CN113337806A - 金刚石微通道热沉、制备方法和应用以及半导体激光器 - Google Patents
金刚石微通道热沉、制备方法和应用以及半导体激光器 Download PDFInfo
- Publication number
- CN113337806A CN113337806A CN202010140690.6A CN202010140690A CN113337806A CN 113337806 A CN113337806 A CN 113337806A CN 202010140690 A CN202010140690 A CN 202010140690A CN 113337806 A CN113337806 A CN 113337806A
- Authority
- CN
- China
- Prior art keywords
- diamond
- sheet
- micro
- dlc
- heat sink
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 84
- 239000010432 diamond Substances 0.000 title claims abstract description 84
- 239000004065 semiconductor Substances 0.000 title claims abstract description 31
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 238000005498 polishing Methods 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 27
- 238000000151 deposition Methods 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 238000005530 etching Methods 0.000 claims abstract description 21
- 238000004140 cleaning Methods 0.000 claims abstract description 18
- 238000001035 drying Methods 0.000 claims abstract description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- 238000001039 wet etching Methods 0.000 claims abstract description 9
- 238000001020 plasma etching Methods 0.000 claims abstract description 7
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims abstract description 4
- 239000010408 film Substances 0.000 claims description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 230000008021 deposition Effects 0.000 claims description 14
- 238000005229 chemical vapour deposition Methods 0.000 claims description 13
- 239000008367 deionised water Substances 0.000 claims description 13
- 229910021641 deionized water Inorganic materials 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 230000010355 oscillation Effects 0.000 claims description 5
- 239000012286 potassium permanganate Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 229910004077 HF-HNO3 Inorganic materials 0.000 claims description 3
- 238000000861 blow drying Methods 0.000 claims description 3
- 238000005137 deposition process Methods 0.000 claims description 3
- 239000007800 oxidant agent Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 3
- 238000007664 blowing Methods 0.000 claims description 2
- 230000005284 excitation Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- 239000011521 glass Substances 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 239000000110 cooling liquid Substances 0.000 abstract description 5
- 230000017525 heat dissipation Effects 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005034 decoration Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000012994 industrial processing Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000010329 laser etching Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/01—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0227—Pretreatment of the material to be coated by cleaning or etching
- C23C16/0245—Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
- C23C16/042—Coating on selected surface areas, e.g. using masks using masks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
- C23C16/27—Diamond only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/024—Arrangements for thermal management
- H01S5/02407—Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
- H01S5/02423—Liquid cooling, e.g. a liquid cools a mount of the laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/024—Arrangements for thermal management
- H01S5/02461—Structure or details of the laser chip to manipulate the heat flow, e.g. passive layers in the chip with a low heat conductivity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/024—Arrangements for thermal management
- H01S5/02469—Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/024—Arrangements for thermal management
- H01S5/02476—Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
- H01S5/02484—Sapphire or diamond heat spreaders
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种金刚石微通道热沉、制备方法和应用以及半导体激光器,金刚石微通道热沉的制备方法包括以下步骤:步骤1,抛光Si片清洗并干燥;步骤2,将带有微通道栅孔的掩模版覆盖于Si片上,通过M‑RF‑PECVD设备在微通道栅孔内沉积类金刚石薄膜,取下掩模版,得到DLC/Si片;步骤3,利用湿法刻蚀对DLC/Si片进行刻蚀,使其表面形成微通道沟槽;步骤4,进行等离子体刻蚀处理,以去除Si片表面的DLC薄膜层和氧化层;步骤5,通过EACVD方法制备金刚石厚膜,得到Si/金刚石厚膜;步骤6,对金刚石厚膜进行抛光;步骤7,利用湿法刻蚀去除作为衬底的Si片,清洗干燥,得到金刚石微通道热沉。本发明的金刚石微通道热沉可增加与冷却液接触的比表面积,可有效提高半导体激光器的散热性能。
Description
技术领域
本发明涉及半导体激光器热沉制备工艺技术领域,特别是涉及一种半导体激光器微通道热沉制备方法。
背景技术
随着半导体激光器制造工艺的日趋成熟,已广泛用于泵浦固体激光器、工业加工、医疗美容和军事科技等领域。在对半导体激光器的大功率和小体积的应用需求驱动下,特别是对于固体激光器泵浦模块的改进具有重要意义。然而,半导体激光器的电光转换效率约50%~60%,对于腔长1mm,19管芯的线阵,在输出40W光功率的同时也会等量的热功率,造成有源区小的面积内产生极大的热通量,特别在连续波的模式下工作,会在短时间内造成极大的热积累,导致电光转换效率下降,使工作结温进一步升高,从而引发腔面灾变性光学损伤,严重抑制输出功率和使用寿命。因此,研制导热率高,比表面积大的热沉,可有效提高散热效率,降低工作结温度,有助于提高半导体激光器的可靠性。
选择微通道结构的热沉,有助于增加与冷却液体接触的比表面积,提高对工作器件的散热性能。目前的半导体激光器封装多采用Si或Cu作为微通道热沉材料,虽然Si容易加工成为通道结构,然而其导热率为83Wm-1K-1,难以将器件产生的热量导出。虽然Cu的导热率较高,然而其导体特性,使其在工作中与冷却液接触发生电化学反应,导致管路发生腐蚀堵塞,使热沉寿命下降,无法正常为器件提供冷却。
CVD(化学气相沉积)金刚石具有极高的导热率(可高达1800Wm-1K-1),可迅速将半导体激光器工作中产生的热量导出,而且还具有良好的绝缘性和物理化学稳定性,可实现持久的使用寿命。目前的金刚石热沉主要是通过CVD技术沉积出金刚石厚膜,再经过抛光,切割成合适的尺寸制作的板状结构。将金刚石热沉加工为微通道结构,可大大增加比表面积,更有效的控制半导体激光器的工作温度。然而,金刚石具有极高的硬度和耐腐蚀性,难以采用机械或化学工艺加工成微通道结构。
发明内容
本发明的目的是针对现有技术中存在的金刚石的硬度和耐腐蚀性高,难以用机械或化学方法加工成通道结构的问题,而提供一种金刚石微通道热沉的制备方法,通过改进CVD金刚石的制备工艺,研制出适用于高功率半导体激光器的微通道热沉。
本发明的另一方面是提供利用所述方法制备得到的金刚石微通道热沉,其具有较大的比表面积。
本发明的另一方面是提供所述金刚石微通道热沉在半导体激光器中的应用,尤其适用于高功率的半导体激光器,有助于提高微通道热沉对半导体激光器的热管理技术,从而提高半导体激光器线阵工作的可靠性。
本发明的另一方面是提供一种半导体激光器,其芯片上焊接有所述金刚石微通道热沉,提高芯片的散热速度,稳定性高。
为实现本发明的目的所采用的技术方案是:
一种金刚石微通道热沉的制备方法,包括以下步骤:
步骤1,抛光Si片,清洗并干燥;
步骤2,以步骤1得到的Si片作为沉积类金刚石薄膜(DLC)的衬底,将带有微通道栅孔的(不锈钢)掩模版覆盖于所述Si片的上表面,通过磁激励射频等离子体增强化学气相沉积(M-RF-PECVD)方法在所述微通道栅孔内沉积类金刚石薄膜,取下(不锈钢)掩模版,得到DLC/Si片;
步骤3,利用湿法刻蚀对所述DLC/Si片进行刻蚀,使其表面形成微通道沟槽,清洗干燥,得到带有微通道沟槽的DLC/Si片;
步骤4,对所述带有微通道沟槽的DLC/Si片的表面进行等离子体刻蚀处理,以去除Si片表面的DLC薄膜层和氧化层,得到带有微通道沟槽的Si片;
步骤5,以所述带有微通道沟槽的Si片作为沉积金刚石膜的衬底,通过电子辅助化学气相沉积(EACVD)方法制备金刚石厚膜,得到Si/金刚石厚膜;
步骤6,对所述Si/金刚石厚膜的金刚石厚膜进行抛光;
步骤7,利用湿法刻蚀去除所述Si/金刚石厚膜中作为衬底的Si片,得到带有微通道栅孔的自支撑金刚石片,清洗干燥,得到金刚石微通道热沉。
在上述技术方案中,所述步骤1中的清洗为:将抛光后的Si片依次置于去离子水、丙酮、乙醇和去离子水中进行超声振荡清洗,每次超声振荡清洗的时间为5-15min;所述步骤1中的干燥为:利用流动的氮气吹干。
在上述技术方案中,所述步骤2中类金刚石薄膜的厚度为1~2μm,所述步骤3中微通道沟槽的深度为300~400μm。
在上述技术方案中,所述步骤3和所述步骤7中的湿法刻蚀均采用HF-HNO3体系溶液作为刻蚀液进行刻蚀(通过调整浓度可控制刻蚀速率),所述步骤3中,将所述刻蚀液滴加到DLC/Si片表面对未掩蔽的Si片进行刻蚀,所述步骤7中将所述刻蚀液滴加到Si/金刚石厚膜的Si片一侧对作为衬底的Si片进行刻蚀。
在上述技术方案中,所述步骤3中的清洗为利用去离子水清洗进行超声清洗,所述步骤3中的干燥为利用流动的氮气吹干。
在上述技术方案中,所述步骤4中的等离子体刻蚀处理具体为:通过Ar等离子体对所述带有微通道沟槽的DLC/Si片进行刻蚀处理,Ar流量为2~5sccm,加速电压为400~500V,射频功率为30~100W,处理时间为15~30min。
在上述技术方案中,所述步骤5中的电子辅助化学气相沉积方法具体为:将Si片放入沉积室,本底真空抽至0.01~0.1Pa,通入H2和CH4的混合气体,并设置金刚石膜的沉积工艺条件为:所述混合气体中CH4的浓度为1~3%,沉积气压为3~5kPa,衬底温度为800~1100℃,加速偏压200~300V,加速电流为12~18A,沉积时间为20~30h。
在上述技术方案中,所述步骤6中抛光采用化学机械抛光法,具体包括以下步骤:
步骤1,配置抛光液:向去离子水中加入浓磷酸和高锰酸钾作为氧化剂,再加入金刚石粉作为磨料,搅拌分散均匀;
步骤2,将所述金刚石膜/Si片放置于抛光机的磨盘上,抛光压力为0.3-0.5MPa,设置抛光盘转速为100-200rpm,磨盘温度为60~90℃,(使用蠕动泵)以2~3ml/s的速度滴加所述抛光液,抛光时间为300~500min。
在上述技术方案中,所述步骤1中去离子水、浓磷酸、高锰酸钾和金刚石粉的质量比为10:(1-3):(0.5-1.5):(0.5-1.5),金刚石粉的粒径为0.5-1.5μm。
本发明的另一方面,还包括利用所述制备方法得到的金刚石微通道热沉。
在上述技术方案中,所述金刚石微通道热沉中,微通道栅孔的深度为300~400μm,微通道长度4~5mm,宽度200~500μm。
本发明的另一方面,还包括所述金刚石微通道热沉在半导体激光器中的应用。
本发明的另一方面,一种半导体激光器,安装于所述金刚石微通道热沉。
与现有技术相比,本发明的有益效果是:
1.本发明的金刚石微通道热沉不仅具有极高的导热率(约为1922Wm-1K-1),而且结构上具有大的比表面积,微通道结构可使热沉与冷却液接触的比表面积增加一倍。有助于对提高半导体激光器的散热性能,微通道结构可使热沉与冷却液接触的比表面积增加一倍。
2.本发明的金刚石微通道热沉具有良好的绝缘特性和抗腐蚀性,可适用于水冷微通道热沉的半导体激光器封装,避免微通道水路内壁发生电化学腐蚀,提高了微通道热沉的使用寿命。
3.本发明通过掩模版法和刻蚀工艺使金刚石膜的形核面形成微通道结构,该方法可在常温下进行,工艺简单且容易控制,可以避免激光刻蚀工艺对金刚石热沉造成的高温损伤和表面碳化。
4.采用等离子体对Si衬底预处理,不仅可以去除Si表面的DLC薄膜层和氧化层,而且可以使Si片表面形成均匀密集的缺陷,有助于提高金刚石形核密度。
附图说明
图1为Si衬底表面覆盖掩模版的示意图;
图2为Si衬底表面覆盖掩模版沉积类金刚石的示意图;
图3为Si衬底表面的类金刚石薄膜微通道图案的示意图;
图4为Si衬底表面刻蚀后形成的微通道沟槽的示意图;
图5为Si衬底表面等离子体处理后的示意图;
图6为Si表面沉积CVD金刚石膜的示意图;
图7为抛光后的CVD金刚石膜的示意图;
图8为制备出的微通道结构的CVD金刚石热沉的示意图。
图9所示为金刚石微通道热沉的导热率。
其中,1-Si片;2-不锈钢掩模版;3-类金刚石膜;4-金刚石膜。
具体实施方式
以下结合具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
金刚石微通道热沉的制备方法,包括以下步骤:
步骤一、选择厚度2mm的抛光Si片1作为衬底,根据半导体激光器封装工艺的要求将Si片1切割为10.8×5mm2,依次置于去离子水、丙酮、乙醇和离子水中进行超声振荡清洗10min,然后用流动的氮气吹干。
步骤二、将步骤一清洗好的Si片1作为衬底沉积类金刚石薄膜(DLC)3,将带有微通道栅孔的不锈钢掩模版2覆盖于Si片1表面,如图1所示。通过磁激励射频等离子体增强化学气相沉积(M-RF-PECVD)设备沉积类金刚石薄膜3,如图2所示。将Si片1放入沉积室,本底真空抽至0.01Pa,通入Ar和CH4,CH4浓度为20%,沉积温度为常温,射频功率为50W,沉积时间为30min。沉积结束后,取下掩模版,可制备出具有微通道图案的类金刚石薄膜3,如图3所示,得到DLC/Si片。
步骤三、通过湿法刻蚀技术对步骤二制备的DLC/Si片进行刻蚀,使其表面形成微通道沟槽。配置HF-HNO3体系溶液作为刻蚀液,将10ml浓HNO3和30ml浓HF混合,并稀释到适当浓度以控制刻蚀速率约为10μm/min,并将其充分搅拌均匀。将刻蚀液滴加到DLC/Si片的表面,对无掩蔽的Si片进行刻蚀,刻蚀深度为400μm,该工艺可参见图4。刻蚀结束后,将刻蚀有微通道沟槽的DLC/Si片在离子水中进行超声清洗10min,并用流动的氮气吹干。
步骤四、将步骤三的蚀有微通道沟槽的DLC/Si片放置于等离子体刻蚀设备中进行等离子体刻蚀处理。在0.1Pa的气压下,通过Ar等离子体对蚀有微通道沟槽的DLC/Si片进行处理,Ar流量为2sccm,加速电压为400V,射频功率为100W,处理时间为30min,该工艺可参见图5。
步骤五、对步骤四处理后的Si片作为沉积金刚石膜的衬底,通过电子辅助化学气相沉积(EACVD)技术制备金刚石厚膜。将步骤四处理后的Si片放入沉积室,本底真空抽至0.01Pa,通入H2和CH4的混合气体,并设置金刚石膜的沉积工艺条件,CH4浓度为1.5%,沉积气压为4kPa,衬底温度为1000℃,加速偏压300V,加速电流为15A,沉积时间为30h,在Si片1表面制备出金刚石厚膜4,Si/金刚石厚膜,如图6所示。
步骤六、通过化学机械抛光技术对步骤五得到的Si/金刚石厚膜进行抛光,使其表面实现平坦化。配置抛光液,1000ml去离子水作为溶剂加入200浓磷酸,100g高锰酸钾作为氧化剂,100g粒径为1μm的金刚石粉作为磨料,持续搅拌,使其均匀分散。金刚石膜4/Si片1放置于抛光机的磨盘上,抛光压力为0.4MPa,设置抛光盘转速为150rpm,磨盘温度为90℃,抛光时间为500min,得到表面平坦化的Si/金刚石厚膜,如图7所示。
步骤七、将步骤六抛光好的Si/金刚石厚膜采用HF-HNO3体系溶液进行刻蚀,使Si片1被去除,得到带有微通道栅孔的自支撑金刚石片4。刻蚀结束后,采用去离子水超声清洗,得到金刚石微通道热沉4,如图8所示。
依照本发明内容进行工艺参数调整,均可制备本发明的金刚石微通道热沉,并表现出与实施例1基本一致的性能。
实施例2
一种利用如实施例1所述的制备方法得到的金刚石微通道热沉,所述金刚石微通道热沉的尺寸为10.8×5mm2。
热传导系数计算公式为:
K=ρ·Cρ·α (2)
其中ρ为测量物体的密度,Cρ为其比热容。经计算,导热率为1922Wm-1K-1。
实施例3
一种半导体激光器,所述半导体激光器的芯片焊接于所述金刚石微通道热沉,可提高其芯片的散热效率,提高半导体激光器工作的稳定性。
以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (10)
1.一种金刚石微通道热沉的制备方法,其特征在于,包括以下步骤:
步骤1,抛光Si片,清洗并干燥;
步骤2,以步骤1得到的Si片作为沉积类金刚石薄膜的衬底,将带有微通道栅孔的掩模版覆盖于所述Si片的上表面,通过磁激励射频等离子体增强化学气相沉积方法在所述微通道栅孔内沉积类金刚石薄膜,取下掩模版,得到DLC/Si片;
步骤3,利用湿法刻蚀对所述DLC/Si片进行刻蚀,使其表面形成微通道沟槽,清洗干燥,得到带有微通道沟槽的DLC/Si片;
步骤4,对所述带有微通道沟槽的DLC/Si片的表面进行等离子体刻蚀处理,以去除Si片表面的DLC薄膜层和氧化层,得到带有微通道沟槽的Si片;
步骤5,以所述带有微通道沟槽的Si片作为沉积金刚石膜的衬底,通过电子辅助化学气相沉积方法制备金刚石厚膜,得到Si/金刚石厚膜;
步骤6,对所述Si/金刚石厚膜的金刚石厚膜进行抛光;
步骤7,利用湿法刻蚀去除所述Si/金刚石厚膜中作为衬底的Si片,得到带有微通道栅孔的自支撑金刚石片,清洗干燥,得到金刚石微通道热沉。
2.如权利要求1所述的制备方法,其特征在于,所述步骤1中的清洗为:将抛光后的Si片依次置于去离子水、丙酮、乙醇和去离子水中进行超声振荡清洗,每次超声振荡清洗的时间为5-15min;所述步骤1中的干燥为:利用流动的氮气吹干;
所述步骤1中去离子水、浓磷酸、高锰酸钾和金刚石粉的质量比为10:(1-3):(0.5-1.5):(0.5-1.5),金刚石粉的粒径为0.5-1.5μm。
3.如权利要求1所述的制备方法,其特征在于,所述步骤2中类金刚石薄膜的厚度为1~2μm,所述步骤3中微通道沟槽的深度为300~400μm。
4.如权利要求1所述的制备方法,其特征在于,所述步骤3和所述步骤7中的湿法刻蚀均采用HF-HNO3体系溶液作为刻蚀液进行刻蚀,所述步骤3中,将所述刻蚀液滴加到DLC/Si片表面对未掩蔽的Si片进行刻蚀,所述步骤7中将所述刻蚀液滴加到Si/金刚石厚膜的Si片一侧对作为衬底的Si片进行刻蚀。
5.如权利要求1所述的制备方法,其特征在于,所述步骤3中的清洗为利用去离子水清洗进行超声清洗,所述步骤3中的干燥为利用流动的氮气吹干;
所述步骤4中的等离子体刻蚀处理具体为:通过Ar等离子体对所述带有微通道沟槽的DLC/Si片进行刻蚀处理,Ar流量为2~5sccm,加速电压为400~500V,射频功率为30~100W,处理时间为15~30min。
6.如权利要求1所述的制备方法,其特征在于,所述步骤5中的电子辅助化学气相沉积方法具体为:将Si片放入沉积室,本底真空抽至0.01~0.1Pa,通入H2和CH4的混合气体,并设置金刚石膜的沉积工艺条件为:所述混合气体中CH4的浓度为1~3%,沉积气压为3~5kPa,衬底温度为800~1100℃,加速偏压200~300V,加速电流为12~18A,沉积时间为20~30h。
7.如权利要求1所述的制备方法,其特征在于,所述步骤6中抛光采用化学机械抛光法,具体包括以下步骤:
步骤1,配置抛光液:向去离子水中加入浓磷酸和高锰酸钾作为氧化剂,再加入金刚石粉作为磨料,搅拌分散均匀;
步骤2,将所述金刚石膜/Si片放置于抛光机的磨盘上,抛光压力为0.3-0.5MPa,设置抛光盘转速为100-200rpm,磨盘温度为60~90℃,以2~3ml/s的速度滴加所述抛光液,抛光时间为300~500min。
8.如权利要求1-7中任一项所述制备方法得到的金刚石微通道热沉。
9.如权利要求8所述的金刚石微通道热沉在半导体激光器中的应用。
10.一种半导体激光器,安装于如权利要求8所述的金刚石微通道热沉。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010140690.6A CN113337806B (zh) | 2020-03-03 | 2020-03-03 | 金刚石微通道热沉、制备方法和应用以及半导体激光器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010140690.6A CN113337806B (zh) | 2020-03-03 | 2020-03-03 | 金刚石微通道热沉、制备方法和应用以及半导体激光器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113337806A true CN113337806A (zh) | 2021-09-03 |
CN113337806B CN113337806B (zh) | 2022-08-09 |
Family
ID=77467430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010140690.6A Active CN113337806B (zh) | 2020-03-03 | 2020-03-03 | 金刚石微通道热沉、制备方法和应用以及半导体激光器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113337806B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114142338A (zh) * | 2021-11-19 | 2022-03-04 | 北京大学 | 一种改善蓝、绿光半导体激光器散热性能的方法 |
CN114336266A (zh) * | 2021-12-30 | 2022-04-12 | 中国科学院长春光学精密机械与物理研究所 | 高效散热型半导体激光器及其制作方法 |
CN114374144A (zh) * | 2022-01-18 | 2022-04-19 | 北京工业大学 | 一种微通道芯片的液氮循环散热系统及制备方法 |
CN114655952A (zh) * | 2021-12-13 | 2022-06-24 | 中国电子科技集团公司第十二研究所 | 用于微通道板的电子倍增材料、其制备、由其制备得到的微通道板及微通道板的制备方法 |
CN114921766A (zh) * | 2022-05-26 | 2022-08-19 | 太原理工大学 | 一种金刚石/金属复合散热片及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5874775A (en) * | 1994-08-03 | 1999-02-23 | Sumitomo Electric Industries, Ltd. | Diamond heat sink including microchannel therein and methods for manufacturing diamond heat sinks |
US20120288698A1 (en) * | 2011-03-23 | 2012-11-15 | Advanced Diamond Technology, Inc | Method of fabrication, device structure and submount comprising diamond on metal substrate for thermal dissipation |
CN108682662A (zh) * | 2018-05-21 | 2018-10-19 | 北京科技大学 | 一种超高热流密度散热用金刚石微通道热沉的制备方法 |
CN110482482A (zh) * | 2019-07-24 | 2019-11-22 | 北京科技大学 | 一种绝缘图形化高导热金刚石散热器件的制备方法 |
CN110557936A (zh) * | 2019-10-11 | 2019-12-10 | 陕西科技大学 | 一种金刚石微通道Cu基CVD金刚石热沉片及其制备方法 |
-
2020
- 2020-03-03 CN CN202010140690.6A patent/CN113337806B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5874775A (en) * | 1994-08-03 | 1999-02-23 | Sumitomo Electric Industries, Ltd. | Diamond heat sink including microchannel therein and methods for manufacturing diamond heat sinks |
US20120288698A1 (en) * | 2011-03-23 | 2012-11-15 | Advanced Diamond Technology, Inc | Method of fabrication, device structure and submount comprising diamond on metal substrate for thermal dissipation |
CN108682662A (zh) * | 2018-05-21 | 2018-10-19 | 北京科技大学 | 一种超高热流密度散热用金刚石微通道热沉的制备方法 |
CN110482482A (zh) * | 2019-07-24 | 2019-11-22 | 北京科技大学 | 一种绝缘图形化高导热金刚石散热器件的制备方法 |
CN110557936A (zh) * | 2019-10-11 | 2019-12-10 | 陕西科技大学 | 一种金刚石微通道Cu基CVD金刚石热沉片及其制备方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114142338A (zh) * | 2021-11-19 | 2022-03-04 | 北京大学 | 一种改善蓝、绿光半导体激光器散热性能的方法 |
CN114655952A (zh) * | 2021-12-13 | 2022-06-24 | 中国电子科技集团公司第十二研究所 | 用于微通道板的电子倍增材料、其制备、由其制备得到的微通道板及微通道板的制备方法 |
CN114655952B (zh) * | 2021-12-13 | 2023-09-12 | 中国电子科技集团公司第十二研究所 | 用于微通道板的电子倍增材料、其制备、由其制备得到的微通道板及微通道板的制备方法 |
CN114336266A (zh) * | 2021-12-30 | 2022-04-12 | 中国科学院长春光学精密机械与物理研究所 | 高效散热型半导体激光器及其制作方法 |
CN114374144A (zh) * | 2022-01-18 | 2022-04-19 | 北京工业大学 | 一种微通道芯片的液氮循环散热系统及制备方法 |
CN114921766A (zh) * | 2022-05-26 | 2022-08-19 | 太原理工大学 | 一种金刚石/金属复合散热片及其制备方法 |
CN114921766B (zh) * | 2022-05-26 | 2023-10-13 | 太原理工大学 | 一种金刚石/金属复合散热片及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113337806B (zh) | 2022-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113337806B (zh) | 金刚石微通道热沉、制备方法和应用以及半导体激光器 | |
US7517803B2 (en) | Silicon parts having reduced metallic impurity concentration for plasma reaction chambers | |
JP5889187B2 (ja) | エッチング方法 | |
JP5065660B2 (ja) | 半導体処理 | |
JP4401290B2 (ja) | 酸化膜形成方法および電子デバイス材料の製造方法 | |
JP2010157754A (ja) | プラズマ反応チャンバ用シリコン部品 | |
CN111009496B (zh) | 一种具有高热导率的半导体衬底及其制备方法 | |
KR101861709B1 (ko) | 플라즈마 식각 방법 | |
CN103594306B (zh) | 一种金刚石/金属复合材料夹持杆及制备方法 | |
CN103489760A (zh) | SiC衬底同质外延碳硅双原子层薄膜的方法 | |
CN104347389A (zh) | 等离子体刻蚀方法 | |
CN102832160B (zh) | 一种soi硅片的制备方法 | |
CN108611680B (zh) | 一种高速高质量单晶金刚石的生长方法 | |
CN103474332B (zh) | 提升网状生长Web Growth的刻蚀方法 | |
CN113355650B (zh) | AlN-金刚石热沉、制备方法和应用以及半导体激光器封装件 | |
CN114823576A (zh) | 一种基于复合衬底的场效应晶体管及其制作方法 | |
CN109326952B (zh) | 一种高电流密度、高散热系数的半导体激光器制备方法 | |
US20010032708A1 (en) | Electrode plate for plasma etching equipment for forming uniformly-etched surface | |
CN118610862A (zh) | 一种具有散热结构的碟片激光器的制备方法 | |
CN111261509B (zh) | 在硅基体中蚀刻沟槽的方法及其应用 | |
CN117293085A (zh) | 一种芯片划片方法 | |
CN115188809A (zh) | 一种多槽式金刚石衬底环绕的AlN/GaN异质结及其制备方法 | |
JP4350120B2 (ja) | ダイヤモンドのエッチング方法 | |
CN114758996A (zh) | 一种高导热低流体阻力金刚石微通道热沉片的制备方法 | |
楊旭 | Development of highly-efficient slurryless |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |