基多杀菌素的异源表达
1、丁烯基多杀菌素的高效液相色谱-质谱联用(HPLC-MS)产物分析
将重组子pBAC-spnNEWbusA通过接合转移和PhiC31位点特异性重组整合到白色链霉菌J1074基因组的attB位点上。将平板活化的白色链霉菌J1074重组菌株接种到30mL胰酪大豆胨培养基(TSB培养基)中,30℃、220rpm培养72h,再以1%的接种量接种到装有3L发酵培养基(4%葡萄糖,1%甘油,3%可溶性淀粉,1.5%大豆蛋白胨,1%牛肉膏,0.65%蛋白胨,0.05%酵母提取物,0.1%七水硫酸镁,0.2%氯化钠和0.24%碳酸钙)的5L发酵罐(上海百仑生物科技有限公司)中,设定搅拌器转速500rpm,30℃发酵10天,并通过蠕动泵每天补料36mL 500g·L-1的葡萄糖溶液。从第四天开始,每两天取样一次,每次取1mL发酵液与4mL甲醇混合,超声破碎20min后静置浸提2h,离心过滤后的浸提液用于HPLC-MS高分辨质谱分析和产量分析,每组实验重复两次计算丁烯基-spinosyn A的平均产量。
高分辨质谱分析采用Ultimate 3000UHPLC-DAD system(Thermo FisherScientific)高效液相系统与Impact HD micrOTOF-Q III mass spectrometer(BrukerDaltonics,Bremen,Germany)高分辨率质谱联用平台,装配扫描波长为200-600nm的紫外光度检测器(DAD)、Acclaim RSLC120,C18,2.2μm,2.1×100mm(Thermo Scientific)色谱柱和电喷雾电离源(ESI)。以添加0.1%(v/v)甲酸的H2O(A)和ACN(B)为流动相,洗脱条件为:0-5min 5%-50%B,5-20min 50%B,20-25min 50%-95%B,25-30min 95%B,30-35min 5%B。正离子扫描模式采集质荷比100-1500m/z的一级质谱和auto MS2模式的二级质谱。
丁烯基-spinosyn A的定量分析采用Ultimate3000 UHPLC system-amaZon SLion trap mass spectrum system(Bruker)低分辨率HPLC-MS平台,检测条件与高分辨HPLC-MS平台一致。
白色链霉菌J1074重组菌株发酵液经高分辨HPLC-MS分析检测到了主要产物丁烯基多杀菌素(丁烯基-spinosyn A和丁烯基-spinosyn D),检测结果如图4所示,其中,m/z142.1和189.1分别是二甲基福乐糖胺和三甲基鼠李糖的标志离子峰。
当使用5L发酵罐装载3L培养基时,整合pBAC-spnNEWbusA的白色链霉菌J1074重组菌株发酵10天时表达丁烯基-spinosyn A的产量为2.36mg·L-1(图5)。结果说明,在SpnA蛋白中插入BusA蛋白的AT1b-KS1a结构域获得了功能性杂合聚酮生物合成途径,而且,多杀菌素合成途径中的酶能够识别和催化多杀菌素和丁烯基多杀菌素的聚酮底物。
2、丁烯基-spinosyn A的核磁共振分析
在由50L发酵罐发酵的30L白色链霉菌J1074重组菌株发酵液中加入600mLAmberlite XAD-16大孔树脂吸附两天,离心收集树脂和细胞,并用5L乙酸乙酯浸提三遍。浸提液离心去除不溶固体后,上清低压浓缩为浸提膏。浸提膏上样硅胶柱层析,以DCM-MeOH(100:0-0:100)为流动相梯度洗脱,收集并低压浓缩相关流份(DCM:MeOH,70:1-20:1)。油状浓缩物经葡聚糖凝胶LH-20柱层析,收集并低压浓缩丁烯基多杀菌素富集的流份。随后,应用装配C18色谱柱(ODS-A,C18,5μm,20×250mm,YMC)的半制备液相色谱(semi-preparativeHPLC)以H2O-ACN为流动相(0-60min 20%-100%ACN,流速8mL·min-1)分离纯化,收集并浓缩42-46min的流份,进一步用装配C18色谱柱(ODS-A,C18,5μm,10×250mm,YMC)的高压液相色谱(HPLC)纯化:流动相A为10mM NH4AC,流动相B为ACN-MeOH(5:1);流速2.5mL·min-1;洗脱条件0-5min 5%B,5-45min 5%-100%B,45-70min100%B。收集59-60min的流份,冷冻干燥后获得8.5mg丁烯基-spinosyn A。所得纯品用于核磁共振分析。
核磁共振分析采用BrukerAvance 600spectrometer超导核磁共振波谱仪,采集频率600MHz(1H)150MHz(13C),13C{1H}谱图由复合脉冲解耦联获得。
丁烯基-spinosyn A的1H-NMR图谱如图6所示,丁烯基-spinosyn A的13C-NMR图谱如图7所示,通过核磁共振(NMR)分析,进一步确认了白色链霉菌J1074重组菌株可以异源表达丁烯基-spinosyn A。
实施例3、利用RedEx技术无痕敲除多杀菌素基因簇上的spnK基因
多杀菌素基因簇的spnK基因(GenBank ID:AY007564.1)失活后,刺糖多孢菌突变株可以合成spinosyn J和spinosyn L(3’-氧-脱甲基spinosyn A/D),spinosyn J和spinosyn L是合成乙基多杀菌素(Spinetoram)的重要原料。
1、携带20bp末端同源臂的ampccdB无痕修饰基因盒的制备:
以p15A-ccdB-amp质粒为模板进行PCR扩增,得到ampccdB无痕修饰基因盒,PCR扩增的引物如下,下划线为PacI酶切位点:
delKampccdB-1:5’-TTGAGCAGGTCCAGGTACAGCGCGTTCTGGGAGGGCATGTCAATTCCTCCTCAGCCGCCCTCGACGCCGATTAATTAATTTGTTTATTTTTCTAAATAC-3’,
delKampccdB-2:5’-CCGCGCCGGGGTTCGTGCCCCGGCAAGCGCTCGGCGTCGAGGGCGGCTGAT TAATTAATTTGTTCAAAAAAAAGCCCGC-3’。
2、Redαβ蛋白介导的线环重组
按照专利文献CN109486848A(申请号201811407515.8)构建得到多杀菌素人工基因簇载体pBAC-spnNEW,将pBAC-spnNEW电转化到大肠杆菌GBred-gyrA462细胞中。然后将500ng ampccdB无痕修饰基因盒电转化上述大肠杆菌GBred-gyrA462+pBAC-spnNEW细胞中,通过L-阿拉伯糖诱导表达的Redαβ重组酶介导的线环重组将spnK基因替换为ampccdB无痕修饰基因盒获得pBAC-spnNEW-ampccdBdelK重组质粒。重组子经氨苄青霉素抗性平板筛选后,挑取单菌落,用PstI酶切分析筛选正确的克隆,并进一步通过Sanger测序确认ampccdB无痕修饰基因盒中ccdB基因、PacI位点和同源臂的DNA序列。
3、酶切线状化及核酸外切酶介导的体外退火
将重组质粒pBAC-spnNEW-ampccdBdelK经PacI酶切线状化,切除ampccdB基因并暴露出20bp末端同源臂(spnI(1,169-1,188));将200ng经PacI酶切消化回收的线状化pBAC-spnNEW-ampccdBdelK经T4 DNA聚合酶体外退火处理、透析除盐后,电转化到大肠杆菌GB2005细胞中(处理方式与实施例1相同)。敲除spnK基因的pBAC-spnNEWJL重组子经氯霉素抗性平板筛选后,挑取单菌落,用PvuII酶切分析筛选正确的重组子,发现随机挑取的6个单菌落均为正确克隆,即泳道1-6,正确率为100%(图8),由此可见,RedEx技术也可以高效的对聚酮基因簇中的非聚酮合酶序列进行无痕定点修饰。重组子pBAC-spnNEWJL的构建示意图如图9所示。
实施例4、spinosyn J和spinosyn L的异源表达
1、spinosyn J和spinosyn L的高效液相色谱-质谱联用(HPLC-MS)产物分析
将pBAC-spnNEWJL整合到白色链霉菌J1074基因组中,得到白色链霉菌J1074重组菌株,按照实施例2的方法进行菌株发酵及HPLC-MS高分辨质谱分析和产量分析。
白色链霉菌J1074重组菌株发酵液的HPLC-MS检测结果如图10所示,spinosyn J和spinosyn L是整合pBAC-spnNEWJL的白色链霉菌J1074重组菌株的主要产物,其中,m/z142.1和175.1分别是二甲基福乐糖胺和2,4-二甲基-鼠李糖的标志离子峰。当使用5L发酵罐装载3L培养基时,整合pBAC-spnNEWJL的白色链霉菌J1074重组菌株发酵10天时表达spinosyn J的产量为7.34mg·L-1(图11)。
2、spinosyn J的核磁共振分析
3L白色链霉菌J1074重组菌株发酵液经乙酸乙酯萃取,低压浓缩为萃取膏。萃取膏经过半制备液相色谱(ODS-A,C18,5μm,20×250mm,YMC),0-90min 20%-100%ACN(ACN-MeOH)梯度洗脱初步纯化,收集60-65min的流份并浓缩为粗提物。粗提物进一步用装配C18色谱柱(ODS-A,C18,5μm,10×250mm,YMC)的高效液相色谱纯化:流动相A为10mM NH4AC,流动相B为ACN-MeOH(5:1);流速2.5mL·min-1;洗脱条件0-5min 40%B,5-50min 40%-100%B,50-80min 100%B。收集53-54min的流份,冷冻干燥后获得9mg spinosyn J。所得纯品用于核磁共振分析。
核磁共振分析采用BrukerAvance 600spectrometer超导核磁共振波谱仪,采集频率600MHz(1H)150MHz(13C),13C{1H}谱图由复合脉冲解耦联获得。
其中,spinosyn J的1H-NMR图谱如图12所示,spinosyn J的13C-NMR图谱如图13所示,通过核磁共振(NMR)分析,进一步确认了白色链霉菌J1074重组菌株可以异源表达spinosyn J。

Claims (4)

1.一种含有表达丁烯基多杀菌素重组基因簇的丁烯基多杀菌素生产菌,所述表达丁烯基多杀菌素重组基因簇是将BusA蛋白的AT1b-KS1a结构域无痕插入到多杀菌素人工基因簇的SpnA蛋白第一个延伸模块的KS结构域和AT结构域之间,所述多杀菌素人工基因簇的载体为pBAC-spnNEW;
所述表达丁烯基多杀菌素重组基因簇的构建方法如下:
(1)利用线线重组技术构建得到含有目的基因busA第4,245-9,546 bp序列、ampccdB正反向筛选标记基因的基因盒,其中ampccdB正反向筛选标记基因的两侧带有PacI酶切位点以及末端同源臂;
(2)利用Redαβ线环重组技术将步骤(1)含有目的基因busA第4,245-9,546 bp序列、ampccdB正反向筛选标记基因的基因盒插入多杀菌素基因簇的靶位点spnA第4,245-4,300位碱基,得到重组载体;
(3)PacI酶切步骤(2)的重组载体,切除ampccdB基因,暴露末端同源臂,得到线状质粒载体,利用T4 DNA聚合酶介导线状质粒载体通过末端同源臂进行体外退火恢复环状,得到表达丁烯基多杀菌素的重组基因簇。
2.如权利要求1所述的丁烯基多杀菌素生产菌,其特征在于,所述丁烯基多杀菌素生产菌的宿主菌为白色链霉菌J1074。
3.如权利要求1所述的丁烯基多杀菌素生产菌,其特征在于,步骤(1)中所述末端同源臂的长度为20-80bp。
4.如权利要求1所述的丁烯基多杀菌素生产菌,其特征在于,步骤(3)中所述线状质粒载体在体外退火时的用量为100-400 ng。
CN202010147911.2A 2020-03-05 2020-03-05 一种大型基因簇的无痕定点改造方法及其应用 Active CN113355339B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010147911.2A CN113355339B (zh) 2020-03-05 2020-03-05 一种大型基因簇的无痕定点改造方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010147911.2A CN113355339B (zh) 2020-03-05 2020-03-05 一种大型基因簇的无痕定点改造方法及其应用

Publications (2)

Publication Number Publication Date
CN113355339A CN113355339A (zh) 2021-09-07
CN113355339B true CN113355339B (zh) 2023-01-24

Family

ID=77523838

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010147911.2A Active CN113355339B (zh) 2020-03-05 2020-03-05 一种大型基因簇的无痕定点改造方法及其应用

Country Status (1)

Country Link
CN (1) CN113355339B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008201937B2 (en) * 2001-03-30 2012-08-16 Dow Agrosciences Llc Biosynthetic genes for butenyl-spinosyn insecticide production
AU2011250904A1 (en) * 2010-05-11 2012-11-08 Dow Agrosciences Llc spnK strains
CN103451224B (zh) * 2013-08-26 2014-12-24 天津大学 枯草芽孢杆菌基因组无痕修饰方法
CN106995813B (zh) * 2017-03-23 2020-06-16 山东大学 基因组大片段直接克隆和dna多分子组装新技术
CN109486848B (zh) * 2018-11-23 2021-10-22 山东大学 一种含有多杀菌素多操纵子人工基因簇质粒的构建方法与应用

Also Published As

Publication number Publication date
CN113355339A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
Greunke et al. Direct pathway cloning (DiPaC) to unlock natural product biosynthetic potential
Luo et al. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster
WO2017151059A1 (en) Multiplexable activation of silent biosynthetic clusters in native actinomycete hosts for natural product discovery
CN109486848B (zh) 一种含有多杀菌素多操纵子人工基因簇质粒的构建方法与应用
CN102181470B (zh) 提高链霉菌抗生素产量的方法及其质粒
WO2019120132A1 (zh) 一株高效异源表达Disorazole Z的工程菌株和构建该菌株的基因簇及其应用
CN106906238B (zh) 一种链霉菌抗生素生物合成基因簇多拷贝扩增方法及应用
CN113355339B (zh) 一种大型基因簇的无痕定点改造方法及其应用
CN110563783B (zh) 一种高效低毒四霉素b衍生物及其定向高产代谢工程方法
JP2003508050A (ja) スピノシン生合成の酵素活性をコードする核酸
CN102703495A (zh) 提高链霉菌抗生素产量的方法及其质粒
CN102719388A (zh) 提高链霉菌抗生素产量的方法及其质粒
CN110305881B (zh) 一种聚酮类化合物neoenterocins的生物合成基因簇及其应用
CN111607547B (zh) 一种碳源吸收表达系统、重组菌及应用
BR112015000282B1 (pt) Vetor recombinante, bactéria, bem como métodos para determinar a produtividade de uk- 2, e para a produção de uk-2 ou um derivado do mesmo
CN108456689B (zh) 提高安丝菌素p-3生物合成产量的方法
CA2354030A1 (en) Micromonospora echinospora genes encoding for biosynthesis of calicheamicin and self-resistance thereto
CN107541481B (zh) 一种产表阿霉素的基因工程菌及其应用
KR20130097538A (ko) 해양 미생물 하헬라 제주엔시스의 제주엔올라이드 생합성 유전자 클러스터
KR100636653B1 (ko) 신규한 올리보실 피크로마이신 유도체 및 그 제조방법
CN114875095B (zh) 一种丙氨酰美登醇及其合成方法和应用
CN110951765B (zh) 一种放线菌天然产物合成基因簇多拷贝整合方法
CN114150006B (zh) 一种可提高米尔贝霉素产量的基因簇、重组菌及其制备方法与应用
CN116445515B (zh) 一种参与利普斯他汀及其结构类似物合成的基因簇及其应用
CN107881139A (zh) 增强聚酮合酶基因转录水平的高产安丝菌素菌株及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant