CN113337806A - 金刚石微通道热沉、制备方法和应用以及半导体激光器 - Google Patents

金刚石微通道热沉、制备方法和应用以及半导体激光器 Download PDF

Info

Publication number
CN113337806A
CN113337806A CN202010140690.6A CN202010140690A CN113337806A CN 113337806 A CN113337806 A CN 113337806A CN 202010140690 A CN202010140690 A CN 202010140690A CN 113337806 A CN113337806 A CN 113337806A
Authority
CN
China
Prior art keywords
diamond
sheet
micro
dlc
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010140690.6A
Other languages
English (en)
Other versions
CN113337806B (zh
Inventor
戴玮
曹剑
徐晓明
张金玉
王雪梅
李嘉强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Physical and Chemical Engineering of Nuclear Industry
Original Assignee
Research Institute of Physical and Chemical Engineering of Nuclear Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Physical and Chemical Engineering of Nuclear Industry filed Critical Research Institute of Physical and Chemical Engineering of Nuclear Industry
Priority to CN202010140690.6A priority Critical patent/CN113337806B/zh
Publication of CN113337806A publication Critical patent/CN113337806A/zh
Application granted granted Critical
Publication of CN113337806B publication Critical patent/CN113337806B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02423Liquid cooling, e.g. a liquid cools a mount of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02461Structure or details of the laser chip to manipulate the heat flow, e.g. passive layers in the chip with a low heat conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • H01S5/02484Sapphire or diamond heat spreaders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种金刚石微通道热沉、制备方法和应用以及半导体激光器,金刚石微通道热沉的制备方法包括以下步骤:步骤1,抛光Si片清洗并干燥;步骤2,将带有微通道栅孔的掩模版覆盖于Si片上,通过M‑RF‑PECVD设备在微通道栅孔内沉积类金刚石薄膜,取下掩模版,得到DLC/Si片;步骤3,利用湿法刻蚀对DLC/Si片进行刻蚀,使其表面形成微通道沟槽;步骤4,进行等离子体刻蚀处理,以去除Si片表面的DLC薄膜层和氧化层;步骤5,通过EACVD方法制备金刚石厚膜,得到Si/金刚石厚膜;步骤6,对金刚石厚膜进行抛光;步骤7,利用湿法刻蚀去除作为衬底的Si片,清洗干燥,得到金刚石微通道热沉。本发明的金刚石微通道热沉可增加与冷却液接触的比表面积,可有效提高半导体激光器的散热性能。

Description

金刚石微通道热沉、制备方法和应用以及半导体激光器
技术领域
本发明涉及半导体激光器热沉制备工艺技术领域,特别是涉及一种半导体激光器微通道热沉制备方法。
背景技术
随着半导体激光器制造工艺的日趋成熟,已广泛用于泵浦固体激光器、工业加工、医疗美容和军事科技等领域。在对半导体激光器的大功率和小体积的应用需求驱动下,特别是对于固体激光器泵浦模块的改进具有重要意义。然而,半导体激光器的电光转换效率约50%~60%,对于腔长1mm,19管芯的线阵,在输出40W光功率的同时也会等量的热功率,造成有源区小的面积内产生极大的热通量,特别在连续波的模式下工作,会在短时间内造成极大的热积累,导致电光转换效率下降,使工作结温进一步升高,从而引发腔面灾变性光学损伤,严重抑制输出功率和使用寿命。因此,研制导热率高,比表面积大的热沉,可有效提高散热效率,降低工作结温度,有助于提高半导体激光器的可靠性。
选择微通道结构的热沉,有助于增加与冷却液体接触的比表面积,提高对工作器件的散热性能。目前的半导体激光器封装多采用Si或Cu作为微通道热沉材料,虽然Si容易加工成为通道结构,然而其导热率为83Wm-1K-1,难以将器件产生的热量导出。虽然Cu的导热率较高,然而其导体特性,使其在工作中与冷却液接触发生电化学反应,导致管路发生腐蚀堵塞,使热沉寿命下降,无法正常为器件提供冷却。
CVD(化学气相沉积)金刚石具有极高的导热率(可高达1800Wm-1K-1),可迅速将半导体激光器工作中产生的热量导出,而且还具有良好的绝缘性和物理化学稳定性,可实现持久的使用寿命。目前的金刚石热沉主要是通过CVD技术沉积出金刚石厚膜,再经过抛光,切割成合适的尺寸制作的板状结构。将金刚石热沉加工为微通道结构,可大大增加比表面积,更有效的控制半导体激光器的工作温度。然而,金刚石具有极高的硬度和耐腐蚀性,难以采用机械或化学工艺加工成微通道结构。
发明内容
本发明的目的是针对现有技术中存在的金刚石的硬度和耐腐蚀性高,难以用机械或化学方法加工成通道结构的问题,而提供一种金刚石微通道热沉的制备方法,通过改进CVD金刚石的制备工艺,研制出适用于高功率半导体激光器的微通道热沉。
本发明的另一方面是提供利用所述方法制备得到的金刚石微通道热沉,其具有较大的比表面积。
本发明的另一方面是提供所述金刚石微通道热沉在半导体激光器中的应用,尤其适用于高功率的半导体激光器,有助于提高微通道热沉对半导体激光器的热管理技术,从而提高半导体激光器线阵工作的可靠性。
本发明的另一方面是提供一种半导体激光器,其芯片上焊接有所述金刚石微通道热沉,提高芯片的散热速度,稳定性高。
为实现本发明的目的所采用的技术方案是:
一种金刚石微通道热沉的制备方法,包括以下步骤:
步骤1,抛光Si片,清洗并干燥;
步骤2,以步骤1得到的Si片作为沉积类金刚石薄膜(DLC)的衬底,将带有微通道栅孔的(不锈钢)掩模版覆盖于所述Si片的上表面,通过磁激励射频等离子体增强化学气相沉积(M-RF-PECVD)方法在所述微通道栅孔内沉积类金刚石薄膜,取下(不锈钢)掩模版,得到DLC/Si片;
步骤3,利用湿法刻蚀对所述DLC/Si片进行刻蚀,使其表面形成微通道沟槽,清洗干燥,得到带有微通道沟槽的DLC/Si片;
步骤4,对所述带有微通道沟槽的DLC/Si片的表面进行等离子体刻蚀处理,以去除Si片表面的DLC薄膜层和氧化层,得到带有微通道沟槽的Si片;
步骤5,以所述带有微通道沟槽的Si片作为沉积金刚石膜的衬底,通过电子辅助化学气相沉积(EACVD)方法制备金刚石厚膜,得到Si/金刚石厚膜;
步骤6,对所述Si/金刚石厚膜的金刚石厚膜进行抛光;
步骤7,利用湿法刻蚀去除所述Si/金刚石厚膜中作为衬底的Si片,得到带有微通道栅孔的自支撑金刚石片,清洗干燥,得到金刚石微通道热沉。
在上述技术方案中,所述步骤1中的清洗为:将抛光后的Si片依次置于去离子水、丙酮、乙醇和去离子水中进行超声振荡清洗,每次超声振荡清洗的时间为5-15min;所述步骤1中的干燥为:利用流动的氮气吹干。
在上述技术方案中,所述步骤2中类金刚石薄膜的厚度为1~2μm,所述步骤3中微通道沟槽的深度为300~400μm。
在上述技术方案中,所述步骤3和所述步骤7中的湿法刻蚀均采用HF-HNO3体系溶液作为刻蚀液进行刻蚀(通过调整浓度可控制刻蚀速率),所述步骤3中,将所述刻蚀液滴加到DLC/Si片表面对未掩蔽的Si片进行刻蚀,所述步骤7中将所述刻蚀液滴加到Si/金刚石厚膜的Si片一侧对作为衬底的Si片进行刻蚀。
在上述技术方案中,所述步骤3中的清洗为利用去离子水清洗进行超声清洗,所述步骤3中的干燥为利用流动的氮气吹干。
在上述技术方案中,所述步骤4中的等离子体刻蚀处理具体为:通过Ar等离子体对所述带有微通道沟槽的DLC/Si片进行刻蚀处理,Ar流量为2~5sccm,加速电压为400~500V,射频功率为30~100W,处理时间为15~30min。
在上述技术方案中,所述步骤5中的电子辅助化学气相沉积方法具体为:将Si片放入沉积室,本底真空抽至0.01~0.1Pa,通入H2和CH4的混合气体,并设置金刚石膜的沉积工艺条件为:所述混合气体中CH4的浓度为1~3%,沉积气压为3~5kPa,衬底温度为800~1100℃,加速偏压200~300V,加速电流为12~18A,沉积时间为20~30h。
在上述技术方案中,所述步骤6中抛光采用化学机械抛光法,具体包括以下步骤:
步骤1,配置抛光液:向去离子水中加入浓磷酸和高锰酸钾作为氧化剂,再加入金刚石粉作为磨料,搅拌分散均匀;
步骤2,将所述金刚石膜/Si片放置于抛光机的磨盘上,抛光压力为0.3-0.5MPa,设置抛光盘转速为100-200rpm,磨盘温度为60~90℃,(使用蠕动泵)以2~3ml/s的速度滴加所述抛光液,抛光时间为300~500min。
在上述技术方案中,所述步骤1中去离子水、浓磷酸、高锰酸钾和金刚石粉的质量比为10:(1-3):(0.5-1.5):(0.5-1.5),金刚石粉的粒径为0.5-1.5μm。
本发明的另一方面,还包括利用所述制备方法得到的金刚石微通道热沉。
在上述技术方案中,所述金刚石微通道热沉中,微通道栅孔的深度为300~400μm,微通道长度4~5mm,宽度200~500μm。
本发明的另一方面,还包括所述金刚石微通道热沉在半导体激光器中的应用。
本发明的另一方面,一种半导体激光器,安装于所述金刚石微通道热沉。
与现有技术相比,本发明的有益效果是:
1.本发明的金刚石微通道热沉不仅具有极高的导热率(约为1922Wm-1K-1),而且结构上具有大的比表面积,微通道结构可使热沉与冷却液接触的比表面积增加一倍。有助于对提高半导体激光器的散热性能,微通道结构可使热沉与冷却液接触的比表面积增加一倍。
2.本发明的金刚石微通道热沉具有良好的绝缘特性和抗腐蚀性,可适用于水冷微通道热沉的半导体激光器封装,避免微通道水路内壁发生电化学腐蚀,提高了微通道热沉的使用寿命。
3.本发明通过掩模版法和刻蚀工艺使金刚石膜的形核面形成微通道结构,该方法可在常温下进行,工艺简单且容易控制,可以避免激光刻蚀工艺对金刚石热沉造成的高温损伤和表面碳化。
4.采用等离子体对Si衬底预处理,不仅可以去除Si表面的DLC薄膜层和氧化层,而且可以使Si片表面形成均匀密集的缺陷,有助于提高金刚石形核密度。
附图说明
图1为Si衬底表面覆盖掩模版的示意图;
图2为Si衬底表面覆盖掩模版沉积类金刚石的示意图;
图3为Si衬底表面的类金刚石薄膜微通道图案的示意图;
图4为Si衬底表面刻蚀后形成的微通道沟槽的示意图;
图5为Si衬底表面等离子体处理后的示意图;
图6为Si表面沉积CVD金刚石膜的示意图;
图7为抛光后的CVD金刚石膜的示意图;
图8为制备出的微通道结构的CVD金刚石热沉的示意图。
图9所示为金刚石微通道热沉的导热率。
其中,1-Si片;2-不锈钢掩模版;3-类金刚石膜;4-金刚石膜。
具体实施方式
以下结合具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
金刚石微通道热沉的制备方法,包括以下步骤:
步骤一、选择厚度2mm的抛光Si片1作为衬底,根据半导体激光器封装工艺的要求将Si片1切割为10.8×5mm2,依次置于去离子水、丙酮、乙醇和离子水中进行超声振荡清洗10min,然后用流动的氮气吹干。
步骤二、将步骤一清洗好的Si片1作为衬底沉积类金刚石薄膜(DLC)3,将带有微通道栅孔的不锈钢掩模版2覆盖于Si片1表面,如图1所示。通过磁激励射频等离子体增强化学气相沉积(M-RF-PECVD)设备沉积类金刚石薄膜3,如图2所示。将Si片1放入沉积室,本底真空抽至0.01Pa,通入Ar和CH4,CH4浓度为20%,沉积温度为常温,射频功率为50W,沉积时间为30min。沉积结束后,取下掩模版,可制备出具有微通道图案的类金刚石薄膜3,如图3所示,得到DLC/Si片。
步骤三、通过湿法刻蚀技术对步骤二制备的DLC/Si片进行刻蚀,使其表面形成微通道沟槽。配置HF-HNO3体系溶液作为刻蚀液,将10ml浓HNO3和30ml浓HF混合,并稀释到适当浓度以控制刻蚀速率约为10μm/min,并将其充分搅拌均匀。将刻蚀液滴加到DLC/Si片的表面,对无掩蔽的Si片进行刻蚀,刻蚀深度为400μm,该工艺可参见图4。刻蚀结束后,将刻蚀有微通道沟槽的DLC/Si片在离子水中进行超声清洗10min,并用流动的氮气吹干。
步骤四、将步骤三的蚀有微通道沟槽的DLC/Si片放置于等离子体刻蚀设备中进行等离子体刻蚀处理。在0.1Pa的气压下,通过Ar等离子体对蚀有微通道沟槽的DLC/Si片进行处理,Ar流量为2sccm,加速电压为400V,射频功率为100W,处理时间为30min,该工艺可参见图5。
步骤五、对步骤四处理后的Si片作为沉积金刚石膜的衬底,通过电子辅助化学气相沉积(EACVD)技术制备金刚石厚膜。将步骤四处理后的Si片放入沉积室,本底真空抽至0.01Pa,通入H2和CH4的混合气体,并设置金刚石膜的沉积工艺条件,CH4浓度为1.5%,沉积气压为4kPa,衬底温度为1000℃,加速偏压300V,加速电流为15A,沉积时间为30h,在Si片1表面制备出金刚石厚膜4,Si/金刚石厚膜,如图6所示。
步骤六、通过化学机械抛光技术对步骤五得到的Si/金刚石厚膜进行抛光,使其表面实现平坦化。配置抛光液,1000ml去离子水作为溶剂加入200浓磷酸,100g高锰酸钾作为氧化剂,100g粒径为1μm的金刚石粉作为磨料,持续搅拌,使其均匀分散。金刚石膜4/Si片1放置于抛光机的磨盘上,抛光压力为0.4MPa,设置抛光盘转速为150rpm,磨盘温度为90℃,抛光时间为500min,得到表面平坦化的Si/金刚石厚膜,如图7所示。
步骤七、将步骤六抛光好的Si/金刚石厚膜采用HF-HNO3体系溶液进行刻蚀,使Si片1被去除,得到带有微通道栅孔的自支撑金刚石片4。刻蚀结束后,采用去离子水超声清洗,得到金刚石微通道热沉4,如图8所示。
依照本发明内容进行工艺参数调整,均可制备本发明的金刚石微通道热沉,并表现出与实施例1基本一致的性能。
实施例2
一种利用如实施例1所述的制备方法得到的金刚石微通道热沉,所述金刚石微通道热沉的尺寸为10.8×5mm2
采用光热偏转薄膜热导测试系统测量金刚石微通道热沉的导热率,检测光偏转量的相位
Figure BDA0002398975940000051
与离开热源的距离r呈线性关系,如图9所示。
热传导系数计算公式为:
Figure BDA0002398975940000061
其中,
Figure BDA0002398975940000062
即为图线的斜率,ω为检测光的调制频率,可得到热传导系数α,从而热导率K为:
K=ρ·Cρ·α (2)
其中ρ为测量物体的密度,Cρ为其比热容。经计算,导热率为1922Wm-1K-1
实施例3
一种半导体激光器,所述半导体激光器的芯片焊接于所述金刚石微通道热沉,可提高其芯片的散热效率,提高半导体激光器工作的稳定性。
以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种金刚石微通道热沉的制备方法,其特征在于,包括以下步骤:
步骤1,抛光Si片,清洗并干燥;
步骤2,以步骤1得到的Si片作为沉积类金刚石薄膜的衬底,将带有微通道栅孔的掩模版覆盖于所述Si片的上表面,通过磁激励射频等离子体增强化学气相沉积方法在所述微通道栅孔内沉积类金刚石薄膜,取下掩模版,得到DLC/Si片;
步骤3,利用湿法刻蚀对所述DLC/Si片进行刻蚀,使其表面形成微通道沟槽,清洗干燥,得到带有微通道沟槽的DLC/Si片;
步骤4,对所述带有微通道沟槽的DLC/Si片的表面进行等离子体刻蚀处理,以去除Si片表面的DLC薄膜层和氧化层,得到带有微通道沟槽的Si片;
步骤5,以所述带有微通道沟槽的Si片作为沉积金刚石膜的衬底,通过电子辅助化学气相沉积方法制备金刚石厚膜,得到Si/金刚石厚膜;
步骤6,对所述Si/金刚石厚膜的金刚石厚膜进行抛光;
步骤7,利用湿法刻蚀去除所述Si/金刚石厚膜中作为衬底的Si片,得到带有微通道栅孔的自支撑金刚石片,清洗干燥,得到金刚石微通道热沉。
2.如权利要求1所述的制备方法,其特征在于,所述步骤1中的清洗为:将抛光后的Si片依次置于去离子水、丙酮、乙醇和去离子水中进行超声振荡清洗,每次超声振荡清洗的时间为5-15min;所述步骤1中的干燥为:利用流动的氮气吹干;
所述步骤1中去离子水、浓磷酸、高锰酸钾和金刚石粉的质量比为10:(1-3):(0.5-1.5):(0.5-1.5),金刚石粉的粒径为0.5-1.5μm。
3.如权利要求1所述的制备方法,其特征在于,所述步骤2中类金刚石薄膜的厚度为1~2μm,所述步骤3中微通道沟槽的深度为300~400μm。
4.如权利要求1所述的制备方法,其特征在于,所述步骤3和所述步骤7中的湿法刻蚀均采用HF-HNO3体系溶液作为刻蚀液进行刻蚀,所述步骤3中,将所述刻蚀液滴加到DLC/Si片表面对未掩蔽的Si片进行刻蚀,所述步骤7中将所述刻蚀液滴加到Si/金刚石厚膜的Si片一侧对作为衬底的Si片进行刻蚀。
5.如权利要求1所述的制备方法,其特征在于,所述步骤3中的清洗为利用去离子水清洗进行超声清洗,所述步骤3中的干燥为利用流动的氮气吹干;
所述步骤4中的等离子体刻蚀处理具体为:通过Ar等离子体对所述带有微通道沟槽的DLC/Si片进行刻蚀处理,Ar流量为2~5sccm,加速电压为400~500V,射频功率为30~100W,处理时间为15~30min。
6.如权利要求1所述的制备方法,其特征在于,所述步骤5中的电子辅助化学气相沉积方法具体为:将Si片放入沉积室,本底真空抽至0.01~0.1Pa,通入H2和CH4的混合气体,并设置金刚石膜的沉积工艺条件为:所述混合气体中CH4的浓度为1~3%,沉积气压为3~5kPa,衬底温度为800~1100℃,加速偏压200~300V,加速电流为12~18A,沉积时间为20~30h。
7.如权利要求1所述的制备方法,其特征在于,所述步骤6中抛光采用化学机械抛光法,具体包括以下步骤:
步骤1,配置抛光液:向去离子水中加入浓磷酸和高锰酸钾作为氧化剂,再加入金刚石粉作为磨料,搅拌分散均匀;
步骤2,将所述金刚石膜/Si片放置于抛光机的磨盘上,抛光压力为0.3-0.5MPa,设置抛光盘转速为100-200rpm,磨盘温度为60~90℃,以2~3ml/s的速度滴加所述抛光液,抛光时间为300~500min。
8.如权利要求1-7中任一项所述制备方法得到的金刚石微通道热沉。
9.如权利要求8所述的金刚石微通道热沉在半导体激光器中的应用。
10.一种半导体激光器,安装于如权利要求8所述的金刚石微通道热沉。
CN202010140690.6A 2020-03-03 2020-03-03 金刚石微通道热沉、制备方法和应用以及半导体激光器 Active CN113337806B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010140690.6A CN113337806B (zh) 2020-03-03 2020-03-03 金刚石微通道热沉、制备方法和应用以及半导体激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010140690.6A CN113337806B (zh) 2020-03-03 2020-03-03 金刚石微通道热沉、制备方法和应用以及半导体激光器

Publications (2)

Publication Number Publication Date
CN113337806A true CN113337806A (zh) 2021-09-03
CN113337806B CN113337806B (zh) 2022-08-09

Family

ID=77467430

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010140690.6A Active CN113337806B (zh) 2020-03-03 2020-03-03 金刚石微通道热沉、制备方法和应用以及半导体激光器

Country Status (1)

Country Link
CN (1) CN113337806B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114142338A (zh) * 2021-11-19 2022-03-04 北京大学 一种改善蓝、绿光半导体激光器散热性能的方法
CN114336266A (zh) * 2021-12-30 2022-04-12 中国科学院长春光学精密机械与物理研究所 高效散热型半导体激光器及其制作方法
CN114374144A (zh) * 2022-01-18 2022-04-19 北京工业大学 一种微通道芯片的液氮循环散热系统及制备方法
CN114655952A (zh) * 2021-12-13 2022-06-24 中国电子科技集团公司第十二研究所 用于微通道板的电子倍增材料、其制备、由其制备得到的微通道板及微通道板的制备方法
CN114921766A (zh) * 2022-05-26 2022-08-19 太原理工大学 一种金刚石/金属复合散热片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874775A (en) * 1994-08-03 1999-02-23 Sumitomo Electric Industries, Ltd. Diamond heat sink including microchannel therein and methods for manufacturing diamond heat sinks
US20120288698A1 (en) * 2011-03-23 2012-11-15 Advanced Diamond Technology, Inc Method of fabrication, device structure and submount comprising diamond on metal substrate for thermal dissipation
CN108682662A (zh) * 2018-05-21 2018-10-19 北京科技大学 一种超高热流密度散热用金刚石微通道热沉的制备方法
CN110482482A (zh) * 2019-07-24 2019-11-22 北京科技大学 一种绝缘图形化高导热金刚石散热器件的制备方法
CN110557936A (zh) * 2019-10-11 2019-12-10 陕西科技大学 一种金刚石微通道Cu基CVD金刚石热沉片及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874775A (en) * 1994-08-03 1999-02-23 Sumitomo Electric Industries, Ltd. Diamond heat sink including microchannel therein and methods for manufacturing diamond heat sinks
US20120288698A1 (en) * 2011-03-23 2012-11-15 Advanced Diamond Technology, Inc Method of fabrication, device structure and submount comprising diamond on metal substrate for thermal dissipation
CN108682662A (zh) * 2018-05-21 2018-10-19 北京科技大学 一种超高热流密度散热用金刚石微通道热沉的制备方法
CN110482482A (zh) * 2019-07-24 2019-11-22 北京科技大学 一种绝缘图形化高导热金刚石散热器件的制备方法
CN110557936A (zh) * 2019-10-11 2019-12-10 陕西科技大学 一种金刚石微通道Cu基CVD金刚石热沉片及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114142338A (zh) * 2021-11-19 2022-03-04 北京大学 一种改善蓝、绿光半导体激光器散热性能的方法
CN114655952A (zh) * 2021-12-13 2022-06-24 中国电子科技集团公司第十二研究所 用于微通道板的电子倍增材料、其制备、由其制备得到的微通道板及微通道板的制备方法
CN114655952B (zh) * 2021-12-13 2023-09-12 中国电子科技集团公司第十二研究所 用于微通道板的电子倍增材料、其制备、由其制备得到的微通道板及微通道板的制备方法
CN114336266A (zh) * 2021-12-30 2022-04-12 中国科学院长春光学精密机械与物理研究所 高效散热型半导体激光器及其制作方法
CN114374144A (zh) * 2022-01-18 2022-04-19 北京工业大学 一种微通道芯片的液氮循环散热系统及制备方法
CN114921766A (zh) * 2022-05-26 2022-08-19 太原理工大学 一种金刚石/金属复合散热片及其制备方法
CN114921766B (zh) * 2022-05-26 2023-10-13 太原理工大学 一种金刚石/金属复合散热片及其制备方法

Also Published As

Publication number Publication date
CN113337806B (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
CN113337806B (zh) 金刚石微通道热沉、制备方法和应用以及半导体激光器
US7517803B2 (en) Silicon parts having reduced metallic impurity concentration for plasma reaction chambers
JP5889187B2 (ja) エッチング方法
JP5065660B2 (ja) 半導体処理
JP4401290B2 (ja) 酸化膜形成方法および電子デバイス材料の製造方法
JP2010157754A (ja) プラズマ反応チャンバ用シリコン部品
CN111009496B (zh) 一种具有高热导率的半导体衬底及其制备方法
KR101861709B1 (ko) 플라즈마 식각 방법
CN103594306B (zh) 一种金刚石/金属复合材料夹持杆及制备方法
CN103489760A (zh) SiC衬底同质外延碳硅双原子层薄膜的方法
CN104347389A (zh) 等离子体刻蚀方法
CN102832160B (zh) 一种soi硅片的制备方法
CN108611680B (zh) 一种高速高质量单晶金刚石的生长方法
CN103474332B (zh) 提升网状生长Web Growth的刻蚀方法
CN113355650B (zh) AlN-金刚石热沉、制备方法和应用以及半导体激光器封装件
CN114823576A (zh) 一种基于复合衬底的场效应晶体管及其制作方法
CN109326952B (zh) 一种高电流密度、高散热系数的半导体激光器制备方法
US20010032708A1 (en) Electrode plate for plasma etching equipment for forming uniformly-etched surface
CN118610862A (zh) 一种具有散热结构的碟片激光器的制备方法
CN111261509B (zh) 在硅基体中蚀刻沟槽的方法及其应用
CN117293085A (zh) 一种芯片划片方法
CN115188809A (zh) 一种多槽式金刚石衬底环绕的AlN/GaN异质结及其制备方法
JP4350120B2 (ja) ダイヤモンドのエッチング方法
CN114758996A (zh) 一种高导热低流体阻力金刚石微通道热沉片的制备方法
楊旭 Development of highly-efficient slurryless

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant