CN113354433A - 一种耐高温硅基陶瓷基气凝胶及其制备方法 - Google Patents

一种耐高温硅基陶瓷基气凝胶及其制备方法 Download PDF

Info

Publication number
CN113354433A
CN113354433A CN202110749491.XA CN202110749491A CN113354433A CN 113354433 A CN113354433 A CN 113354433A CN 202110749491 A CN202110749491 A CN 202110749491A CN 113354433 A CN113354433 A CN 113354433A
Authority
CN
China
Prior art keywords
temperature
product
keeping
heating
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110749491.XA
Other languages
English (en)
Inventor
刘溧
黄骏
章杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Mibaful Nano Material Co ltd
Original Assignee
Jiangsu Mibaful Nano Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Mibaful Nano Material Co ltd filed Critical Jiangsu Mibaful Nano Material Co ltd
Priority to CN202110749491.XA priority Critical patent/CN113354433A/zh
Publication of CN113354433A publication Critical patent/CN113354433A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5603Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides with a well-defined oxygen content, e.g. oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种耐高温硅基陶瓷基气凝胶及其制备方法,通过将乙基三甲氧基硅烷、正硅基异丙酯和溶剂无水乙醇加入到反应釜中进行混溶,将无水乙醇和去离子水混合加入反应釜,混合均匀,得到产物A,将产物A喷涂或浸渍到柔性陶瓷纤维上;拉断过程存在碳纳米管束内由范德华力相互作用的管束滑移,碳纳米管经受拉力时,碳纳米管内原子缺陷处或内结处C原子处于动力学活跃状态形成断裂临界点,临界点上的C原子会进行C原子重排,由六边形连接变为五边形或七边形连接来吸收能量抵抗断裂,管束根部以三维结构存在,通过添加该增韧助剂从而达到增加韧性的目的。

Description

一种耐高温硅基陶瓷基气凝胶及其制备方法
技术领域
本发明涉及气凝胶领域,具体涉及一种耐高温硅基陶瓷基气凝胶及其制备方法。
背景技术
气凝胶为一种具立体网状结构的多孔隙材料,具有极高的孔隙率、比表面积,优异的化学稳定性和不燃性,表现出优异的轻质、透光、隔热、保温、隔音、防火、抗冲击性能,为高温隔热领域通用型材料,在高温工业窑炉、冶炼炉、石化裂解炉等高温工业设备领域具有广泛的需求,潜在市场价值巨大,推动上海、江苏、长三角产业带乃至全国及国际工业陶瓷、钢铁冶炼、石化等高能耗行业的节能减排;
目前市场上的气凝胶产品,无法应用于高温环境,对于陶瓷窑炉、冶金炉等高温使用场景,均使用保温砖、保温棉/纤维、不定形浇注料等进行高温保温隔热,其材质有硅质、粘土质、高铝质、莫来石质、锆质、锆英石质、镁质等,虽可满足各类高温保温需求,但普遍存在导热系数偏高、使用寿命短的问题,且现有的气凝胶产品韧性差,力学性能不能满足使用需求;
因此,如何改善现有气凝胶产品无法应用于高温环境和韧性差是本发明需要解决的问题。
发明内容
为了克服上述的技术问题,本发明的目的在于提供了一种耐高温硅基陶瓷基气凝胶及其制备方法:
(1)通过将乙基三甲氧基硅烷、正硅基异丙酯和溶剂无水乙醇加入到反应釜中滴加稀盐酸和氨水得到产物A,将产物A喷涂或浸渍到柔性陶瓷纤维上,老化,得到产物B,将增韧助剂加入到产物B中,得到交联体,将交联体置于管式气氛炉,得到产物C,将产物C进行常压干燥,进行高温裂解,得到该耐高温硅基陶瓷基气凝胶,通过制备该耐高温硅基陶瓷基气凝胶,解决了现有气凝胶产品无法应用于高温环境的问题;
(2)通过将碳纳米管气凝胶置于浓硝酸中,超声水洗,用浓HNO3和浓H2SO4混酸溶液浸泡超声,得到碳纳米管水凝胶,用无水乙醇置换碳纳米管水凝胶中的水,用液态CO2冲洗干燥室,得到该增韧助剂,通过添加该增韧助剂,解决了韧性差,力学性能不能满足使用需求的问题。
本发明的目的可以通过以下技术方案实现:
一种耐高温硅基陶瓷基气凝胶,该耐高温硅基陶瓷基气凝胶由以下制备步骤得到:
S1:将乙基三甲氧基硅烷、正硅基异丙酯和溶剂无水乙醇加入到反应釜中进行混溶,加热至60-70℃,将无水乙醇和去离子水混合加热至60-70℃后加入反应釜,滴加稀盐酸调节pH为3-4,搅拌1-2h,滴加氨水调节pH为7-8,混合均匀,得到产物A;
S2:将产物A静置,待其粘度达到6-8cP,将产物A喷涂或浸渍到柔性陶瓷纤维上,每64-68cm3的隔热毡喷涂30-35mL的产物A,在含有乙醇溶液的密封瓶子中老化24-30h,得到产物B;
S3:将增韧助剂加入到产物B中,置于交联加热装置中,装置用N2气流吹扫排除空气,并升温至150-160℃,交联过程通N2,保温2-3h,然后在N2保护下自然冷却至室温,得到交联体,将交联体置于管式气氛炉,在N2气氛下以5-10℃/min升温至1000-1100℃,保温2-3h后以5-10℃/min的速度降温至室温,得到产物C;
S4:将产物C进行常压干燥,干燥过程为50-60℃保持4-5h,80-85℃保持4-5h,100-110℃保持4-5h,140-150℃保持4-6h,200-210℃保持4-6h,250-260℃保持12-15h,进行1100-1200℃的高温裂解3-4h,得到耐高温硅基陶瓷基气凝胶。
作为本发明进一步的方案:步骤S1中所述去离子水的质量为乙基三甲氧基硅烷和正硅基异丙酯总质量的20%,所述稀盐酸的质量分数为37%,所述氨水的质量分数为40%,所述乙基三甲氧基硅烷、正硅基异丙酯的摩尔比为0.2:0.1。
作为本发明进一步的方案:步骤S3中所述增韧助剂与产物B的用量比为1g:8g。
作为本发明进一步的方案:所述增韧助剂的制备步骤如下:
S41:将碳纳米管气凝胶置于浓硝酸中,在100-120℃下浴12-14小时,在超声环境中水洗调节pH为6-7,用浓HNO3和浓H2SO4混酸溶液浸泡超声4-5h,用离子水浸泡冲洗至溶液呈中性,得到碳纳米管水凝胶;
S42:用无水乙醇置换碳纳米管水凝胶中的水,每4-5h重复一次,共重复8-10次,并置于干燥室中,用液态CO2冲洗干燥室,密封干燥室,加热至CO2临界点,稳定10-20min,降压,得到增韧助剂。
作为本发明进一步的方案:步骤S41中所述浓HNO3的质量分数为65%,所述浓H2SO4的质量分数为98%,所述浓HNO3和浓H2SO4的用量比为2mL:5mL。
作为本发明进一步的方案:所述的一种耐高温硅基陶瓷基气凝胶的制备方法,包括以下制备步骤:
S1:将乙基三甲氧基硅烷、正硅基异丙酯和溶剂无水乙醇加入到反应釜中进行混溶,加热至60-70℃,将无水乙醇和去离子水混合加热至60-70℃后加入反应釜,滴加稀盐酸调节pH为3-4,搅拌1-2h,滴加氨水调节pH为7-8,混合均匀,得到产物A;
S2:将产物A静置,待其粘度达到6-8cP,将产物A喷涂或浸渍到柔性陶瓷纤维上,每64-68cm3的隔热毡喷涂30-35mL的产物A,在含有乙醇溶液的密封瓶子中老化24-30h,得到产物B;
S3:将增韧助剂加入到产物B中,置于交联加热装置中,并升温至150-160℃,交联过程通N2,保温2-3h,然后在N2保护下自然冷却至室温,得到交联体,将交联体置于管式气氛炉,在N2气氛下以5-10℃/min升温至1000-1100℃,保温2-3h后以5-10℃/min的速度降温至室温,得到产物C;
S4:将产物C进行常压干燥,干燥过程为50-60℃保持4-5h,80-85℃保持4-5h,100-110℃保持4-5h,140-150℃保持4-6h,200-210℃保持4-6h,250-260℃保持12-15h,进行1100-1200℃的高温裂解3-4h,得到耐高温硅基陶瓷基气凝胶。
本发明的有益效果:
本发明是通过将乙基三甲氧基硅烷、正硅基异丙酯和溶剂无水乙醇加入到反应釜中滴加稀盐酸和氨水得到产物A,将产物A喷涂或浸渍到柔性陶瓷纤维上,得到产物B,将增韧助剂加入到产物B中,进行高温裂解,得到该耐高温硅基陶瓷基气凝胶,通过制备该耐高温硅基陶瓷基气凝胶,改善现有气凝胶的热稳定性,添加氨水作为缩聚过程中的催化剂,使水解后的单体进行缩聚,反应形成小的交联体,随着缩聚时间的延长,小分子量的缩聚体继续堆积从而形成三维网状的Si-O-C气凝胶,柔性陶瓷纤维中的石英纤维表面光洁,无杂质,也没有析晶的存在,在陶瓷纤维毡中无序的堆积在一起,纤维中间有较大的孔隙,具有极好的柔性,该耐高温硅基陶瓷基气凝胶中含有的游离碳可以作为类似遮光剂的物质,降低红外射线对于SiO2纤维的穿透作用,从而降低了复合材料的热导率,经过1100℃氧化,Si-O-C气凝胶仍然良好的附着在石英纤维表面,有部分的凝胶仍处于颗粒状态,保持其结构不受破坏,随着氧化温度的升高,部分Si-O-C气凝胶发生了熔化,并未完全发生相变,经过高温氧化后Si-O-C气凝胶仍可以均匀的分布在石英纤维表面,与纤维有较好的粘合度,从而达到了耐高温的目的;
通过将碳纳米管气凝胶置于浓硝酸中,超声水洗,用浓HNO3和浓H2SO4混酸溶液浸泡超声,得到碳纳米管水凝胶,用无水乙醇置换碳纳米管水凝胶中的水,用液态CO2冲洗干燥室,得到该增韧助剂,通过添加该增韧助剂,采用碳纳米管气凝胶作为增强预制体,在经受拉应力时,与基体之间的剪切应力大于碳纳米管粉末,与基体之间结合力更强,主要断裂方式为拔断,碳纳米管束内每根碳纳米管均受力,拉断过程存在碳纳米管束内由范德华力相互作用的管束滑移,碳纳米管经受拉力时,碳纳米管内原子缺陷处或内结处C原子处于动力学活跃状态形成断裂临界点,临界点上的C原子会进行C原子重排,由六边形连接变为五边形或七边形连接来吸收能量抵抗断裂,从而出现颈缩,直径越来越小,最后变成一排紧密相连的C-C键,直至断裂,管束根部以三维结构存在,通过添加该增韧助剂从而达到增加韧性的目的。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1:
本实施例为一种耐高温硅基陶瓷基气凝胶,包括如下步骤:
S1:将乙基三甲氧基硅烷、正硅基异丙酯和溶剂无水乙醇加入到反应釜中进行混溶,加热至60℃,将无水乙醇和去离子水混合加热至60℃后加入反应釜,滴加稀盐酸调节pH为3,搅拌1h,滴加氨水调节pH为7,混合均匀,得到产物A;
S2:将产物A静置,待其粘度达到6cP,将产物A喷涂或浸渍到柔性陶瓷纤维上,每64cm3的隔热毡喷涂30mL的产物A,在含有乙醇溶液的密封瓶子中老化24h,得到产物B;
S3:将增韧助剂加入到产物B中,置于交联加热装置中,并升温至150℃,交联过程通N2,保温2h,然后在N2保护下自然冷却至室温,得到交联体,将交联体置于管式气氛炉,在N2气氛下以5℃/min升温至1000℃,保温2h后以5℃/min的速度降温至室温,得到产物C;
S4:将产物C进行常压干燥,干燥过程为50℃保持4h,80℃保持4h,100℃保持4h,140℃保持4h,200℃保持4h,250℃保持12h,进行1100℃的高温裂解3h,得到该耐高温硅基陶瓷基气凝胶;
其中增韧助剂的制备步骤如下:
S41:将碳纳米管气凝胶置于浓硝酸中,在100℃下浴12h,在超声环境中水洗调节pH为6,用浓HNO3和浓H2SO4混酸溶液浸泡超声4h,用离子水浸泡冲洗至溶液呈中性,得到碳纳米管水凝胶;
S42:用无水乙醇置换碳纳米管水凝胶中的水,每4h重复一次,共重复8次,并置于干燥室中,用液态CO2冲洗干燥室,密封干燥室,加热至CO2临界点,稳定10min,降压,得到增韧助剂。
实施例2:
本实施例为一种耐高温硅基陶瓷基气凝胶,包括如下步骤:
S1:将乙基三甲氧基硅烷、正硅基异丙酯和溶剂无水乙醇加入到反应釜中进行混溶,加热至70℃,将无水乙醇和去离子水混合加热至70℃后加入反应釜,滴加稀盐酸调节pH为4,搅拌2h,滴加氨水调节pH为8,混合均匀,得到产物A;
S2:将产物A静置,待其粘度达到8cP,将产物A喷涂或浸渍到柔性陶瓷纤维上,每68cm3的隔热毡喷涂35mL的产物A,在含有乙醇溶液的密封瓶子中老化30h,得到产物B;
S3:将增韧助剂加入到产物B中,置于交联加热装置中,并升温至160℃,交联过程通N2,保温3h,然后在N2保护下自然冷却至室温,得到交联体,将交联体置于管式气氛炉,在N2气氛下以10℃/min升温至1100℃,保温3h后以10℃/min的速度降温至室温,得到产物C;
S4:将产物C进行常压干燥,干燥过程为60℃保持5h,85℃保持5h,110℃保持5h,150℃保持6h,210℃保持6h,260℃保持15h,进行1200℃的高温裂解4h,得到该耐高温硅基陶瓷基气凝胶;
其中增韧助剂的制备步骤如下:
S41:将碳纳米管气凝胶置于浓硝酸中,在120℃下浴14小时,在超声环境中水洗调节pH为7,用浓HNO3和浓H2SO4混酸溶液浸泡超声5h,用离子水浸泡冲洗至溶液呈中性,得到碳纳米管水凝胶;
S42:用无水乙醇置换碳纳米管水凝胶中的水,每5h重复一次,共重复10次,并置于干燥室中,用液态CO2冲洗干燥室,密封干燥室,加热至CO2临界点,稳定20min,降压,得到增韧助剂。
实施例3:
本实施例为一种耐高温硅基陶瓷基气凝胶,包括如下步骤:
S1:将乙基三甲氧基硅烷、正硅基异丙酯和溶剂无水乙醇加入到反应釜中进行混溶,加热至70℃,将无水乙醇和去离子水混合加热至70℃后加入反应釜,滴加稀盐酸调节pH为4,搅拌2h,滴加氨水调节pH为8,混合均匀,得到产物A;
S2:将产物A静置,待其粘度达到8cP,将产物A喷涂或浸渍到柔性陶瓷纤维上,每68cm3的隔热毡喷涂35mL的产物A,在含有乙醇溶液的密封瓶子中老化30h,得到产物B;
S3:将增韧助剂加入到产物B中,置于交联加热装置中,并升温至160℃,交联过程通N2,保温3h,然后在N2保护下自然冷却至室温,得到交联体,将交联体置于管式气氛炉,在N2气氛下以10℃/min升温至1100℃,保温3h后以10℃/min的速度降温至室温,得到产物C;
S4:将产物C进行常压干燥,干燥过程为50℃保持5h,85℃保持4h,100℃保持4h,140℃保持4h,200℃保持4h,260℃保持15h,进行1200℃的高温裂解4h,得到该耐高温硅基陶瓷基气凝胶;
其中增韧助剂的制备步骤如下:
S41:将碳纳米管气凝胶置于浓硝酸中,在120℃下浴14小时,在超声环境中水洗调节pH为7,用浓HNO3和浓H2SO4混酸溶液浸泡超声5h,用离子水浸泡冲洗至溶液呈中性,得到碳纳米管水凝胶;
S42:用无水乙醇置换碳纳米管水凝胶中的水,每5h重复一次,共重复10次,并置于干燥室中,用液态CO2冲洗干燥室,密封干燥室,加热至CO2临界点,稳定20min,降压,得到增韧助剂。
对比例1:
本对比例与实施例1相比未添加增韧助剂,其余步骤相同;
对比例2:
本对比例使用中国专利CN201811418300.6所公开的双交联硅基气凝胶;
将实施例1-3以及对比例1-2的一种耐高温硅基陶瓷基气凝胶,使用NETZSCHLFA447闪光导热仪测定热扩散系数,比热容采用DSCQ2000差示扫描量热仪进行测试,采用马弗炉在1200℃空气气氛下进行静态氧化实验;
热导率=热扩算系数·比热容·密度
检测结果如下表所示:
Figure BDA0003144014390000091
由上表可知,实验例的热导率达到了0.037-0.042W·m-1·K-1,而未添加增韧助剂的对比例1的热导率为0.049W·m-1·K-1,使用中国专利CN201811418300.6所公开的双交联硅基气凝胶的对比例2的热导率为0.163W·m-1·K-1,实验例置于1200℃的马弗炉中1h后的质量损失率为0.423-0.586%,而未添加增韧助剂的对比例1置于1200℃的马弗炉中1h后的质量损失率为0.694%,使用中国专利CN201811418300.6所公开的双交联硅基气凝胶的对比例2置于1200℃的马弗炉中1h后的质量损失率为1.967%,实验例置于1200℃的马弗炉中2h后的质量损失率为1.229-1.967%,而未添加增韧助剂的对比例1置于1200℃的马弗炉中2h后的质量损失率为2.356%,使用中国专利CN201811418300.6所公开的双交联硅基气凝胶的对比例2置于1200℃的马弗炉中2h后的质量损失率为3.256%,实验例置于1200℃的马弗炉中3h后的质量损失率为2.112-2.278%,而未添加增韧助剂的对比例1置于1200℃的马弗炉中3h后的质量损失率为3.697%,使用中国专利CN201811418300.6所公开的双交联硅基气凝胶的对比例2置于1200℃的马弗炉中3h后的质量损失率为5.369%,实验例的各项数据明显优于对比例,说明了使用耐高温硅基陶瓷基气凝胶和添加增韧助剂有效提升了热导率和耐高温性能。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上内容仅仅是对本发明所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (6)

1.一种耐高温硅基陶瓷基气凝胶,其特征在于,该耐高温硅基陶瓷基气凝胶由以下制备步骤得到:
S1:将乙基三甲氧基硅烷、正硅基异丙酯和溶剂无水乙醇加入到反应釜中进行混溶,加热至60-70℃,将无水乙醇和去离子水混合加热至60-70℃后加入反应釜,滴加稀盐酸调节pH为3-4,搅拌1-2h,滴加氨水调节pH为7-8,混合均匀,得到产物A;
S2:将产物A静置,待其粘度达到6-8cP,将产物A喷涂或浸渍到柔性陶瓷纤维上,每64-68cm3的隔热毡喷涂30-35mL的产物A,在含有乙醇溶液的密封瓶子中老化24-30h,得到产物B;
S3:将增韧助剂加入到产物B中,置于交联加热装置中,并升温至150-160℃,交联过程通N2,保温2-3h,然后在N2保护下自然冷却至室温,得到交联体,将交联体置于管式气氛炉,在N2气氛下以5-10℃/min升温至1000-1100℃,保温2-3h后以5-10℃/min的速度降温至室温,得到产物C;
S4:将产物C进行常压干燥,干燥过程为50-60℃保持4-5h,80-85℃保持4-5h,100-110℃保持4-5h,140-150℃保持4-6h,200-210℃保持4-6h,250-260℃保持12-15h,进行1100-1200℃的高温裂解3-4h,得到耐高温硅基陶瓷基气凝胶。
2.根据权利要求1所述的一种耐高温硅基陶瓷基气凝胶,其特征在于,步骤S1中所述去离子水的质量为乙基三甲氧基硅烷和正硅基异丙酯总质量的20%,所述稀盐酸的质量分数为37%,所述氨水的质量分数为40%,所述乙基三甲氧基硅烷、正硅基异丙酯的摩尔比为0.2:0.1。
3.根据权利要求1所述的一种耐高温硅基陶瓷基气凝胶,其特征在于,步骤S3中所述增韧助剂与产物B的用量比为1g:8g。
4.根据权利要求1所述的一种耐高温硅基陶瓷基气凝胶,其特征在于,所述增韧助剂的制备步骤如下:
S41:将碳纳米管气凝胶置于浓硝酸中,在100-120℃下浴12-14小时,在超声环境中水洗调节pH为6-7,用浓HNO3和浓H2SO4混酸溶液浸泡超声4-5h,用离子水浸泡冲洗至溶液呈中性,得到碳纳米管水凝胶;
S42:用无水乙醇置换碳纳米管水凝胶中的水,每4-5h重复一次,共重复8-10次,并置于干燥室中,用液态CO2冲洗干燥室,密封干燥室,加热至CO2临界点,稳定10-20min,降压,得到增韧助剂。
5.根据权利要求4所述的一种耐高温硅基陶瓷基气凝胶,其特征在于,步骤S41中所述浓HNO3的质量分数为65%,所述浓H2SO4的质量分数为98%,所述浓HNO3和浓H2SO4的用量比为2mL:5mL。
6.根据权利要求1所述的一种耐高温硅基陶瓷基气凝胶的制备方法,其特征在于,包括以下制备步骤:
S1:将乙基三甲氧基硅烷、正硅基异丙酯和溶剂无水乙醇加入到反应釜中进行混溶,加热至60-70℃,将无水乙醇和去离子水混合加热至60-70℃后加入反应釜,滴加稀盐酸调节pH为3-4,搅拌1-2h,滴加氨水调节pH为7-8,混合均匀,得到产物A;
S2:将产物A静置,待其粘度达到6-8cP,将产物A喷涂或浸渍到柔性陶瓷纤维上,每64-68cm3的隔热毡喷涂30-35mL的产物A,在含有乙醇溶液的密封瓶子中老化24-30h,得到产物B;
S3:将增韧助剂加入到产物B中,置于交联加热装置中,并升温至150-160℃,交联过程通N2,保温2-3h,然后在N2保护下自然冷却至室温,得到交联体,将交联体置于管式气氛炉,在N2气氛下以5-10℃/min升温至1000-1100℃,保温2-3h后以5-10℃/min的速度降温至室温,得到产物C;
S4:将产物C进行常压干燥,干燥过程为50-60℃保持4-5h,80-85℃保持4-5h,100-110℃保持4-5h,140-150℃保持4-6h,200-210℃保持4-6h,250-260℃保持12-15h,进行1100-1200℃的高温裂解3-4h,得到耐高温硅基陶瓷基气凝胶。
CN202110749491.XA 2021-07-01 2021-07-01 一种耐高温硅基陶瓷基气凝胶及其制备方法 Pending CN113354433A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110749491.XA CN113354433A (zh) 2021-07-01 2021-07-01 一种耐高温硅基陶瓷基气凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110749491.XA CN113354433A (zh) 2021-07-01 2021-07-01 一种耐高温硅基陶瓷基气凝胶及其制备方法

Publications (1)

Publication Number Publication Date
CN113354433A true CN113354433A (zh) 2021-09-07

Family

ID=77537911

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110749491.XA Pending CN113354433A (zh) 2021-07-01 2021-07-01 一种耐高温硅基陶瓷基气凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN113354433A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793918B (zh) * 2021-12-10 2023-02-21 中國鋼鐵股份有限公司 遠紅外線人造建材及其製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102276236A (zh) * 2011-04-29 2011-12-14 中国人民解放军国防科学技术大学 一种耐高温Si-C-O气凝胶隔热复合材料及其制备方法
CN102531540A (zh) * 2011-12-28 2012-07-04 大连理工大学 一种复合纳米纤维气凝胶材料制备方法
CN108863434A (zh) * 2017-05-09 2018-11-23 天津大学 一种高含量碳纳米管增强先驱体陶瓷复合材料及其制备方法
CN110550950A (zh) * 2019-10-09 2019-12-10 江苏脒诺甫纳米材料有限公司 一种基于纳米技术的耐高温陶瓷气凝胶制备工艺
CN111005034A (zh) * 2019-12-02 2020-04-14 苏州大学 一种3d打印高强度石墨烯-碳纳米管电极的方法、石墨烯-碳纳米管电极及其应用
CN111841456A (zh) * 2020-07-23 2020-10-30 中国科学院苏州纳米技术与纳米仿生研究所 一种极端耐受的碳纳米管水凝胶其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102276236A (zh) * 2011-04-29 2011-12-14 中国人民解放军国防科学技术大学 一种耐高温Si-C-O气凝胶隔热复合材料及其制备方法
CN102531540A (zh) * 2011-12-28 2012-07-04 大连理工大学 一种复合纳米纤维气凝胶材料制备方法
CN108863434A (zh) * 2017-05-09 2018-11-23 天津大学 一种高含量碳纳米管增强先驱体陶瓷复合材料及其制备方法
CN110550950A (zh) * 2019-10-09 2019-12-10 江苏脒诺甫纳米材料有限公司 一种基于纳米技术的耐高温陶瓷气凝胶制备工艺
CN111005034A (zh) * 2019-12-02 2020-04-14 苏州大学 一种3d打印高强度石墨烯-碳纳米管电极的方法、石墨烯-碳纳米管电极及其应用
CN111841456A (zh) * 2020-07-23 2020-10-30 中国科学院苏州纳米技术与纳米仿生研究所 一种极端耐受的碳纳米管水凝胶其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高世桥等主编: "《微纳机电系统力学》", 30 September 2018, 北京理工大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793918B (zh) * 2021-12-10 2023-02-21 中國鋼鐵股份有限公司 遠紅外線人造建材及其製造方法

Similar Documents

Publication Publication Date Title
ES2688274T3 (es) Fibra inorgánica revestida de fosfato y métodos de preparación y uso
CN109851336B (zh) 一种高模量致密连续莫来石纳米陶瓷纤维及其制备方法
CN106565224A (zh) 一种莫来石纤维增强二氧化硅气凝胶的方法
CN113354433A (zh) 一种耐高温硅基陶瓷基气凝胶及其制备方法
CN110054918A (zh) 一种抗开裂无机保温涂料
CN105780126B (zh) 一种由原位生成的晶须搭接而成的多孔莫来石的制备方法
CN113716966B (zh) 一种SiCN陶瓷气凝胶及其制备方法和应用
CN1888302A (zh) 一种纳米多孔柔性毡复合材料的制备方法及应用
CN105036143B (zh) 一种纳米二氧化硅气凝胶制备方法
CN104141180B (zh) 一种连续镁铝尖晶石纤维的制备方法
CN113860862A (zh) 一种低成本莫来石纤维的制备方法
CN110790581A (zh) 一种高强度耐高温石英陶瓷辊的制备工艺
CN107954742A (zh) 微孔轻质耐火砖及其制备方法
CN114715896A (zh) 碳化硅纳米管气凝胶的制备方法
TWI262178B (en) Carrier for sintering ceramic electronic part
CN108314989B (zh) 一种净化空调风管密封胶及其制备方法
CN114835467A (zh) 一种耐高温纤维增强气凝胶复合材料及其制备方法
CN115611632A (zh) 一种柔性耐高温碳化硅气凝胶复合隔热材料的制备方法
JPH02157127A (ja) モノリシック シリカ エーロゲルの製造方法および石英ガラス平板
KR101751000B1 (ko) 무기단열재용 습기방지코팅제 조성물, 열전도도 안정성이 우수한 무기단열재 이의 제조방법
JPS6052204B2 (ja) アルミナ系無機繊維前駆体の製造法
CN114736021A (zh) 一种基于高温条件下氧化程度低的硅碳棒
KR102190889B1 (ko) 고단열 및 고강도 실리카 에어로겔 블랭킷 제조방법
CN111099908A (zh) 一种表面包覆氧化硅的碳纤维复合稀土锆酸镧的高性能陶瓷及其制备方法
CN111039689A (zh) 一种耐腐蚀的纳米绝热毡及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210907

RJ01 Rejection of invention patent application after publication