CN113337805A - 半导体处理系统、金属-绝缘体-金属电容器及其形成方法 - Google Patents

半导体处理系统、金属-绝缘体-金属电容器及其形成方法 Download PDF

Info

Publication number
CN113337805A
CN113337805A CN202110214742.4A CN202110214742A CN113337805A CN 113337805 A CN113337805 A CN 113337805A CN 202110214742 A CN202110214742 A CN 202110214742A CN 113337805 A CN113337805 A CN 113337805A
Authority
CN
China
Prior art keywords
capacitor
precursor
dielectric layer
tank
capacitor dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110214742.4A
Other languages
English (en)
Other versions
CN113337805B (zh
Inventor
陈威良
庄字周
黄敬泓
刘彩吉
陈彦秀
叶玉隆
陈永祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN113337805A publication Critical patent/CN113337805A/zh
Application granted granted Critical
Publication of CN113337805B publication Critical patent/CN113337805B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/507Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02244Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of a metallic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Chemical Vapour Deposition (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

提供一种半导体处理系统以在金属‑绝缘体‑金属电容器中形成电容器介电层。所述半导体处理系统包括:前体槽,被配置成从金属有机固体前体产生前体气体;处理室,被配置成执行等离子体增强化学气相沉积;以及至少一个缓冲槽,位于所述前体槽与所述处理室之间。所述至少一个缓冲槽通过第一管道耦合到所述前体槽,并通过第二管道耦合到所述处理室。

Description

半导体处理系统、金属-绝缘体-金属电容器及其形成方法
技术领域
本公开涉及一种半导体处理系统、金属-绝缘体-金属(metal-insulator-metal,MIM)电容器以及MIM电容器的形成方法。
背景技术
金属-绝缘体-金属(metal-insulator-metal,MIM)电容器已广泛应用于射频(radio frequency,RF)、动态随机存取存储器(dynamic random access memory,DRAM)及模拟/混合信号集成电路领域。一种典型的MIM电容器包括由电容器介电质分隔开的两个金属电极。随着集成电路中装置的密度增加,即使在电容器面积不断减少的情况下仍保持足够高的存储电容是一个持续的挑战。
发明内容
本说明的一个方面涉及一种半导体处理系统。所述半导体处理系统包括:前体槽,被配置成从金属有机固体前体产生前体气体;处理室,被配置成执行等离子体增强化学气相沉积;以及至少一个缓冲槽,位于所述前体槽与所述处理室之间。所述至少一个缓冲槽通过第一管道耦合到所述前体槽,并通过第二管道耦合到所述处理室。
本说明的另一方面涉及一种金属-绝缘体-金属(MIM)电容器。所述MIM电容器包括电容器底部电极,所述电容器底部电极包含第一金属。所述MIM电容器还包括位于所述电容器底部电极上方的电容器介电层。所述电容器介电层包括位于所述电容器底部电极上方的第一电容器介电层。所述第一电容器介电层包含所述第一金属的氧化物。所述电容器介电层还包括位于所述第一电容器介电层上方的第二电容器介电层。所述第二电容器介电层包含结合能为约24eV到约26eV的氧化钽。所述MIM电容器还包括位于所述第二电容器介电层上方的电容器顶部电极。所述电容器顶部电极包含第二金属。
本说明的又一方面涉及一种形成金属-绝缘体-金属(MIM)电容器的方法。所述方法包括在衬底上方形成包含第一金属的电容器底部电极。所述方法还包括在所述电容器底部电极上方形成第一电容器介电层。形成所述第一电容器介电层包括使所述电容器底部电极的表面部分氧化。所述方法还包括在所述第一电容器介电层上方形成第二电容器介电层。形成所述第二电容器介电层包括:在前体槽中提供固体前体;在所述前体槽中使所述固体前体汽化以形成前体气体;使含有所述前体气体及载气的工艺气体从所述前体槽流动到至少一个缓冲槽;以及使所述工艺气体从所述至少一个缓冲槽流动到处理室。
附图说明
结合附图阅读以下详细说明,会最好地理解本公开。应注意,根据标惯例,图式的各种特征未必按比例绘制。相反,为清晰起见,可任意增大或减小各种特征的尺寸及空间关系。在说明书及图式通篇中,相同的参考编号指示相同的特征。
图1是根据一些实施例的半导体处理系统的示意图。
图2是根据一些实施例的MIM电容器的剖视图。
图3是根据一些实施例的用于形成MIM电容器的方法的流程图。
图4A到图4D是在图3所示方法的各种制作阶段中的MIM电容器的剖视图。
图5是各自示出使用氧化钽作为电容器介电质的MIM电容器的电容的电压依赖性(voltage dependence)的曲线图。
具体实施方式
以下公开内容提供许多不同的实施例或实例以实施所提供主题的不同特征。下文阐述组件、值、操作、材料、排列等的具体实例以使本公开简明。当然,这些仅是实例且并不旨在进行限制。设想其他组件、值、操作、材料、排列等。举例来说,在以下说明中,第一特征形成在第二特征之上或形成在第二特征上可包括第一特征与第二特征形成为直接接触的实施例,且还可包括额外特征可形成在第一特征与第二特征之间以使得第一特征与第二特征可能不直接接触的实施例。另外,本公开可在各种实例中重复使用参考编号和/或字母。此重复是出于简明及清晰目的,而并非自身指示所论述的各种实施例和/或配置之间的关系。
此外,为便于说明起见,本文中可使用例如“在…之下(beneath)”、“在…下方(below)”、“下部(lower)”、“在…上方(above)”、“上部(upper)”等空间相对用语来阐述一个元件或特征与另外的元件或特征之间的关系,如图中所说明。所述空间相对用语旨在除图中所绘示的取向外还囊括装置在使用或操作中的不同取向。设备可具有其他取向(旋转90度或处于其他取向),且本文中所用的空间相对描述语可同样相应地进行解释。
二氧化硅(SiO2)及氮化硅(Si3N4)是MIM电容器中常用的电容器介电质。然而,二氧化硅及氮化硅的介电常数是相对低的(例如,二氧化硅的介电常数(k)约为3.9,且氮化硅的介电常数约为7),且因此二氧化硅及氮化硅不能为高级集成电路研发提供足够的存储电容。随着集成电路的最小特征大小不断减小,MIM电容器已经开始使用高介电常数介电材料作为电容器介电质。因为MIM电容器的电容与电容器介电质的介电常数成比例,所以具有相对高的介电常数的高介电常数介电材料允许MIM电容器在较小的芯片面积内存储足够的能量。
在高介电常数介电材料中,氧化钽因氧化钽的高介电常数(k~25)、低漏电流、良好的介电质击穿强度(dielectric breakdown strength)及高的热稳定性及化学稳定性而成为最有前途的高介电常数材料之一。有许多制备氧化钽薄膜的方法,包括物理气相沉积(physical vapor deposition,PVD)及原子层沉积(atomic layer deposition,ALD)。PVD方法包括用高能等离子体轰击钽靶(tantalum target)。然而,PVD方法易于形成具有较高钽(Ta)原子比的氧化钽,此使得MIM电容器容易击穿。在ALD方法中,通过以逐层方式沉积多个单原子层来形成氧化钽膜。因此,尽管ALD方法能够形成具有低漏电流的更均匀的氧化钽膜,但ALD方法的生长速率非常慢(约
Figure BDA0002953466210000031
)。因此,ALD方法不适合量产。
本公开的实施例提供了一种半导体处理系统,所述半导体处理系统适于由汽化的固体前体(vaporized solid precursor)形成例如氧化钽等电容器介电质。汽化的固体前体的沉积是在等离子体增强化学气相沉积(plasma enhanced chemical vapordeposition,PECVD)室中使用化学气相沉积(chemical vapor deposition,CVD)工艺进行的。氧化钽的CVD沉积相当快,且适合大规模生产。由固体前体形成的氧化钽膜表现出比由常规液体前体形成的氧化钽的结合能更高的结合能(binding energy)。因此,使用固体前体有助于提高所得MIM电容器的电容。
图1是根据一些实施例的半导体处理系统100的示意图。半导体处理系统100被配置成沉积多层电容器介电层,而用于制作MIM电容器。在一些实施例中,半导体处理系统100包括载气槽102、前体槽104、缓冲槽106及处理室108。前体槽104位于载气槽102的下游,并通过管道112与载气槽102流体耦合。缓冲槽106位于前体槽104的下游,并通过管道114与前体槽104流体耦合。处理室108位于缓冲槽106的下游,并通过管道116与缓冲槽106流体耦合。
载气槽102适于向前体槽104供应载气。载气可用于将前体气体带出前体槽104。在一些实施例中,载气是例如氦、氩、氖、氪或其混合物等的惰性气体。载气槽102通过管道112将加压载气提供到前体槽104。
前体槽104适于容纳固体前体121,使固体前体汽化,并将汽化的前体供应到处理室108,而用于CVD沉积。汽化的前体在本文中也被称为前体气体。前体槽104包括界定密封内部的壳体120。固体前体121填充壳体120的下部。壳体120一般由对固体前体121及由此产生的前体气体实质上为惰性的材料制成,并且能够承受使固体前体121汽化所需的压力及温度。
前体槽104包括延伸穿过壳体120的壁的入口122。入口122耦合到管道112,从而允许载气通过管道112流入前体槽104,并与在前体槽中形成的前体气体混合。前体槽104还包括延伸穿过壳体120的壁的出口124。出口124耦合到管道114,从而允许作为载气及前体气体的混合物的工艺气体通过管道114流出前体槽104。在一些实施例中,入口122及出口124经配置以穿过壳体120的顶壁120a。
管道112通过入口122延伸到前体槽104中,并终止于前体槽104的上部104a。管道112的一端安置在固体前体121的上方,使得载气被引入前体槽104的上部104a中。管道112具有成角度的(倾斜的)端部112a,所述端部112a适于引导载气朝向壳体120的侧壁120b流动。因此,管道112的成角度的端部112a有助于防止流出管道112的载气直接撞击在固体前体121上从而扰动固体前体121。使用具有成角度的端部的管道将载气供应到前体槽104中有助于降低处理室108被污染的风险,所述污染是由固体前体121的颗粒变得通过空气传播(airborne)并被载气通过出口124带入处理室108中引起的。在一些实施例中,管道112是L形的,其中成角度的端部112a相对于壳体120的侧壁120b垂直延伸。
管道114通过出口124延伸到前体槽104中,并终止于前体槽104的上部104a。载气携带汽化的固体前体(即,前体气体),并通过管道114流出前体槽104。
缓冲槽106设置在前体槽104与处理室108之间。缓冲槽106适于在工艺气体通过管道116流入处理室108之前稳定工艺气体的压力,尤其是当使用固体前体时。缓冲槽106因此有助于提高气体流动的均匀性,此继而有助于促进前体材料在衬底(例如,衬底130)上的均匀沉积。在一些实施例中,采用多个缓冲槽106(例如,缓冲槽106a及缓冲槽106b)来确保流入处理室108中的工艺气体的压力稳定。尽管在图1中示出了两个缓冲槽106a及106b,但设想存在任何数量的缓冲槽。在一些实施例中,在前体槽104与处理室108之间设置单个缓冲槽106以提高气体流动均匀性(图中未示出)。在一些实施例中,在前体槽104与处理室108之间设置多于两个缓冲槽(例如,三个缓冲槽106)以提高工艺气体流动均匀性(图中未示出)。将缓冲槽的数量进一步增加到多于三个不会显着提高工艺气体流动的均匀性,但生产成本增加。
处理室108适于将电容器介电质沉积到衬底130上。在一些实施例中,处理室108是被配置成执行等离子体增强化学气相沉积(PECVD)工艺的等离子体沉积工具。在一些实施例中,处理室108被配置成从氧气源产生氧等离子体。
处理室108包括设置在壳体131内的衬底支撑件132及喷头(showerhead)134。在沉积工艺期间,衬底支撑件132充当阴极,且喷头134充当阳极。在一些实施例中,衬底支撑件132是被配置成支撑衬底(例如,在上方形成有MIM电容器的衬底130)的基座(pedestal)。在一些实施例中,衬底支撑件132还包括适于将衬底130的温度升高到室温以上的加热装置(图中未示出)。在一些实施例中,加热装置是单区或多区(single or multiple zone)加热器,例如具有径向内部或外部加热元件(radially inner or outer heating element)的双径向区加热器(dual radial zone heater)。喷头134被安置成相对于衬底支撑件132。喷头134包括多个孔,所述多个孔被配置成允许氧等离子体通过喷头134被均匀地递送到衬底130。
喷头134耦合到壳体131外部的射频(RF)发生器135。射频发生器135与喷头134结合使用,以激发流入处理室108中的氧从而产生氧等离子体。在一些实施例中,氧等离子体被配置成从使用包含氧气及惰性气体的混合气体产生的清洁气体产生等离子体。在一些实施例中,气体混合物包括按体积计为气体混合物的约2%到约4%的氧浓度。可用于与氧形成气体混合物的合适的惰性气体包括但不限于氪、氩及氦。
在一些实施例中,半导体处理系统100还包括位于处理室108的壳体131外部的远程等离子体源(remote plasma source,RPS)136。RPS被配置成从流入处理室108中的含氟清洁气体产生含氟等离子体。在介电质沉积之后,应用含氟等离子体来清洁处理室108的内表面。在一些实施例中,含氟等离子体是NF3等离子体。
半导体处理系统100还包括加热装置142,所述加热装置142被配置成将前体槽104加热到足以使固体前体121汽化的温度。在一些实施例中且如图1所示,加热装置142是至少围绕含有固体前体121的前体槽104的下部的夹套型(jacket-type)加热装置。在一些实施例中,加热装置142位于前体槽104下方,使得加热装置142仅从前体槽104的底部加热固体前体121(图中未示出)。在沉积处理期间,前体槽104中的固体前体121被加热装置142加热到足以将固体前体121转化成蒸汽的温度,从而形成前体气体。前体气体与载气混合,且所得的包含前体气体及载气的工艺气体通过管道114流出前体槽104进入缓冲槽106。工艺气体穿过缓冲槽106,并流入处理室108中进行CVD沉积。为了防止在工艺气体通过管道114及116从前体槽104输送到处理室108时前体气体的再凝固(re-solidification),沿着工艺气体输送路径的管道114及116中的每一者都通过温度控制元件144绝缘或加热。在一些实施例中,温度控制元件144是被配置成对相应的管道114或116进行加热的加热装置。在一些实施例中,温度控制元件144是缠绕在相应的管道114及116周围的绝缘材料。当工艺气体流经管道114及116时,所述绝缘材料有助于减少工艺气体的热损失,从而有助于防止前体气体再凝固。
在一些实施例中,半导体处理系统100包括控制半导体处理系统100的一个或多个操作的控制系统150。举例来说,在一些实施例中,控制系统150控制加热装置142以调节加热装置142的温度,从而解决固体前体汽化时检测到的或预期的压力变化。在一些实施例中,控制系统150控制温度控制元件144以调节工艺气体的温度,从而防止当工艺气体从前体槽104流向处理室108时前体气体的再凝固。在一些实施例中,控制系统150控制氧等离子体的产生及进入处理室108的工艺气体的流速。
在一些实施例中,控制系统150包括处理器152、计算机可读存储器(computerreadable memory)154及辅助电路(support circuit)156。在一些实施例中,处理器152是中央处理器(central processing unit,CPU)、多元处理器(multi-processor)、分散式处理系统(distributed processing system)、应用专用集成电路(application specificintegrated circuit,ASIC)和/或合适的处理单元。在一些实施例中,计算机可读存储器154是电子、磁性、光学、电磁、红外线和/或半导体系统(或设备或装置)。举例来说,计算机可读存储器154包括半导体或固态存储器、磁带、可移动计算机磁盘(removable computerdiskette)、随机存取存储器(random access memory,RAM)、惟读存储器(read-onlymemory,ROM)、硬磁盘(rigid magnetic disk)和/或光盘。在使用光盘的一些实施例中,计算机可读存储器154包括光盘惟读存储器(compact disk-read only memory,CD-ROM)、光盘读/写(compact disk-read/write,CD-R/W)和/或数字视频光盘(digital video disc,DVD)。在一些实施例中,计算机可读存储器154包括机器可读指令,所述指令在被处理器152执行时使得控制系统150向半导体处理系统100的一个或多个组件发送命令信号。
图2是根据本公开的一些实施例的MIM电容器200的剖视图。参照图2,MIM电容器200包括电容器底部电极210、电容器顶部电极230、以及位于电容器底部电极210与电容器顶部电极230之间的电容器介电层220。电容器介电层220适于将电容器底部电极210与电容器顶部电极230电分离,使得电荷可在电容器介电层220与相应的电容器底部电极210及电容器顶部电极230之间的界面处累积。累积的电荷在电容器底部电极210与电容器顶部电极230之间产生电场,使得MIM电容器200能够存储能量。
电容器底部电极210包含第一导电金属,例如钛(Ti)、氮化钛(TiN)、钽(Ta)或氮化钽(TaN)。在一些实施例中,电容器底部电极210包含TiN。
电容器介电层220具有多层结构。在一些实施例中,电容器介电层220包括第一电容器介电层222及第二电容器介电层224。
第一电容器介电层222设置在电容器底部电极210上,并直接接触电容器底部电极210。第一电容器介电层222包含通过使位于下方的电容器底部电极210中的金属氧化而形成的金属氧化物。举例来说,在一些实施例中,当电容器底部电极210包含TiN时,第一电容器介电层222包含氧化钛(TiOx,其中x介于0.5到2的范围内)。
第二电容器介电层224设置在第一电容器介电层222上方。在一些实施例中,第二电容器介电层224包含氧化钽(TaxOy,其中y:x不大于2.5)。介电常数大于氮化硅的其他高介电常数介电材料(例如,TiOx、氧化锆(ZrOx)或氧化铪(HfOx))也可用于形成第二电容器介电层224。
在一些实施例中,第一电容器介电层222中的金属氧化物被选择为具有比第二电容器介电层224中的高介电常数介电材料的介电常数大的介电常数。在此种实施例中,第一电容器介电层222的存在使得MIM电容器200具有与不具有第一电容器介电层222的MIM电容器相比更高的电容。相对于第二电容器介电层224的厚度而增加第一电容器介电层222的厚度使得MIM电容器200的电容增加,但对时间相关的介电质击穿(time dependentdielectric breakdown,TDDB)的耐受性降低。因此,对第一电容器介电层222的厚度与第二电容器介电层224的厚度之比例进行选择,以向MIM电容器200提供最大化的电容,同时保持对TDDB的良好耐受性。在一些实施例中,第一电容器介电层222的厚度介于约5埃
Figure BDA0002953466210000071
到约
Figure BDA0002953466210000072
且第二电容器介电层224的厚度介于约
Figure BDA0002953466210000073
到约
Figure BDA0002953466210000074
在一些情况下,如果第一电容器介电层222及第二电容器介电层224中的每一者的厚度太大,则MIM电容器200的电容太低。另一方面,在一些实施例中,如果第一电容器介电层222及第二电容器介电层224中的每一者的厚度太小,则MIM电容器200的电流击穿风险增加。在一些实施例中,电容器介电层220包含介电常数介于约30到约40的双层TiOx/TaxOy,所得的MIM电容器可具有介于5fF到10fF范围内的电容。
电容器顶部电极230设置在第二电容器介电层224上。在一些实施例中,电容器顶部电极230包含与提供电容器底部电极210的第一导电金属相同或不同的第二导电金属。举例来说,电容器顶部电极230包含Ti、TiN、Ta或TaN。在一些实施例中,电容器顶部电极230包含TiN。
图3是根据一些实施例形成MIM电容器(例如,MIM电容器200)的方法300的流程图。图4A到图4D是根据一些实施例的方法300的各种制作阶段中的MIM电容器200的剖视图。以下参照图4A到图4D中的MIM电容器200详细论述方法300。
参照图3及图4A,根据一些实施例,方法300包括操作302,在操作302中,在衬底202上方沉积电容器底部电极210。在一些实施例中,电容器底部电极210包含第一导电金属,例如钛(Ti)、氮化钛(TiN)、钽(Ta)或氮化钽(TaN),并且使用例如PVD等沉积工艺沉积在衬底202上方。
在一些实施例中,衬底202是硅衬底。在一些实施例中,衬底202包括:元素半导体(elementary semiconductor),例如锗;化合物半导体,例如硅锗、碳化硅、砷化镓、磷化镓、磷化铟、砷化铟和/或锑化铟;或其组合。在一些实施例中,衬底202是绝缘体上覆硅(silicon-on-insulator,SOI)结构,其中在衬底中具有绝缘体层。示例性绝缘体层可以是掩埋氧化物层(buried oxide layer,BOX)。在一些实施例中,取决于设计要求,衬底202还包括各种经掺杂的特征。所述经掺杂的特征可用以下掺杂剂掺杂:p型掺杂剂,例如硼;n型掺杂剂,例如磷或砷;或其组合。所述经掺杂的特征可通过离子注入形成,并且被配置成形成一个或多个装置,例如场效应晶体管(field effect transistor,FET)、二极管、存储器装置或其组合。在一些实施例中,衬底202还包括多层互连结构,以耦合各种装置来形成功能电路。多层互连结构包括垂直互连件(例如,通孔或触点)以及水平互连件(例如,金属线)。使用包括铜、钨和/或硅化物的各种导电材料来实施各种互连特征。在一些实施例中,电容器底部电极210被配置在多层互连结构的第n金属化层中,并且与第n金属化层同时形成。
参照图3及图4B,根据一些实施例,方法300进行到操作304,在操作304中,在电容器底部电极210上方形成第一电容器介电层222。通过使用氧等离子体选择性氧化电容器底部电极210的表面部分而形成第一电容器介电层222。在一些实施例中,等离子体氧化工艺在半导体处理系统100(图1)的处理室108中进行。在将衬底202安装到衬底支撑件132上之后,使由射频发生器135产生的氧等离子体流入处理室108中。氧等离子体通过喷头134朝向电容器底部电极210的表面流动。电容器底部电极210的表面因此暴露于氧等离子体。电容器底部电极210的表面部分中的导电金属与氧反应,从而在电容器底部电极210的表面上形成第一电容器介电层222。第一电容器介电层222因此在电容器底部电极210的表面部分中包含导电金属的氧化物。在一些实施例中,电容器底部电极210的表面部分的等离子体氧化在介于约300℃到约500℃范围内的温度下进行。
参照图3及图4C,根据一些实施例,方法300进行到操作306,在操作306中,在第一电容器介电层222上方形成第二电容器介电层224。使用本公开的半导体处理系统100(图1)由固体前体121形成第二电容器介电层224。形成第二电容器介电层224包括首先在前体槽104中提供固体前体121。然后使用加热装置142将前体槽104加热到固体前体121汽化的温度,从而形成前体气体。前体气体与通过管道112流入前体槽104中的载气混合,以提供工艺气体。包含前体气体及载气的工艺气体然后从前体槽104流向缓冲槽106,在缓冲槽106内使工艺气体的压力稳定。接下来,工艺气体从缓冲槽106流向处理室108。工艺气体中的前体在衬底202的表面(即,第一电容器介电层222的表面)分解,以形成含前体金属的层。含前体金属的层中的前体金属然后与氧反应以形成第二电容器介电层224。
在一些实施例中,在工艺气体流入处理室108中以形成第二电容器介电层224之前,停止用于氧化电容器底部电极210的表面部分的氧等离子体。在其他实施例中,当工艺气体流入处理室108中以形成第二电容器介电层224时,持续产生用于氧化电容器底部电极210的表面部分的氧等离子体。
基于在处理室108中形成的电容器介电质来选择固体前体121的类型。在一些实施例中,前体气体是由含钽固体前体(例如,五(二甲氨基)钽(pentakis(dimethylamido)tantalum,PDMAT),Ta(NH2)(CH3)2)5)的汽化形成的含钽气体,并且所得的第二电容器介电层224包含y:x不大于2.5的TaxOy。在一些实施例中,通过X射线光电子光谱学(X-rayphotoelectron spectroscopy,XPS)测量的本公开的TaxOy的结合能为约24eV到约26eV,此低于由液体前体形成的TaxOy的结合能。较低的结合能指示由含钽固体前体形成的TaxOy中的Ta成分高于平衡相图(equilibrium phase diagram)中的化学计量成分(stoichiometric composition)。也就是说,TaxOy中的y:x小于2.5。本公开的TaxOy的约24eV到约26eV的结合能范围对应于约1.9到约2.3的y:x。在一些实施例中,y:x是1.94。TaxOy中钽浓度增加指示由含钽固体前体形成的TaxOy层具有比由含钽液体前体形成的TaxOy层更高的介电常数。
参照图3及图4D,根据一些实施例,方法300进行到操作308,在操作308中,在第二电容器介电层224上方沉积电容器顶部电极230,从而形成包括电容器底部电极210、第一电容器介电层222、第二电容器介电层224及电容器顶部电极230的MIM电容器200。电容器顶部电极230包含与提供电容器底部电极210的导电金属相同或不同的导电金属。举例来说,电容器顶部电极230包含Ti、TiN、Ta或TaN。在一些实施例中,电容器顶部电极230包含TiN,并且通过例如PVD等沉积工艺形成。在一些实施例中,电容器顶部电极230被配置在多层互连结构的第n+1金属化层中,并且与第n+1金属化层同时形成。
图5是示出在具有TiN/TiO2/TaxOy/TiN结构的MIM电容器中,当电压从-100V扫描到+100V时电容变化的曲线图。MIM电容器(A)中的TaxOy由例如PDMAT等固体前体形成,且MIM电容器(B)中的TaxOy由例如叔丁基酰亚胺三(二乙基酰胺基)钽(tertbutylimidotris(diethylamido)tantalum,TBTDET)等液体前体形成。电容变化被表示为C/C0,其中C代表在所施加电压下的电容值,且C0代表在0V下的电容值。图5示出当电压从0V变化到+/-100V时,MIM电容器(A)中的最大电容变化约为5%,而当所施加的电压从0V变化到+/-100V时,MIM电容器(B)中的最大电容变化约为10%。MIM电容器(B)中的最大电容变化约为MIM电容器(A)中电容变化的2倍。MIM电容器(A)中较小的电容变化指示可获得更稳定的MIM电容器,因为TaxOy电容器介电质是由固体前体形成的。
本说明的一个方面涉及一种半导体处理系统。所述半导体处理系统包括:前体槽,被配置成从金属有机固体前体产生前体气体;处理室,被配置成执行等离子体增强化学气相沉积;以及至少一个缓冲槽,位于所述前体槽与所述处理室之间。所述至少一个缓冲槽通过第一管道耦合到所述前体槽,并通过第二管道耦合到所述处理室。在一些实施例中,所述系统还包括被配置成将载气供应到所述前体槽的载气槽。所述载气槽通过第三管道耦合到所述前体槽。在一些实施例中,所述第三管道延伸到所述前体槽的内部。第三管道具有朝向所述前体槽的侧壁延伸的成角度的端部。在一些实施例中,所述第三管道的所述成角度的端部以垂直于所述前体槽的所述侧壁的方向朝向所述前体槽的所述侧壁延伸。在一些实施例中,所述系统还包括被配置成对所述前体槽进行加热的加热装置。在一些实施例中,所述系统还包括第一温度控制元件,所述第一温度控制元件被配置成控制所述第一管道的温度。在一些实施例中,所述系统还包括第二温度控制元件,所述第二温度控制元件被配置成控制所述第二管道的温度。在一些实施例中,所述系统还包括控制系统,所述控制系统被配置成控制所述加热装置、所述第一温度控制元件及所述第二温度控制元件中的每一者的操作。在一些实施例中,所述第一管道及所述第二管道被绝缘材料覆盖。在一些实施例中,所述至少一个缓冲槽包括多个缓冲槽,所述多个缓冲槽中的每一者具有耦合到所述前体槽的第一端及耦合到所述处理室的第二端。
本说明的另一方面涉及一种金属-绝缘体-金属(MIM)电容器。所述MIM电容器包括电容器底部电极,所述电容器底部电极包含第一金属。所述MIM电容器还包括位于所述电容器底部电极上方的电容器介电层。所述电容器介电层包括位于所述电容器底部电极上方的第一电容器介电层。所述第一电容器介电层包含所述第一金属的氧化物。所述电容器介电层还包括位于所述第一电容器介电层上方的第二电容器介电层。所述第二电容器介电层包含结合能为约24eV到约26eV的氧化钽。所述MIM电容器还包括位于所述第二电容器介电层上方的电容器顶部电极。所述电容器顶部电极包含第二金属。在一些实施例中,所述电容器底部电极包含氮化钛,并且所述第一电容器介电层包含氧化钛。在一些实施例中,所述氧化钽的分子式为TaxOy,其中y:x小于2.5。在一些实施例中,所述MIM电容器的电容介于5fF到10fF的范围内。在一些实施例中,所述第二金属与所述第一金属相同。
本说明的又一方面涉及一种形成金属-绝缘体-金属(MIM)电容器的方法。所述方法包括在衬底上方形成包含第一金属的电容器底部电极。所述方法还包括在所述电容器底部电极上方形成第一电容器介电层。形成所述第一电容器介电层包括使所述电容器底部电极的表面部分氧化。所述方法还包括在所述第一电容器介电层上方形成第二电容器介电层。形成所述第二电容器介电层包括:在前体槽中提供固体前体;在所述前体槽中使所述固体前体汽化以形成前体气体;使含有所述前体气体及载气的工艺气体从所述前体槽流动到至少一个缓冲槽;以及使所述工艺气体从所述至少一个缓冲槽流动到处理室。在一些实施例中,形成所述第一电容器介电层包括将所述电容器底部电极的表面暴露于氧等离子体。在一些实施例中,在停止所述氧等离子体之后,使所述工艺气体流入所述处理室。在一些实施例中,除了所述氧等离子体之外,还使所述工艺气体与所述氧等离子体一起同时(in-situ)流入所述处理室。在一些实施例中,所述方法还包括在所述第二电容器介电层上方沉积电容器顶部电极。
以上概述了若干实施例的特征,以使所属领域中的技术人员可更好地理解本公开的各个方面。所属领域中的技术人员应理解,其可容易地使用本公开作为设计或修改其他工艺及结构的基础来施行与本文中所介绍的实施例相同的目的和/或实现与本文中所介绍的实施例相同的优点。所属领域中的技术人员还应认识到,这些等效构造并不背离本公开的精神及范围,且他们可在不背离本公开的精神及范围的条件下对其作出各种改变、代替及变更。

Claims (11)

1.一种半导体处理系统,包括:
前体槽,被配置成从金属有机固体前体产生前体气体;
处理室,被配置成执行等离子体增强化学气相沉积;以及
至少一个缓冲槽,位于所述前体槽与所述处理室之间,所述至少一个缓冲槽通过第一管道耦合到所述前体槽,并通过第二管道耦合到所述处理室。
2.根据权利要求1所述的系统,还包括被配置成将载气供应到所述前体槽的载气槽,所述载气槽通过第三管道耦合到所述前体槽。
3.根据权利要求2所述的系统,其中所述第三管道延伸到所述前体槽的内部,所述第三管道具有朝向所述前体槽的侧壁延伸的成角度的端部。
4.根据权利要求3所述的系统,其中所述第三管道的所述成角度的端部以垂直于所述前体槽的所述侧壁的方向朝向所述前体槽的所述侧壁延伸。
5.根据权利要求1所述的系统,还包括被配置成对所述前体槽进行加热的加热装置。
6.根据权利要求1所述的系统,其中所述第一管道及所述第二管道被绝缘材料覆盖。
7.一种金属-绝缘体-金属电容器,包括:
电容器底部电极,包含第一金属;
电容器介电层,位于所述电容器底部电极上方,所述电容器介电层包括:
第一电容器介电层,位于所述电容器底部电极上方,所述第一电容器介电层包含所述第一金属的氧化物;以及
第二电容器介电层,位于所述第一电容器介电层上方,所述第二电容器介电层包含结合能为约24eV到约26eV的氧化钽;以及
电容器顶部电极,位于所述第二电容器介电层上方,所述电容器顶部电极包含第二金属。
8.一种形成金属-绝缘体-金属电容器的方法,包括:
在衬底上方形成电容器底部电极;
在所述电容器底部电极上方形成第一电容器介电层,其中形成所述第一电容器介电层包括使所述电容器底部电极的表面部分氧化;以及
在所述第一电容器介电层上方形成第二电容器介电层,其中形成所述第二电容器介电层包括:
在前体槽中提供固体前体;
在所述前体槽中使所述固体前体汽化以形成前体气体;
使含有所述前体气体及载气的工艺气体从所述前体槽流动到至少一个缓冲槽;以及
使所述工艺气体从所述至少一个缓冲槽流动到处理室。
9.根据权利要求8所述的方法,其中形成所述第一电容器介电层包括将所述电容器底部电极的表面暴露于氧等离子体。
10.根据权利要求9所述的方法,其中在停止所述氧等离子体之后,使所述工艺气体流入所述处理室。
11.根据权利要求9所述的方法,其中除了所述氧等离子体之外,还使所述工艺气体与所述氧等离子体一起同时流入所述处理室。
CN202110214742.4A 2020-03-02 2021-02-26 半导体处理系统、金属-绝缘体-金属电容器及其形成方法 Active CN113337805B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/807,034 US11502160B2 (en) 2020-03-02 2020-03-02 Method and system for forming metal-insulator-metal capacitors
US16/807,034 2020-03-02

Publications (2)

Publication Number Publication Date
CN113337805A true CN113337805A (zh) 2021-09-03
CN113337805B CN113337805B (zh) 2023-07-18

Family

ID=77463150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110214742.4A Active CN113337805B (zh) 2020-03-02 2021-02-26 半导体处理系统、金属-绝缘体-金属电容器及其形成方法

Country Status (3)

Country Link
US (2) US11502160B2 (zh)
CN (1) CN113337805B (zh)
TW (1) TWI768447B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0311446A2 (en) * 1987-10-08 1989-04-12 Mitsubishi Rayon Co., Ltd. Apparatus for producing compound semiconductor
US20010014371A1 (en) * 1999-12-28 2001-08-16 Vaino Kilpi Apparatus for growing thin films
JP2004323894A (ja) * 2003-04-23 2004-11-18 Sekisui Chem Co Ltd ガス供給安定化器、気相成長装置および気相成長方法
US20080002330A1 (en) * 2006-06-29 2008-01-03 Hynix Semiconductor Inc. Method for forming a capacitor dielectric and method for manufacturing capacitor using the capacitor dielectric
CN102453886A (zh) * 2010-10-15 2012-05-16 东京毅力科创株式会社 成膜方法、成膜装置以及半导体装置的制造方法
US20140185182A1 (en) * 2013-01-02 2014-07-03 Nanya Technology Corp. Semiconductor device with rutile titanium oxide dielectric film
CN106024605A (zh) * 2015-03-24 2016-10-12 朗姆研究公司 用于硬掩模的金属介电膜的沉积
TW201834935A (zh) * 2017-03-03 2018-10-01 美商應用材料股份有限公司 用於增加來自安瓿的通量之設備
US10301719B1 (en) * 2015-04-06 2019-05-28 The Curators Of The University Of Missouri Amorphous hydrogenated boron carbide low-k dielectric and method of making the same
CN112542544A (zh) * 2019-09-23 2021-03-23 台湾积体电路制造股份有限公司 金属-绝缘体-金属电容器及其形成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035377A1 (ja) 2011-09-08 2013-03-14 東芝三菱電機産業システム株式会社 プラズマ発生装置、cvd装置およびプラズマ処理粒子生成装置
US9224878B2 (en) * 2012-12-27 2015-12-29 Intermolecular, Inc. High work function, manufacturable top electrode
DE102013213501A1 (de) 2013-07-10 2015-01-15 Carl Zeiss Microscopy Gmbh Massenspektrometer, dessen Verwendung, sowie Verfahren zur massenspektrometrischen Untersuchung eines Gasgemisches
US10164003B2 (en) 2016-01-14 2018-12-25 Taiwan Semiconductor Manufacturing Company Ltd. MIM capacitor and method of forming the same
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0311446A2 (en) * 1987-10-08 1989-04-12 Mitsubishi Rayon Co., Ltd. Apparatus for producing compound semiconductor
US20010014371A1 (en) * 1999-12-28 2001-08-16 Vaino Kilpi Apparatus for growing thin films
JP2004323894A (ja) * 2003-04-23 2004-11-18 Sekisui Chem Co Ltd ガス供給安定化器、気相成長装置および気相成長方法
US20080002330A1 (en) * 2006-06-29 2008-01-03 Hynix Semiconductor Inc. Method for forming a capacitor dielectric and method for manufacturing capacitor using the capacitor dielectric
CN102453886A (zh) * 2010-10-15 2012-05-16 东京毅力科创株式会社 成膜方法、成膜装置以及半导体装置的制造方法
US20140185182A1 (en) * 2013-01-02 2014-07-03 Nanya Technology Corp. Semiconductor device with rutile titanium oxide dielectric film
CN106024605A (zh) * 2015-03-24 2016-10-12 朗姆研究公司 用于硬掩模的金属介电膜的沉积
US10301719B1 (en) * 2015-04-06 2019-05-28 The Curators Of The University Of Missouri Amorphous hydrogenated boron carbide low-k dielectric and method of making the same
TW201834935A (zh) * 2017-03-03 2018-10-01 美商應用材料股份有限公司 用於增加來自安瓿的通量之設備
CN112542544A (zh) * 2019-09-23 2021-03-23 台湾积体电路制造股份有限公司 金属-绝缘体-金属电容器及其形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNGHWAN SUNG等: "Remote-plasma chemical vapor deposition of conformal ZrB2 films at low temperature: A promising diffusion barrier for ultralarge scale integrated electronics", 《 J. APPL. PHYS.》 *

Also Published As

Publication number Publication date
TWI768447B (zh) 2022-06-21
CN113337805B (zh) 2023-07-18
US20220367604A1 (en) 2022-11-17
TW202135169A (zh) 2021-09-16
US20210273038A1 (en) 2021-09-02
US11502160B2 (en) 2022-11-15

Similar Documents

Publication Publication Date Title
Heil et al. Deposition of TiN and HfO2 in a commercial 200mm remote plasma atomic layer deposition reactor
US6319766B1 (en) Method of tantalum nitride deposition by tantalum oxide densification
KR100222455B1 (ko) 반도체 장치 및 그의 제조방법
US7825043B2 (en) Method for fabricating capacitor in semiconductor device
US20130313656A1 (en) Methods of atomic layer deposition of hafnium oxide / erbium oxide bi-layer as advanced gate dielectrics
US20150140838A1 (en) Two Step Deposition of High-k Gate Dielectric Materials
US9231047B2 (en) Capacitors and methods with praseodymium oxide insulators
KR20040093255A (ko) Ald에 의한 금속 박막 형성 방법, 란탄 산화막 형성방법 및 반도체 소자의 고유전막 형성 방법
US6177305B1 (en) Fabrication of metal-insulator-metal capacitive structures
JP2002231656A (ja) 半導体集積回路装置の製造方法
US20020100959A1 (en) Capacitor for semiconductor memory device and method of manufacturing the same
US20020146915A1 (en) Process for depositing layers on a semiconductor wafer
US8735304B2 (en) Film forming method, film forming apparatus, and storage medium
US10062699B1 (en) Capacitor for semiconductor memory element and method for manufacturing the same
US20200020542A1 (en) Disposable laser/flash anneal absorber for embedded neuromorphic memory device fabrication
US20110014770A1 (en) Methods of forming a dielectric thin film of a semiconductor device and methods of manufacturing a capacitor having the same
CN113337805B (zh) 半导体处理系统、金属-绝缘体-金属电容器及其形成方法
JP2011204852A (ja) キャパシタおよびその製造方法、半導体装置
US10833148B2 (en) Leakage current reduction in stacked metal-insulator-metal capacitors
US20230037450A1 (en) Deuterium-containing films
US20120122320A1 (en) Method Of Processing Low K Dielectric Films
KR20230025343A (ko) 히드라지도 기반 전구체를 사용한 붕소 질화물 막의 증착
KR101062812B1 (ko) 반도체 소자의 하프늄 산화막 캐패시터 형성방법
Burwell et al. A Low‐Temperature Batch Process for the Deposition of High‐Quality Conformal Alumina Thin Films for Electronic Applications
JPH05275646A (ja) 高誘電率体及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant