CN113354515A - 一种手性反式2-取代环烷醇的合成方法 - Google Patents

一种手性反式2-取代环烷醇的合成方法 Download PDF

Info

Publication number
CN113354515A
CN113354515A CN202010153625.7A CN202010153625A CN113354515A CN 113354515 A CN113354515 A CN 113354515A CN 202010153625 A CN202010153625 A CN 202010153625A CN 113354515 A CN113354515 A CN 113354515A
Authority
CN
China
Prior art keywords
substituted
chiral
naphthyl
cycloalkanol
trans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010153625.7A
Other languages
English (en)
Inventor
周永贵
李翔
余长斌
孙蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN202010153625.7A priority Critical patent/CN113354515A/zh
Publication of CN113354515A publication Critical patent/CN113354515A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C35/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C35/21Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C35/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C35/48Halogenated derivatives
    • C07C35/52Alcohols with a condensed ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/643Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered

Abstract

一种手性反式2‑取代环烷醇的合成方法。本发明提供了一种钯催化2‑取代环酮的不对称氢化合成手性反式环烷醇的方法,所述方法以金属钯的手性双膦P‑P*配合物为催化剂,配合使用酸添加剂,对2‑取代环酮化合物进行不对称氢化,得到相应的手性反式环烷醇化合物,其对映体过量最多可达到97%,反式选择性高达20:1。本发明操作简便实用易行,收率高,高原子经济性和环境友好型,催化剂商业可得,反应条件温和,具有潜在的实际应用价值。

Description

一种手性反式2-取代环烷醇的合成方法
技术领域
本发明属于不对称氢化合成领域,具体涉及一种应用钯的均相体系高度对映选择性催化2-取代环酮的氢化反应合成手性反式环烷醇的方法。
背景技术
具有连续立体中心的手性环烷醇的重要性已在天然产物,药物和其他生物活性分子中得到广泛认可(Eur.J.Org.Chem.,2009,1477;Curr.Org.Chem.,2014,18,641;Chem.Rev.,2016,116,5744.)。过渡金属催化相应的环状酮的不对称氢化是最有效和简便的方法之一,因为它们具有高原子经济性和环境友好性(Chem.Soc.Rev.,2013,42,497;Chem.Soc.Rev., 2013,42,728;Chem.Rev.,2014,114,2130;Chem.Rev.,2016,116,14769;Chin.J.Chem.,2018, 36,443.)。目前,钌、铱等手性金属配体催化2-取代环酮的不对称氢化是构建手性2-取代环烷醇最简洁的方法之一,根据取代基的不同可分为以下两种情况,当取代基为导向基团例如酯基,可与手性金属配位则从取代基的同面还原羰基,得到反式的环烷醇;当取代基不是导向基如烷基或芳基时,该反应通常在碱性条件下经过动态动力学拆分过程,由于取代基的位阻效应,从而得到顺式-2-取代环烷醇(Org.Proc.Res.Dev.,2003,7,418;Org.Lett., 2004,6,2681;Synlett,2004,1383;Chem.Sci.,2016,7,4725;Org.Lett.,2012,14,2714;Angew. Chem.Int.Ed.,2019,58,1174.)。由文献可知,虽然链状酮的不对称氢化构建反式烷基醇已获得成功(Angew.Chem.Int.Ed.,2004,43,882;Tetrahedron Lett.,2009,50,2676; ChemCatChem,2009,1,237.)但是,对于2-取代环酮来说,除了2-位上含有酯基导向基的官能团之外,其它2-取代环酮通过不对称氢化合成反式环烷醇的例子很少(J.Am.Chem.Soc., 1989,111,9134;J.Am.Chem.Soc.,1995,117,4423;Org.Biomol.Chem.,2012,10,5253.),文献 (Tetrahedron:Asymmetry,1992,3,1029)中虽然以2-苯基环己酮和2-甲基环己酮为底物,通过不对称铑催化的硅烷还原体系,进行不对称还原,合成了反式环烷醇,但其产物的非对映选择性较低,环烷醇产物中反顺比低于4:1。
发明内容
针对上述问题,本发明的目的是提供一种手性反式2-取代环烷醇的合成方法,通过将钯 /酸共催化体系运用于2-取代环酮的不对称氢化中,经过动态动力学途径合成反式芳基环烷醇,并通过一系列条件筛选,实现了钯催化2-取代环酮的不对称氢化,高对映选择性构建了手性反式环烷醇,本发明采用的技术方案如下:
第一方面,本发明以金属钯的手性双膦P-P*配合物为催化剂,以2-取代环酮为底物,通过2-取代环酮的不对称氢化合成了手性反式2-取代环烷醇,反应路线如下:
式Ⅰ
Figure BDA0002403284380000021
式Ⅰ中:
R为苄基、具有6-14个成环碳原子的芳基或具有6-14个成环碳原子的含取代基的芳基;所述取代基为甲基、甲氧基、卤素、三氟甲基中的一种;
n=0时,该位置没有碳原子,为五元环,n=1、2时,分别为六元环和七元环。
基于以上技术方案,优选的,所述R为萘基、取代萘基、菲基、苯基或取代苯基;所述取代萘基或取代苯基的取代基各自独立地为甲基、甲氧基、卤素、三氟甲基中的一种。
基于以上技术方案,优选的,所述氢化反应时加入酸添加剂。
所述酸添加剂为对甲苯磺酸一水合物(TsOH·H2O),对甲苯磺酸,三氟甲磺酸锌(Zn(OTf)2),乙酸,三氟乙酸(CF3CO2H)及苯甲酸(PhCO2H)、五氟苯甲酸、双(对硝基苯基)磷酸酯中的一种。
基于以上技术方案,优选的,所述氢化反应包括催化剂制备和底物氢化两个阶段:
(1)催化剂制备:在惰性气体保护下,称取金属钯前体和手性双膦P-P*配体于反应容器中,加入丙酮作为溶剂,后反应0.5-2小时,减压抽除丙酮,得到所述催化剂;
(2)氢化反应:将酸添加剂、有机溶剂和步骤(1)得到的催化剂加入装有2-取代环酮的反应容器中,通入氢气进行反应,反应结束后释放氢气,减压除去溶剂,柱层析分离得到纯的手性反式2-取代环烷醇。
所述催化剂制备中,钯的金属前体及双膦配体均为市售且无需任何处理。
所述步骤(1)中,丙酮的用量没有特别限定,能够溶解金属钯前体和手性双膦配体即可。
基于以上技术方案,优选的,所述氢化反应中,所用的有机溶剂选自甲苯、二氯甲烷、甲醇、乙醇、异丙醇、三氟乙醇、六氟异丙醇中的一种,除了三氟乙醇、六氟异丙醇的活性和对映选择性好之外,其它溶剂活性稍差。
基于以上技术方案,优选的,所述金属钯前体选自双乙酰丙酮钯、三二亚苄基丙酮二钯、二二亚苄基丙酮钯、醋酸钯、三氟醋酸钯中的一种。
基于以上技术方案,优选的,所述配体选自(R)-DTBM-SegPhos(CAS:566940-03-2)或 (S)-DTBM-SegPhos(CAS:210169-40-7)或(R)-SegPhos(CAS:244261-66-3)或(S)-SegPhos(CAS:210169-54-3)或(R)-DM-SegPhos(CAS:850253-53-1)或 (S)-DM-SegPhos(CAS:210169-57-6)或(R)-SynPhos(CAS:445467-61-8)或 (S)-SynPhos(CAS:503538-68-9)或(R)-BINAP(CAS:76189-55-4)或(S)-BINAP(CAS:76189-56-5) 或(R)-H8-BINAP(CAS:139139-86-9)或(S)-H8-BINAP(CAS:139139-93-8)或 (R)-Tol-BINAP(CAS:99646-28-3)或(S)-Tol-BINAP(CAS:100165-88-6)或 (R)-DM-BINAP(CAS:137219-86-4)或(S)-DM-BINAP(CAS:135139-00-3)或 (R)-DifluorPhos(CAS:503538-69-0)或(S)-DifluorPhos(CAS:503538-70-3)。
基于以上技术方案的进一步优选,所述手性双膦配体配体为(R)-DTBM-SegPhos、(S)-DTBM-SegPhos、(R)-SegPhos、(S)-SegPhos、(R)-DM-SegPhos、(S)-DM-SegPhos、 (R)-SynPhos、(S)-SynPhos、(R)-BINAP、(S)-BINAP、(R)-H8-BINA及(S)-H8-BINAP中的一种。
基于以上技术方案,优选的,所述步骤(1)和步骤(2)中,金属钯前体、手性双膦 P-P*配体、酸添加剂、底物2-取代环酮摩尔比为:0.01-0.05:0.01-0.12:0.1-2.0:1。
基于以上技术方案,优选的,所述步骤(2)中氢气压力为100-800psi,进一步优选100 psi-200psi;反应温度为30-80℃,反应时间为20-72h,步骤(2)中,所述2-取代环酮于有机溶剂中的浓度为0.025-0.5mmol/mL。
基于以上技术方案,优选的,所述式Ⅰ手性反式2-取代环烷醇的结构式中,当n=0时, R为萘基;当n=1时,R为1-萘基、2-萘基、9-菲基、4-甲基-1-萘基、4-甲氧基-1-萘基、4-氟-1-萘基、4-氯-1-萘基、苯基、2-甲基苯基、3-甲基苯基、4-甲基苯基、2-甲氧基苯基,2-三氟甲基苯基、4-氯苯基、4-氟苯基、4-三氟甲基苯基、4-甲氧基苯基、苄基中的一种;当 n=2时,R为苯基。
第二方面,本发明提供了一种手性反式2-取代环烷醇,所述手性反式2-取代环烷醇根据上述的方法制备。
第三方面,本发明提供了一种新的手性反式2-取代环烷醇,所述新的手性反式2-取代环烷醇的结构下面中的一种,
Figure BDA0002403284380000031
第四方面,本发明上述手性反式2-取代环烷醇可应用于药物合成领域。
有益效果
1、本发明提供了一种手性反式2-取代环烷醇的合成方法,利用钯催化均相体系,通过以金属钯的手性双膦P-P*配体为催化剂,成功合成了性反式2-取代环烷醇,且底物在本发明所提供的催化条件下产率较高;手性反式2-取代环烷醇的对映选择性较高;该合成方法具有高原子经济性和环境友好性。
2、本发明中,手性金属钯双膦P-P*配体在对2-芳基环酮的氢化过程中,由于钯和芳环之间存在一定的弱相互作用,从芳基的同面还原而得到反式环烷醇,在此基础上,本发明通过添加酸添加剂,验证了酸添加剂的酸性强弱对反应的影响,发现强酸能够促进酮式和烯醇式相互转化,从而加快2-取代环酮的消旋化。手性金属双膦配体在羰基还原中对底物中的一种构型匹配还原较快,而另一种构型不匹配还原较慢,强酸加速2-取代环酮的消旋化,使得一种构型的底物占据较多,该反应经过动态动力学拆分过程,从而能够得到高对映选择性的反式产物。
3、本发明通过加入酸添加剂,将钯/酸共催化体系运用于2-取代环酮的不对称氢化中,进一步提高了手性反式2-取代环烷醇的对映选择性。
4、本发明使用金属钯的手性双膦P-P*配合物为催化剂,该催化剂制备方便,反应操作简便实用。
5、本发明所提供的方法中,氢化反应条件温和。
具体实施方式
下面通过实施例详述本发明,但本发明并不限于下述的实施例,本发明所用的金属钯前体及手性双膦配体均为市售且无需任何处理,本发明所用的2-取代环酮底物参照文献合成[J.Am.Chem.Soc.2017,139,10204;Tetrahedron Lett.2004,45,6159.]。
实施例1-16氢化反应条件的优化
在氮气氛围下,向反应瓶中投入金属钯前体(底物用量的2.5~5mol%)和手性双膦P-P*配体(底物用量的3~6mol%),加入丙酮(1.0~2.0mL),室温搅拌1h后减压除去溶剂,得到催化剂手性钯双膦P-P*配合物,然后将此催化剂带入手套箱中,用氢化反应所使用有机溶剂将此催化剂溶解,转移至含有酸添加剂(底物用量的20~200mol%)和底物(0.2mmol) 的反应瓶中,然后再将此反应瓶放入反应釜中,通入氢气(100~800psi),30-80℃下反应 20-72小时;反应结束,缓慢放出氢气,减压除去溶剂,柱层析分离得到纯的产物,实施例1-16的具体反应条件见表1,反应式和配体结构如下:
Figure BDA0002403284380000051
其产率为核磁产率,产物的对映体过量用手性液相色谱测定,详见表1。
表1.2-取代环酮氢化条件优化a
Figure BDA0002403284380000052
实施例17-36
2-取代环酮(结构式中的1)不对称氢化合成手性反式2-取代环烷醇(结构式中的2)
在氮气氛围下,向反应瓶中投入金属钯前体(5mol%)和手性双膦P-P*配体(6mol%),加入丙酮(2.0mL),室温搅拌1h后减压除去溶剂,得到催化剂手性钯双膦P-P*配合物,然后将此催化剂带入手套箱中,用氢化反应所用有机溶剂(3mL)将此催化剂溶解,转移至含有酸添加剂(底物用量的50-200mol%)和底物(0.3mmol)的反应瓶中,然后再将此反应瓶放入反应釜中,通入氢气(100psi),30-80℃下反应24-48h小时;停止反应,随后缓慢释放氢气,减压除去溶剂,柱层析分离得到纯的产物,改变2-取代环酮底物中R取代基的种类,得到不同的手性反式环烷醇,反应式、具体反应条件及试验数据如下:
Figure BDA0002403284380000061
a反应条件(实施例17-36):底物1(0.3mmol),三氟醋酸钯(5mol%),(R)-SegPhos(6 mol%),对甲苯磺酸一水合物(50mol%),三氟乙醇(3.0mL),30℃,氢气(100psi),24h.b分离收率.c(实施例31)反应时间由24h改为48h.d(实施例35)五氟苯甲酸(200mol%) 替代对甲苯磺酸一水合物被使用在反应中,并且反应在80℃下进行24h.e(实施例36)双(对硝基苯基)磷酸酯(200mol%)替代对甲苯磺酸一水合物被使用在反应中,并且反应在60℃下进行48h.其产率为分离收率,产物的对映体过量用手性液相色谱测定。
Figure BDA0002403284380000071
实施例17(-)-(1R,2S)-2-(1-萘基)-环己醇(2a):62毫克,91%产率,白色固体,已知化合物(Eur.J.Org. Chem.2005,1354),Rf=0.44(正己烷/二氯甲烷/乙酸乙酯2/2/0.1),97%对映体过量,[α]20 D=-75.32(c1.24, 甲醇),[lit.(Eur.J.Org.Chem.2005,1354):[α]20 D=-60(c1.46,甲醇)for85%对映体过量].1H NMR(400MHz,CDCl3)δ8.20(d,J=8.4Hz,1H),7.92-7.84(m,1H),7.79-7.72(m, 1H),7.56-7.45(m,4H),4.11-3.86(m,1H),3.53-3.26(m,1H),2.29-2.16(m,1H),2.04-1.89 (m,2H),1.86-1.77(m,1H),1.64-1.46(m,5H).13C NMR(100MHz,CDCl3)δ139.7,134.2, 132.7,129.0,127.1,126.1,125.8,125.7,123.3,122.8,74.3,46.7,34.8,34.0,26.5,25.2.高效液相色谱法: ChiracelIC column,230nm,30℃,正己烷/异丙醇=96/4,流速=0.7mL/min,retention time 19.1min (major)and20.4min.
Figure BDA0002403284380000072
顺式-2-(1-萘基)-环己醇(2a'):已知化合物(Tetrahedron:Asymraetry1995,6,1617),Rf=0.50(正己烷/二氯甲烷/乙酸乙酯2/2/0.1),1H NMR(400MHz,CDCl3)δ8.04(d,J=8.2Hz,1H),7.91-7.85 (m,1H),7.76(d,J=7.8Hz,1H),7.58-7.41(m,4H),4.21-4.13(m,1H),3.68-3.59(m,1H), 2.39-2.26(m,1H),2.11-1.94(m,2H),1.89-1.73(m,2H),1.71-1.48(m,4H).13C NMR(100 MHz,CDCl3)δ139.5,134.3,131.5,129.3,127.4,126.1,125.7,125.6,124.4,123.1,69.1,43.3, 32.9,26.9,25.0,20.0.
Figure BDA0002403284380000073
实施例18(-)-2-(2-萘基)-环己醇(2b):64毫克,94%产率,白色固体,已知化合物(Eur.J.Org.Chem. 2005,1354),Rf=0.32(正己烷/二氯甲烷/乙酸乙酯2/2/0.1),82%对映体过量,[α]20 D=-21.09(c1.28,三氯甲烷),[lit.(Eur.J.Org.Chem.2005,1354):[α]20 D=-20.2(c1.035,三氯甲烷)for70%对映体过量].1H NMR(400MHz,CDCl3)δ7.87-7.73(m,3H),7.72-7.66(m,1H),7.50-7.40 (m,2H),7.38(dd,J=8.5,1.6Hz,1H),3.81-3.67(m,1H),2.65-2.51(m,1H),2.20-2.07(m, 1H),1.96-1.71(m,3H),1.68-1.53(m,2H),1.51-1.29(m,3H).13C NMR(100MHz,CDCl3) δ140.8,133.7,132.7,128.6,127.74,127.71,126.8,126.2,126.0,125.6,74.3,53.4,34.6,33.4,26.2,25.2.高效液相色谱法:ChiracelICcolumn,230nm,30℃,n-Hexane/i-PrOH=98/2,流速=0.8mL/min,retention time33.3min(major)and36.5min.
Figure BDA0002403284380000074
实施例19(-)-2-(9-菲基)-环己醇(2c):69毫克,83%产率,白色固体,已知化合物(J.Am.Chem. Soc.2004,126,15038.),Rf=0.42(正己烷/二氯甲烷/乙酸乙酯2/2/0.1),91%对映体过量,[α]20 D=-109.85 (c1.36,三氯甲烷).1H NMR(400MHz,CDCl3)δ8.75-8.70(m,1H),8.64(d,J=8.0Hz,1H), 8.29-8.20(m,1H),7.87-7.80(m,1H),7.74-7.69(m,1H),7.68-7.53(m,4H),4.17-4.01(m, 1H),3.48-3.29(m,1H),2.28-2.17(m,1H),2.11-1.99(m,1H),1.97-1.74(m,3H),1.63-1.43 (m,4H).13C NMR(100MHz,CDCl3)δ137.8,131.8,131.7,131.0,129.7,128.4,126.82, 126.78,126.49,126.46,123.9,123.4,122.6,73.8,46.8,34.8,34.0,26.5,25.2.高效液相色谱法:ChiracelIC column,254nm,30℃,正己烷/异丙醇=95/5,流速=1.0mL/min,retention time19.2min (major)and21.2min.
Figure BDA0002403284380000075
实施例20(-)-2-(4-甲氧基-1-萘基)-环己醇(2d):64毫克,83%产率,白色固体,熔点=108-109℃,新化合物,Rf=0.38(正己烷/二氯甲烷/乙酸乙酯2/2/0.1),97%对映体过量,[α]20 D=-77.73(c1.28,三氯甲烷).1H NMR(400MHz,CDCl3)δ8.32(dd,J=8.3,1.1Hz,1H),8.13(d,J=8.4Hz,1H), 7.57-7.45(m,2H),7.37(d,J=8.0Hz,1H),6.81(d,J=8.0Hz,1H),3.98(s,3H), 3.97-3.86(m,1H),3.35-3.21(m,1H),2.26-2.16(m,1H),1.99-1.86(m,2H),1.84-1.75(m, 1H),1.73-1.67(m,1H),1.57-1.40(m,4H).13C NMR(100MHz,CDCl3)δ154.3,133.5, 131.2,126.6,126.1,125.1,123.1,122.7,103.7,74.3,55.5,46.2,34.8,34.1,26.5,25.2.高效液相色谱法: ChiracelIC column,230nm,30℃,正己烷/异丙醇=95/5,流速=1.0mL/min,retention time20.8min (major)and31.4min.HRMS:Calculatedfor C17H24NO2[M+NH4]+274.1802,found:274.1803.
Figure BDA0002403284380000081
实施例21(-)-2-(4-甲基-1-萘基)-环己醇(2e):64毫克,89%产率,无色油状液体,新化合物,Rf=0.37 (正己烷/二氯甲烷/乙酸乙酯2/2/0.1),98%对映体过量,[α]20 D=-80.23(c1.26,三氯甲烷).1H NMR(400 MHz,CDCl3)δ8.24-8.18(m,1H),8.05-8.00(m,1H),7.56-7.49(m,2H),7.36(d,J=7.3Hz, 1H),7.31(d,J=7.4Hz,1H),4.03-3.84(m,1H),3.45-3.27(m,1H),2.67(s,3H),2.25-2.14 (m,1H),2.01-1.86(m,2H),1.82-1.75(m,1H),1.71-1.64(m,1H),1.59-1.41(m,4H).13C NMR(100MHz,CDCl3)δ137.7,133.2,132.9,132.7,126.6,125.7,125.5,125.0,123.8, 122.4,74.2,46.5,34.8,34.1,26.5,25.2,19.6.高效液相色谱法:ChiracelIC column,230nm,30℃,正己烷/ 异丙醇=95/5,流速=0.8mL/min,retention time13.0min(major)and16.9min.HRMS:Calculated for C17H24NO[M+NH4]+258.1852,found:258.1851.
Figure BDA0002403284380000082
实施例22(-)-2-(4-氟-1-萘基)-环己醇(2f):64毫克,88%产率,无色油状液体,新化合物,Rf=0.39(正己烷/二氯甲烷/乙酸乙酯2/2/0.1),97%对映体过量,[α]20 D=-57.58(c1.24,三氯甲烷).1H NMR(400MHz,CDCl3)δ8.24-8.11(m,2H),7.62-7.51(m,2H),7.42-7.34(m,1H), 7.19-7.09(m,1H),4.00-3.82(m,1H),3.40-3.22(m,1H),2.26-2.13(m,1H),2.00-1.72(m, 3H),1.64-1.60(m,1H),1.59-1.39(m,4H).13C NMR(100MHz,CDCl3)δ157.7(d,J=249.0 Hz),135.5,134.0,127.0,126.1,124.3(d,J=16.0Hz),123.4,122.6,121.3(d,J=6.0Hz),109.2(d,J=19.0 Hz),74.4,46.4,35.0,34.1,26.4,25.2.19F NMR(376MHz,CDCl3)δ-125.05.高效液相色谱法:ChiracelIC column,230nm,30℃,正己烷/异丙醇=95/5,流速=1.0mL/min,retention time8.9min(major)and10.0 min.HRMS:Calculated for C16H21FNO[M+NH4]+262.1602,found:262.1601.
Figure BDA0002403284380000083
实施例23(-)-2-苯基环己醇(2g):48毫克,91%产率,白色固体,已知化合物(Org.Lett.2018,20, 6310),Rf=0.45(正己烷/二氯甲烷/乙酸乙酯2/2/0.1),88%对映体过量,[α]20 D=-26.74(c0.92,三氯甲烷), [lit.(Org.Lett.2018,20,6310):[α]23 D=-20.9(c1.0,三氯甲烷)for86%对映体过量].1H NMR(400MHz,CDCl3)δ7.38-7.28(m,2H),7.27-7.19(m,3H),3.69-3.58(m,1H),2.48-2.35 (m,1H),2.15-2.03(m,1H),1.91-1.80(m,2H),1.79-1.71(m,1H),1.67-1.57(m,1H),1.56-1.43 (m,1H),1.42-1.24(m,3H).13C NMR(100MHz,CDCl3)δ143.4,128.8,128.0,126.9,74.5, 53.3,34.5,33.4,26.2,25.2.高效液相色谱法:ChiracelIC column,220nm,30℃,正己烷/异丙醇=99/1,流速=1.0mL/min,retention time11.6min(major)and12.6min.
Figure BDA0002403284380000084
实施例24(-)-2-(2-甲氧基苯基)环己醇(2h):48毫克,77%产率,无色油状液体,已知化合物(Eur.J. Org.Chem.2005,1354),Rf=0.28(正己烷/二氯甲烷/乙酸乙酯2/2/0.1),93%对映体过量,[α]20 D=-64.75 (c0.82,甲醇),[lit.(Eur.J.Org.Chem.2005,1354):[α]20 D=-5(c1.52,甲醇)for15%对映体过量].1H NMR(400MHz,CDCl3)δ7.27-7.17(m,2H),7.00-6.92(m,1H),6.89(d,J=8.2Hz, 1H),3.82(s,3H),3.78-3.69(m,1H),3.06-2.95(m,1H),2.18-2.08(m,1H),1.88-1.70(m,4H), 1.55-1.32(m,4H).13C NMR(100MHz,CDCl3)δ157.8,131.6,127.5,127.4,121.1,110.9,74.1, 55.6,45.1,35.3,32.5,26.3,25.2.高效液相色谱法:ChiracelIC column,220nm,30℃,正己烷/异丙醇=97/3, 流速=0.7mL/min,retention time17.1min(major)and18.1min.
Figure BDA0002403284380000085
实施例25(-)-2-(2-三氟甲基苯基)环己醇(2i):29毫克,40%产率,无色油状液体,新化合物,Rf=0.35 (正己烷/二氯甲烷/乙酸乙酯2/2/0.1),86%对映体过量,[α]20 D=-54.78(c0.46,甲醇).1H NMR(400MHz, CDCl3)δ7.65(d,J=7.9Hz,1H),7.58-7.48(m,2H),7.35-7.28(m,1H),3.90-3.79(m,1H), 2.99-2.85(m,1H),2.21-2.11(m,1H),1.95-1.84(m,2H),1.79-1.70(m,1H),1.51-1.29(m, 5H).13C NMR(100MHz,CDCl3)δ143.1,132.3,129.7(q,J=29.0Hz),127.7,126.5,126.2(q, J=6.0Hz),124.7(q,J=272.0Hz),74.3,48.3,35.5,34.8,26.0,25.2.19F NMR(376MHz, CDCl3)δ-57.98.高效液相色谱法:ChiracelIA column,220nm,30℃,正己烷/异丙醇=96/4,流速=0.7 mL/min,retentiontime13.4minand16.3min(major).HRMS:Calculated for C13H19F3NO[M+NH4]+262.1413,found:262.1414.
Figure BDA0002403284380000091
实施例26(-)-2-(2-甲基苯基)环己醇(2j):49毫克,86%产率,无色油状液体,已知化合物(Eur.J.Org. Chem.2005,1354),Rf=0.36(正己烷/二氯甲烷/乙酸乙酯2/2/0.1),94%对映体过量,[α]20 D=-64.49(c0.98, 三氯甲烷),[lit.(Eur.J.Org.Chem.2005,1354):[α]20 D=-42(c1.28,三氯甲烷)for65%对映体过量].1H NMR(400MHz,CDCl3)δ7.27-7.23(m,1H),7.22-7.14(m,2H),7.13-7.08(m, 1H),3.83-3.71(m,1H),2.83-2.68(m,1H),2.36(s,3H),2.18-2.07(m,1H),1.94-1.70(m,3H), 1.69-1.59(m,1H),1.51-1.27(m,4H).13C NMR(100MHz,CDCl3)δ141.5,137.2,130.7,126.6, 126.4,125.6,74.4,47.9,34.6,33.2,26.4,25.2,20.0.高效液相色谱法:ChiracelIC column,220nm,30℃,正己烷/异丙醇=97/3,流速=0.7mL/min,retention time9.8min(major)and10.9min.
Figure BDA0002403284380000092
实施例27(-)-2-(3-甲基苯基)环己醇(2k):45毫克,79%产率,无色油状液体,已知化合物(Eur.J.Org. Chem.2005,1354),Rf=0.42(正己烷/二氯甲烷/乙酸乙酯2/2/0.1),89%对映体过量,[α]20 D=-35.28(c0.36, 三氯甲烷),[lit.(Eur.J.Org.Chem.2005,1354):[α]20 D=-9(c0.90,三氯甲烷)for36%对映体过量].1H NMR(400MHz,CDCl3)δ7.26-7.18(m,1H),7.09-7.01(m,3H),3.70-3.58 (m,1H),2.43-2.35(m,1H),2.34(s,3H),2.14-2.06(m,1H),1.88-1.71(m,3H),1.68-1.60 (m,1H),1.56-1.28(m,4H).13C NMR(100MHz,CDCl3)δ143.3,138.4,128.8,128.7, 127.7,125.0,74.5,53.3,34.5,33.4,26.2,25.2,21.6.高效液相色谱法:ChiracelIA column,220nm,30℃,正己烷/异丙醇=96/4,流速=0.7mL/min,retention time15.2min(major)and17.4min.
Figure BDA0002403284380000093
实施例28(-)-2-(4-甲基苯基)环己醇(2l):49毫克,86%产率,白色固体,已知化合物(J.Am.Chem. Soc.2018,140,3523),Rf=0.41(正己烷/二氯甲烷/乙酸乙酯2/2/0.1),92%对映体过量, [α]20 D=-48.47(c0.98,甲醇),[lit.(J.Am.Chem.Soc.2018,140,3523):[α]23 D=-58.05(c 1.0,甲醇)for>99%对映体过量].1H NMR(400MHz,CDCl3)δ7.17-7.10(m,4H), 3.66-3.57(m,1H),2.43-2.35(m,1H),2.33(s,3H),2.14-2.06(m,1H),1.90-1.79(m,2H), 1.78-1.71(m,1H),1.63-1.56(m,1H),1.55-1.25(m,4H).13C NMR(100MHz,CDCl3)δ140.3,136.5,129.6, 127.9,74.6,52.9,34.5,33.5,26.2,25.2,21.1.高效液相色谱法:ChiracelIC column,220nm,30℃,正己烷/异丙醇=97/3,流速=0.7mL/min,retentiontime13.1min(major)and13.8min.
Figure BDA0002403284380000094
实施例29(-)-2-(4-甲氧基苯基)环己醇(2m):51毫克,82%产率,白色固体,已知化合物(Eur.J.Org. Chem.2005,1354),Rf=0.27(正己烷/二氯甲烷/乙酸乙酯2/2/0.1),88%对映体过量,[α]20 D=-55.35(c0.84, 甲醇).[lit.(Eur.J.Org.Chem.2005,1354):[α]20 D=-24(c1.46,甲醇)for44%对映体过量].1H NMR(400MHz,CDCl3)δ7.21-7.12(m,2H),6.91-6.83(m,2H),3.79(s,3H), 3.65-3.52(m,1H),2.44-2.31(m,1H),2.16-2.03(m,1H),1.91-1.71(m,3H),1.69-1.60(m, 1H),1.54-1.23(m,4H).13C NMR(100MHz,CDCl3)δ158.6,135.3,128.9,114.3,74.7, 55.4,52.4,34.5,33.6,26.2,25.2.高效液相色谱法:ChiracelOJ-Hcolumn,220nm,30℃,正己烷/异丙醇= 95/5,流速=1.0mL/min,retention time16.5minand18.5min(major).
Figure BDA0002403284380000095
实施例30(-)-2-(4-三氟甲基苯基)环己醇(2n):61毫克,84%产率,白色固体,已知化合物(Org.Lett. 2017,19,4448),Rf=0.45(正己烷/二氯甲烷/乙酸乙酯2/2/0.1),82%对映体过量,[α]20 D=-40.60(c1.16,甲醇),[lit.(Org.Lett.2017,19,4448):[α]20 D=-42.9(c1.0,甲醇)for>99%对映体过量]. 1H NMR(400MHz,CDCl3)δ7.58(d,J=8.1Hz,2H),7.36(d,J=8.0Hz,2H),3.76-3.58 (m,1H),2.61-2.41(m,1H),2.16-2.03(m,1H),1.97-1.72(m,3H),1.58-1.23(m,5H).13C NMR(100MHz,CDCl3)δ148.0,129.1(q,J=32.0Hz),128.3,125.7(q,J=4.0Hz),124.4 (q,J=270.0Hz),74.3,53.1,35.0,33.4,26.0,25.1.19F NMR(376MHz,CDCl3)δ-62.39.高效液相色谱法: Chiracel AD-H column,220nm,30℃,正己烷/异丙醇=95/5,流速=1.0mL/min,retention time8.7minand12.6min(major).
Figure BDA0002403284380000101
实施例31(-)-2-(4-氟苯基)环己醇(2o):42毫克,72%产率,白色固体,已知化合物(Eur.J.Org.Chem. 2005,1354),Rf=0.39(正己烷/二氯甲烷/乙酸乙酯2/2/0.1),81%对映体过量,[α]20 D=-49.16(c0.60,甲醇).[lit.(Eur.J.Org.Chem.2005,1354):[α]20 D=-12.3(c1.52,甲醇)for53%对映体过量]. 1H NMR(400MHz,CDCl3)δ7.25-7.16(m,2H),7.07-6.96(m,2H),3.67-3.53(m,1H), 2.48-2.35(m,1H),2.16-2.05(m,1H),1.91-1.71(m,3H),1.60-1.53(m,1H),1.52-1.25(m, 4H).13C NMR(100MHz,CDCl3)δ161.8(d,J=243.0Hz),139.1(d,J=3.0Hz),129.3(d,J =7.0Hz),115.6(d,J=21.0Hz),74.6,52.5,34.7,33.6,26.1,25.1.19F NMR(376MHz,CDCl3)δ-116.35.高效液相色谱法:ChiracelAD-H column,220nm,30℃,正己烷/异丙醇=95/5,流速=1.0mL/min,retention time9.5minand11.1min(major).
Figure BDA0002403284380000102
实施例32(-)-2-(4-氯苯基)环己醇(2p):58毫克,92%产率,白色固体,已知化合物(Synthetic Commun.2013,43,1425),Rf=0.43(正己烷/二氯甲烷/乙酸乙酯2/2/0.1),83%对映体过量,[α]20 D=-46.25 (c1.12,甲醇).1H NMR(400MHz,CDCl3)δ7.32-7.26(m,2H),7.21-7.15(m,2H), 3.66-3.54(m,1H),2.47-2.33(m,1H),2.14-2.04(m,1H),1.91-1.71(m,3H),1.65-1.53(m, 1H),1.52-1.24(m,4H).13C NMR(100MHz,CDCl3)δ142.1,132.5,129.3,128.9,74.4,52.6, 34.8,33.5,26.0,25.1.高效液相色谱法:Chiracel AD-Hcolumn,220nm,30℃,正己烷/异丙醇=95/5,流速=1.0mL/min,retention time10.6minand13.3min(major).
Figure BDA0002403284380000103
实施例33(-)-2-(2,4-二甲基苯基)环己醇(2q):56毫克,92%产率,无色油状液体,新化合物,Rf=0.52 (正己烷/二氯甲烷/乙酸乙酯2/2/0.1),95%对映体过量,[α]20 D=-61.98(c1.06,三氯甲烷).1H NMR(400 MHz,CDCl3)δ7.14(d,J=7.8Hz,1H),7.05-6.97(m,2H),3.81-3.68(m,1H),2.79-2.65(m, 1H),2.32(s,3H),2.28(s,3H),2.15-2.07(m,1H),1.90-1.83(m,1H),1.80-1.71(m,2H), 1.68-1.63(m,1H),1.47-1.28(m,4H).13C NMR(100MHz,CDCl3)δ138.4,137.1,135.8, 131.6,127.3,125.5,74.5,47.6,34.6,33.4,26.4,25.2,21.0,19.9.高效液相色谱法: ChiracelAD-H column,220nm,30℃,正己烷/异丙醇=97/3,流速=0.7mL/min,retention time11.6min and12.3min(major).HRMS:Calculatedfor C14H24NO[M+NH4]+222.1852,found:222.1851.
Figure BDA0002403284380000104
实施例34(-)-2-苄基环己醇(2r):16毫克,28%产率,白色固体,已知化合物(Tetrahedron Lett.2019, 60,175),Rf=0.30(正己烷/二氯甲烷/乙酸乙酯2/2/0.1),9%对映体过量,[α]20 D=-5.62(c0.32,三氯甲烷). [lit.(Tetrahedron Lett.2019,60,175):[α]20 D=-41.6(c1.00,三氯甲烷)for99%对映体过量].1H NMR(400MHz,CDCl3)δ7.30-7.25(m,2H),7.21-7.16(m,3H),3.35-3.25(m,1H), 3.17(dd,J=13.3,4.0Hz,1H),2.36(dd,J=13.3,9.2Hz,1H),2.03-1.95(m,1H),1.74-1.46 (m,5H),1.34-1.18(m,2H),1.15-1.02(m,1H),0.97-0.85(m,1H).13C NMR(100MHz,CDCl3) δ140.9,129.6,128.3,125.9,74.7,47.2,39.2,36.0,30.1,25.6,25.1.高效液相色谱法:Chiracel IC column, 220nm,30℃,正己烷/异丙醇=98/2,流速=0.7mL/min,retention time17.8min(major)and21.9min.
Figure BDA0002403284380000105
实施例35(-)-2-(1-萘基)环戊醇(2s):40毫克,63%产率,无色油状液体,已知化合物(Angew.Chem. Int.Ed.2017,56,10858.),Rf=0.40(正己烷/二氯甲烷/乙酸乙酯2/2/0.1),77%对映体过量,[α]20 D=-26.48 (c0.74,三氯甲烷).1H NMR(400MHz,CDCl3)δ8.20(d,J=8.2Hz,1H),7.84(d,J=7.8Hz, 1H),7.71(d,J=8.0Hz,1H),7.55-7.33(m,4H),4.49-4.34(m,1H),3.80-3.68(m,1H), 2.40-2.27(m,1H),2.19-2.07(m,1H),2.03-1.69(m,5H).13C NMR(100MHz,CDCl3)δ139.6, 134.1,132.6,128.9,126.9,126.0,125.7,125.6,123.9,122.6,79.5,49.3,34.2,31.9,22.1.高效液相色谱法:ChiracelIC column,230nm,30℃,正己烷/异丙醇=95/5,流速=1.0mL/min,retention time10.1min(major)and11.2min.
Figure BDA0002403284380000106
实施例36(+)-2-苯基环庚醇(trans-2t):22毫克,39%产率,无色油状液体,已知化合物(J.Am.Chem. Soc.2015,137,3237),Rf=0.30(正己烷/二氯甲烷/乙酸乙酯2/2/0.1),72%对映体过量,[α]20 D=+3.95 (c0.38,三氯甲烷).[lit.(Angew.Chem.Int.Ed.2013,52,10227):[α]20 D=-0.852(c7.06,三氯甲烷)for84%对映体过量].1H NMR(400MHz,CDCl3)δ7.36-7.28(m,2H),7.26-7.18(m,3H),3.83-3.71(m, 1H),2.62-2.50(m,1H),2.08-1.97(m,1H),1.89-1.51(m,10H).13C NMR(100MHz,CDCl3)δ146.0,128.9, 127.8,126.8,77.7,55.5,35.5,32.2,27.5,26.9,22.0.高效液相色谱法:ChiracelIC column,220nm,30℃,正己烷/异丙醇=99/1,流速=0.5mL/min,retentiontime21.9min(major)and23.7min.
Figure BDA0002403284380000111
(-)-2-苯基环庚醇(cis-2t′):8毫克,14%产率,无色油状液体,已知化合物(Angew.Chem.Int.Ed.2013, 52,10227),[3f]Rf=0.41(正己烷/二氯甲烷/乙酸乙酯2/2/0.1),73%对映体过量,[α]20 D=-21.25(c0.16,三氯甲烷).[lit.(Angew.Chem.Int.Ed.2013,52,10227):[α]20 D=-98.8(c1.14,三氯甲烷)for>99:1 er].1HNMR(400MHz,CDCl3)δ7.36-7.29(m,2H),7.26-7.19(m,3H),4.06-3.95(m,1H), 2.92-2.81(m,1H),2.21-2.07(m,1H),2.01-1.69(m,6H),1.64-1.58(m,1H),1.56-1.42(m,3H). 13CNMR(100MHz,CDCl3)δ145.6,128.7,128.2,126.5,73.8,51.8,35.3,29.0,28.2,26.9,21.7.高效液相色谱法:ChiracelIC column,220nm,30℃,正己烷/异丙醇=99/1,流速=0.5mL/min, retention time14.5min and15.6min(major)。

Claims (10)

1.一种手性反式-取代环烷醇的合成方法,其特征在于,所述方法为:以金属钯的手性双膦P-P*配合物为催化剂,反应路线如下:
式Ⅰ
Figure FDA0002403284370000011
式Ⅰ中:R为苄基、具有6-14个成环碳原子的芳基或具有6-14个成环碳原子的含取代基的芳基;所述取代基为甲基、甲氧基、卤素、三氟甲基中的一种。
2.根据权利要求1所述的方法,其特征在于,所述R为萘基、取代萘基、菲基、苯基或取代苯基;所述取代萘基或取代苯基的取代基各自独立地为甲基、甲氧基、卤素、三氟甲基中的一种。
3.根据权利要求1所述的方法,其特征在于,所述方法包括反应时加入酸添加剂。
4.根据权利要求3所述的方法,其特征在于,所述酸添加剂为对甲苯磺酸一水合物、对甲苯磺酸、三氟甲磺酸锌、三氟乙酸及苯甲酸、五氟苯甲酸、双(对硝基苯基)磷酸酯该添加剂中的一种或多种。
5.根据权利要求4所述的方法,其特征在于:所述方法包括如下步骤:
(1)催化剂制备:在惰性气体保护下,称取金属钯前体和手性双膦P-P*配体于反应容器中,加入丙酮后反应0.5-2小时,减压抽除丙酮,得到所述催化剂;
(2)氢化反应:将酸添加剂、有机溶剂和步骤(1)得到的催化剂加入装有2-取代环酮的反应容器中,通入氢气进行反应,反应结束后得到所述手性反式-取代环烷醇。
6.根据权利要求5所述的方法,其特征在于:
所述步骤(2)中,氢气压力为100-800psi;反应温度为30-80℃;反应时间为20-72h;所述步骤(1)和步骤(2)中,所述金属钯前体、手性双膦P-P*配体、酸添加剂、2-取代环酮的摩尔比为:0.01-0.05:0.01-0.12:0.1-2.0:1;所述2-取代环酮于有机溶剂中的浓度为0.025-0.5mmol/mL;
所述有机溶剂为甲苯、二氯甲烷、甲醇、乙醇、异丙醇、三氟乙醇及六氟异丙醇中的一种或多种;
所述金属钯前体为双乙酰丙酮钯、三二亚苄基丙酮二钯、二二亚苄基丙酮钯、醋酸钯及三氟醋酸钯中的一种或多种;
所述手性双膦P-P*配体为(R)-DTBM-SegPhos、(S)-DTBM-SegPhos、(R)-SegPhos、(S)-SegPhos、(R)-DM-SegPhos、(S)-DM-SegPhos、(R)-SynPhos、(S)-SynPhos、(R)-BINAP、(S)-BINAP、(R)-H8-BINAP、(S)-H8-BINAP、(R)-Tol-BINAP、(S)-Tol-BINAP、(R)-DM-BINAP、(S)-DM-BINAP、(S)-DifluorPhos及(R)-DifluorPhos中的一种。
7.根据权利要求2所述的方法,其特征在于,所述式Ⅰ手性反式2-取代环烷醇的结构式中,当n=0时,R为萘基;当n=1时,R为1-萘基、2-萘基、9-菲基、4-甲基-1-萘基、4-甲氧基-1-萘基、4-氟-1-萘基、4-氯-1-萘基、苯基、2-甲基苯基、3-甲基苯基、4-甲基苯基、2-甲氧基苯基,2-三氟甲基苯基、4-氯苯基、4-氟苯基、4-三氟甲基苯基、4-甲氧基苯基、苄基中的一种;当n=2时,R为苯基。
8.一种手性反式2-取代环烷醇,其特征在于,所述手性反式2-取代环烷醇根据权利要求1~7所述的方法制备。
9.一种手性反式2-取代环烷醇,其特征在于,所述手性反式2-取代环烷醇的结构式为
Figure FDA0002403284370000021
中的一种。
10.一种权利要求8~9所述的手性反式2-取代环烷醇的应用,其特征在于,将所述的手性反式2-取代环烷醇应用于药物合成领域。
CN202010153625.7A 2020-03-06 2020-03-06 一种手性反式2-取代环烷醇的合成方法 Pending CN113354515A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010153625.7A CN113354515A (zh) 2020-03-06 2020-03-06 一种手性反式2-取代环烷醇的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010153625.7A CN113354515A (zh) 2020-03-06 2020-03-06 一种手性反式2-取代环烷醇的合成方法

Publications (1)

Publication Number Publication Date
CN113354515A true CN113354515A (zh) 2021-09-07

Family

ID=77524253

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010153625.7A Pending CN113354515A (zh) 2020-03-06 2020-03-06 一种手性反式2-取代环烷醇的合成方法

Country Status (1)

Country Link
CN (1) CN113354515A (zh)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHANG-BIN YU等: "Reversal of diastereoselectivity in palladium-arene interaction directed hydrogenative desymmetrization of 1,3-diketones", 《SCIENCE CHINA CHEMISTRY》 *
李翔等: "《中国化学会第十六届全国均相催化学术会议论文集》", 30 September 2019 *
美国化学会: "RN 2121506-45-2", 《REGISTRY 数据库》 *

Similar Documents

Publication Publication Date Title
Ling et al. All-carbon quaternary centers in natural products and medicinal chemistry: recent advances
Zheng et al. Biomimetic catalytic enantioselective decarboxylative aldol reaction of β-ketoacids with trifluoromethyl ketones
Peach et al. Asymmetric transfer hydrogenation of α, β-unsaturated, α-tosyloxy and α-substituted ketones
Hamashima et al. Highly enantioselective fluorination reactions of β-ketoesters and β-ketophosphonates catalyzed by chiral palladium complexes
Zheng et al. Highly Efficient Asymmetric Epoxidation of Electron‐Deficient α, β‐Enones and Related Applications to Organic Synthesis
Tsubogo et al. Synthesis of optically active, unnatural α-substituted glutamic acid derivatives by a chiral calcium-catalyzed 1, 4-addition reaction
EP2161251A1 (en) Alcohol production method by reducing ester or lactone with hydrogen
Pozo et al. Streamlined catalytic enantioselective synthesis of α-substituted β, γ-unsaturated ketones and either of the corresponding tertiary homoallylic alcohol diastereomers
Nakano et al. Enantioselective formal synthesis of (−)-aurantioclavine using Pd-catalyzed cascade cyclization and organocatalytic asymmetric aziridination
EP2141142A1 (en) Method for producing alcohol by hydrogenating lactone and carboxylic acid ester in liquid phase
CN109776245A (zh) 一种铱催化不对称氢化制备手性醇的方法
JP2002037760A (ja) 光学活性アルコールの製造方法
JP6018046B2 (ja) ケトエステル類の水素化のためのプロセス
CN113354515A (zh) 一种手性反式2-取代环烷醇的合成方法
CN101402582A (zh) 一种具有光学活性的α-羟基-β-氨基酸的合成方法
Sodeoka et al. Acid-base catalysis using chiral palladium complexes
CN104311424A (zh) 一种光学纯β-硝基醇类衍生物及合成方法
CN109575060B (zh) 螺环双硼催化剂的合成及其在氢化反应中的应用
Liu et al. Facile preparation of optically pure diamines and their applications in asymmetric aldol reactions
CN114605272B (zh) 一种(r)-氟西汀及其衍生物的制备方法
Miyabe et al. Synthesis of chiral oxime ethers based on regio-and enantioselective allylic substitution catalyzed by iridium–pybox complex
Suh et al. The highly diastereoselective palladium-catalyzed cyclizations. Stereoselective syntheses of cis and trans-disubstituted hydroxycyclopentanes
CN113929714B (zh) 一种手性苄基硅烷类化合物的制备方法
FI93948C (fi) Optisesti aktiivisten 2-aryylipropaanihappojen valmistusmenetelmä
CN113816865B (zh) 手性α-胺基缩醛类化合物及其衍生物的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210907