CN113330385A - 农业植保无人机的作业结构识别、控制方法、装置及设备 - Google Patents

农业植保无人机的作业结构识别、控制方法、装置及设备 Download PDF

Info

Publication number
CN113330385A
CN113330385A CN202080009777.8A CN202080009777A CN113330385A CN 113330385 A CN113330385 A CN 113330385A CN 202080009777 A CN202080009777 A CN 202080009777A CN 113330385 A CN113330385 A CN 113330385A
Authority
CN
China
Prior art keywords
gain
plant protection
agricultural plant
current
unmanned aerial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080009777.8A
Other languages
English (en)
Inventor
王晓亮
贾向华
王璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SZ DJI Technology Co Ltd
Original Assignee
SZ DJI Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SZ DJI Technology Co Ltd filed Critical SZ DJI Technology Co Ltd
Publication of CN113330385A publication Critical patent/CN113330385A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications

Abstract

一种农业植保无人机的作业结构识别方法、装置及设备。该方法包括:获取所述农业植保无人机相对于目标轴转动的当前速度数据;基于所述当前速度数据以及当前的控制信号,计算得到第一增益,所述控制信号用于控制所述农业植保无人机相对于所述目标轴转动;基于所述第一增益,识别所述农业植保无人机的当前作业结构。本申请实现了自动识别作业结构,从而能够降低使用成本。

Description

农业植保无人机的作业结构识别、控制方法、装置及设备
技术领域
本申请涉及无人机技术领域,尤其涉及一种农业植保无人机的作业结构识别方法、装置及设备。
背景技术
随着农业自动化技术的不断发展,农业植保无人机的应用也越来越广泛。
目前,为了使得农业植保无人机能够适应不同的作业场景,提出了用户在获得普通作业结构的农业植保无人机之后,可以根据需要更换部件,将农业植保无人机重新装配成果树作业结构。进一步的,需要由用户使用终端将当前的作业结构告知农业植保无人机,以由农业植保无人机进行相应的控制参数适配。
然而,上述方式,存在使用成本较高的问题。
发明内容
本申请实施例提供一种农业植保无人机的作业结构识别方法、装置及设备,用以解决现有技术中使用成本较高的问题。
第一方面,本申请实施例提供一种农业植保无人机的作业结构识别方法,所述方法包括:
获取所述农业植保无人机相对于目标轴转动的当前速度数据;
基于所述当前速度数据以及当前的控制信号,计算得到第一增益,所述控制信号用于控制所述农业植保无人机相对于所述目标轴转动;
基于所述第一增益,识别所述农业植保无人机的当前作业结构。
第二方面,本申请实施例提供一种农业植保无人机的控制方法,包括:
获取所述农业植保无人机的当前姿态信息以及当前动力参数;
根据所述当前姿态信息以及所述当前动力参数,确定所述农业植保无人机的作业模式,所述作业模式包括如下至少一种:普通作业模式,果树作业模式;
根据确定的作业模式,选择相适应的控制参数。
第三方面,本申请实施例提供一种农业植保无人机的作业结构识别装置,所述装置包括:存储器和处理器;
所述存储器,用于存储指令;
所述处理器,调用所述指令,当指令被执行时,用于执行以下操作:
获取所述农业植保无人机相对于目标轴转动的当前速度数据;
基于所述当前速度数据以及当前的控制信号,计算得到第一增益,所述控制信号用于控制所述农业植保无人机相对于所述目标轴转动;
基于所述第一增益,识别所述农业植保无人机的当前作业结构。
第四方面,本申请实施例提供一种农业植保无人机的处理装置,包括:存储器和处理器;
所述存储器,用于存储指令;
所述处理器,调用所述指令,当指令被执行时,用于执行以下操作:
获取所述农业植保无人机的当前姿态信息以及当前动力参数;
根据所述当前姿态信息以及所述当前动力参数,确定所述农业植保无人机的作业模式,所述作业模式包括如下至少一种:普通作业模式,果树作业模式;
根据确定的作业模式,选择相适应的控制参数。
第五方面,本申请实施例提供一种农业植保无人机,所述农业植保无人机包括机身、设置于所述机身上的动力系统和作业结构识别装置;
所述动力系统,用于为所述农业植保无人机提供动力;
所述作业结构识别装置包括存储器和处理器;
所述存储器,用于存储指令;
所述处理器,调用所述指令,当指令被执行时,用于执行以下操作:
获取所述农业植保无人机相对于目标轴转动的当前速度数据;
基于所述当前速度数据以及当前的控制信号,计算得到第一增益,所述控制信号用于控制所述农业植保无人机相对于所述目标轴转动;
基于所述第一增益,识别所述农业植保无人机的当前作业结构。
第六方面,本申请实施例提供一种农业植保无人机,所述农业植保无人机包括机身、设置于所述机身上的动力系统和控制装置;
所述动力系统,用于为所述农业植保无人机提供动力;
所述控制装置包括存储器和处理器;
所述存储器,用于存储指令;
所述处理器,调用所述指令,当指令被执行时,用于执行以下操作:
获取所述农业植保无人机的当前姿态信息以及当前动力参数;
根据所述当前姿态信息以及所述当前动力参数,确定所述农业植保无人机的作业模式,所述作业模式包括如下至少一种:普通作业模式,果树作业模式;
根据确定的作业模式,选择相适应的控制参数。
第七方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有指令,所述指令可由处理器执行,以控制所述处理器执行如第一方面任一项所述的方法。
第八方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有指令,所述指令可由处理器执行,以控制所述处理器执行如第二方面任一项所述的方法。
本申请实施例提供一种农业植保无人机的作业结构识别方法、装置及设备,通过获取农业植保无人机相对于目标轴转动的当前速度数据,基于当前速度数据以及当前的控制信号,计算得到第一增益,控制信号用于控制农业植保无人机相对于目标轴转动,基于第一增益,识别农业植保无人机的当前作业结构,实现了自动识别农业植保无人机的当前作业结构的识别,无需用户使用终端将作业结构告知农业植保无人机,从而能够降低使用成本。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的方法的应用场景示意图;
图2A为本申请一实施例提供的普通作业结构下农业植保无人机的示意图;
图2B为本申请一实施例提供的果树作业结构下农业植保无人机的示意图;
图3为本申请一实施例提供的农业植保无人机的作业结构识别方法的流程示意图;
图4为本申请一实施例提供的频率-增益关系曲线的示意图;
图5为本申请另一实施例提供的农业植保无人机的作业结构识别方法的流程示意图;
图6为本申请又一实施例提供的农业植保无人机的控制方法的流程示意图;
图7为本申请一实施例提供的农业植保无人机的作业结构识别装置的结构示意图;
图8为本申请一实施例提供的农业植保无人机的控制装置的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供的方法可以应用于如图1所示的农业植保无人机10,如图1所示,所述农业植保无人机10可以包括机身11、设置于所述机身11的动力系统12、装置13以及喷洒设备14。其中,所述动力系统12用于为所述农业植保无人机10提供动力,所述喷洒设备14用于进行农药、种子、化肥等的喷洒,所述装置13用于执行本申请实施例提供的方法。
所述农业植保无人机10存在至少两种作业结构,通过更换所述农业植保无人机10的部件,可以实现不同作业结构之间的切换。一个实施例中,所述至少两种作业结构可以包括第一作业结构和第二作业结构。可选的,所述第一作业结构可以是用于普通作业场景的作业结构(以下记为普通作业结构),在普通作业场景包括农田作业场景时,普通作业结构具体可以包括农田作业结构。所述第二作业结构可以是用于非普通作业场景的作业结构(以下记为非普通作业结构),在非普通作业场景包括果树作业场景时,非普通作业结构具体可以包括果树作业结构。以下主要以第一作业结构包括普通作业结构,第二作业结构包括果树作业结构为例进行举例说明。
需要说明的是,图1中所述农业植保无人机10的当前作业结构是所述至少两种作业结构中的一种。其中,不同作业结构下,农业植保无人机10绕目标轴转动的力矩不同,以适应不同的作业场景。示例性的,所述目标轴包括俯仰轴、横滚轴、偏航轴中的一种或多种。
例如,在作业场景包括普通的农田作业场景时,农业植保无人机10的姿态主要是平行姿态,对所述农业植保无人机10倾斜程度的要求较低,以实现采用垂直向下的喷洒方式对农田上的作物进行平面喷洒。在此情况下,农业植保无人机10的作业结构可以使用普通作业结构。在所述农业植保无人机10的作业结构为普通作业结构时,所述农业植保无人机10的结构示意图例如可以如图2A所示。参考图2A,普通作业结构下,机臂15相对于动力部件(未示出)垂直,以产生图2A中箭头所示方向的作用力,以便于农业植保无人机10以平行姿态飞行。其中,动力部件可以由螺旋桨、电机、电子调速器等依次连接形成。
在作业场景包括果树作业场景时,农业植保无人机10的姿态主要是倾斜姿态,对所述农业植保无人机10倾斜程度的要求较高,以实现采用倾斜向下方向的喷洒方式对树木进行立体喷洒。在此情况下,农业植保无人机10的作业结构可以使用果树作业结构。在所述农业植保无人机10的作业结构为果树作业结构时,所述农业植保无人机10的结构示意图例如可以如图2B所示。参考图2B,果树作业结构下,机臂15相对于动力部件(未示出)向外倾斜,以产生图2B中箭头所示方向的作用力,以便于农业植保无人机10以倾斜姿态飞行。其中,动力部件可以由螺旋桨、电机、电子调速器等依次连接形成。
对比图2A和图2B可以看出,果树作业结构与普通作业结构相比,果树作业结构的升力以及绕俯仰轴、横滚轴和绕偏航轴转动的力矩要小。
由于农业植保无人机10绕目标轴的转动,使得所述农业植保无人机10的姿态会发生变化,因此不同作业结构下,农业植保无人机10的姿态信息和动力参数之间的关系不同,其中,所述动力参数是指用于控制所述农业植保无人机10的姿态变化的作用力的参数,所述姿态信息是指用于表征所述农业植保无人机的姿态变化情况的信息。由此,农业植保无人机的姿态信息和动力参数之间的关系,可以用于表征农业植保无人机10的作业结构具体是所述至少两种作业结构中的哪一种。
一个实施例中,所述动力参数可以包括用于控制所述农业植保无人机绕目标轴转动的控制信号。
一个实施例中,所述姿态信息可以包括所述农业植保无人机10绕所述目标轴转动的速度数据,示例性的,所述速度数据可以包括角速度。
基于此,本申请实施例提供一种农业植保无人机的作业识别方法,以基于不同作业结构下所述农业植保无人机10的姿态信息和动力参数之间的关系特点,自动识别所述农业植保无人机的作业结构,无需由用户使用终端将作业结构告知农业植保无人机,从而能够降低使用成本。
另外,本申请实施例还提供一种农业植保无人机的控制方法,以基于不同作业结构下所述农业植保无人机10的姿态信息和动力参数之间的关系特点,自动确定所述农业植保无人机的作业模式,并基于确定的作业模式进行控制参数的适配,与由用户使用终端将作业结构告知农业植保无人机以由农业植保无人机基于用户告知的作业结构进行参数适配相比,无需由用户将作业结构告知植保无人机,从而能够降低使用成本。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图3为本申请一实施例提供的农业植保无人机的作业结构识别方法的流程示意图,本实施例的执行主体可以为装置13,具体可以为装置13的处理器。如图3所示,本实施例的方法可以包括:
步骤31,获取农业植保无人机相对于目标轴转动的当前速度数据。
本步骤中,可选的,所述当前速度数据具体可以包括线速度,或者,可选的,所述当前速度数据具体可以包括角速度。通过所述当前速度数据包括角速度,可以无需区分不同转子半径的电机,有利于简化实现。
需要说明的是,在所述农业植保无人机平行于横滚轴方向飞行时,所述目标轴可以为俯仰轴;在所述农业植保无人机平行于俯仰轴方向飞行时,所述目标轴可以为横滚轴;在所述农业植保无人机平行于偏航轴方向飞行时,所述目标轴可以为偏航轴。以下主要以目标轴为俯仰轴为例进行举例说明。
步骤32,基于所述当前速度数据以及当前的控制信号,计算得到第一增益,所述控制信号用于控制所述农业植保无人机相对于所述目标轴转动。
本步骤中,在所述当前速度数据包括线速度的情况下,所述控制信号可以用于表示线速度控制相关的物理量。在所述当前速度数据包括角速度的情况下,所述控制信号可以用于表示角速度控制相关的物理量。
由于不同作业结构下,农业植保无人机绕目标轴转动的力矩不同,如果将控制信号作为系统的输入,并将速度数据作为系统的输出,则不同作业结构对于输入的同一控制信号产生的增益不同,因此可以基于增益识别农业植保无人机的当前作业结构。由此可以在步骤32中基于所述当前速度数据以及当前的控制信号,计算得到第一增益。
假设所述至少两种作业结构包括普通作业结构和果树作业结构,且普通作业结构下农业植保无人机绕俯仰轴转动的力矩,大于果树作业结构下农业植保无人机绕俯仰轴转动的力矩,则两种作业结构下该系统传递函数模型的频率(单位Hz)-增益(单位dB)关系曲线的对比例如可以如图4所示。参考图4,果树作业结构的频率-增益关系曲线(虚线所示曲线)处于普通作业结构的频率-增益关系曲线(实线所示曲线)之下,即对应于同一控制信号的频率,普通作业结构下系统所产生的增益,大于果树作业结构下系统所产生的增益。以控制信号的频率为f0为例,普通作业结构下系统的增益为g1,果树作业结构下系统的增益为g2
需要说明的是,图4中以两种作业结构为例,在作业结构为更多种时,例如三种,可以存在三条关系曲线,三条关系曲线与三个作业结构一一对应。假设三条关系曲线分别为力矩最大的作业模式对应的关系曲线1、力矩次之的作业模式对应的关系曲线2和力矩最小的作业模式对应的关系曲线3,则关系曲线1可以位于关系曲线2之上,关系曲线2可以位于关系曲线3之上。
一个实施例中,可以在时域中进行增益的确定。基于此,步骤32具体可以包括:将所述当前速度数据与当前的所述控制信号之比,作为第一增益。
另一个实施例中,可以在频域中进行增益的确定。基于此,步骤32具体可以包括:将所述当前速度数据的傅里叶变换结果与当前的所述控制信号的傅里叶变换结果之比,作为第一增益。通过傅里叶变换变换到频域进行增益的确定,有利于去除噪声。第一增益g、当前的所述控制信号c以及当前的角速度r可以满足如下公式(1),其中,fft表示傅里叶变换。
Figure BDA0003167390540000071
步骤33,基于所述第一增益,识别所述农业植保无人机的当前作业结构。
本步骤中,在所述控制信号的频率为f0时,例如可以基于所述第一增益与gx的大小关系识别所述农业植保无人机的当前作业结构,其中,gx位于g1和g2之间。示例性的,如果所述第一增益大于gx,则可以将所述农业植保无人机的当前作业结构识别为普通作业结构;如果所述第一增益小于或等于gx,则可以将所述农业植保无人机的当前作业结构识别为果树作业结构。
考虑到系统的增益会随着农业植保无人机电池电压的降低而降低,还会随着负载质量的增加而降低,即随着电池电压的变化以及负载质量的变化,图4所示的关系曲线是会发生变化的,因此为了提高作业结构识别的准确性,可以考虑无人机电池的电压以及负载状况的影响。在此情况下,在所述农业植保无人机当前的电压和负载状况与图4所示的关系曲线对应的电压及负载状况相同时,可以采用前述基于所述第一增益与gx的大小关系识别所述农业植保无人机的当前作业结构的方式。
本申请实施例提供的方法,通过获取农业植保无人机相对于目标轴转动的当前速度数据,基于当前速度数据以及当前的控制信号,计算得到第一增益,控制信号用于控制农业植保无人机相对于目标轴转动,基于第一增益,识别农业植保无人机的当前作业结构,实现了自动识别农业植保无人机的当前作业结构的识别,无需用户使用终端将作业结构告知农业植保无人机,从而能够降低使用成本。
图5为本申请另一实施例提供的农业植保无人机的作业结构识别方法的流程示意图,本实施例在图3所示实施例的基础上,主要描述了一种基于第一增益识别农业植保无人机的当前作业结构的具体实现方式。如图5所示,本实施例的方法可以包括:
步骤51,获取农业植保无人机相对于目标轴转动的当前速度数据。
需要说明的是,步骤51与步骤31类似,在此不再赘述。
步骤52,基于所述当前速度数据以及当前的控制信号,计算得到第一增益,所述控制信号用于控制所述农业植保无人机相对于所述目标轴转动。
需要说明的是,步骤52与步骤32类似,在此不再赘述。
步骤53,基于当前的电压和负载状况,将所述第一增益等效到预设的电压及负载状况下的增益,以得到第二增益。
本步骤中,所述预设的电压及负载状况可以根据需求灵活实现。一个实施例中,所述预设的电压及负载状况可以包括满电压且空载。由于系统的增益会随着农业植保无人机电池电压的降低而降低,还会随着农业植保无人机负载质量的增加而降低,因此满电压且空载的情况下系统的增益最大,由此通过所述预设的电压及负载状况包括满电压且空载,能够便于对等效得到的第一增益进行校验,避免出现第二增益明显错误的问题,即在等效得到的第二增益大于预设的电压及负载状况下的增益时,可以将第二增益限制为预设的电压及负载状况下的增益。
一个实施例中,可以基于等效输出升力,实现将第一增益等效到预设的电压及负载状况下的增益以得到第二增益。基于此,步骤53具体可以包括:基于当前的电压和负载状况,确定第一等效输出升力;以及,基于所述第一等效输出升力、第二等效输出升力以及所述第一增益,计算得到第二增益,其中所述第二等效输出升力为所述预设的电压及负载状况下所述农业植保无人机的等效输出升力。在一个实施例中,可以通过无人机的飞控系统获得上述第一等效输出升力、第二等效输出升力,本申请在此不作限定。
其中,所述第一等效输出升力T,所述第二等效输出升力T0、所述第一增益g以及所述第二增益g’满足如下公式(2)。
Figure BDA0003167390540000091
其中,
Figure BDA0003167390540000092
可以记为等效缩放因子k1,则整理公式(2)可以得到如下公式(3)。
g′=k1g 公式(3)
基于公式(3)可以看出,在另一个实施例中,可以先基于第一等效输出升力和第二等效输出升力计算得到等效缩放因子k1,然后基于等效缩放因子k1和第一增益计算得到第二增益。
另一个实施例中,可以直接基于电压及负载状况,实现将第一增益等效到预设的电压及负载状况下的增益以得到第二增益。基于此,步骤53具体可以包括:基于当前的电压及负载状况下的整机质量、预设的电压及负载状况下的整机质量以及所述第一增益,计算得到第二增益。
其中,当前的电压u、当前的负载状况下的整机质量m、预设的电压u0、预设的负载状况下的整机质量m0、第一增益g以及第二增益g’可以满足如下公式(2)。
Figure BDA0003167390540000093
其中,
Figure BDA0003167390540000094
可以记为等效缩放因子k2,则整理公式(4)可以得到如下公式(5)。
g′=k2g 公式(5)
基于公式(5)可以看出,在另一个实施例中,可以先基于当前的电压及负载状况下的整机质量、预设的电压及负载状况下的整机质量计算得到等效缩放因子k2,然后基于等效缩放因子k2和第一增益计算得到第二增益。
另外,基于公式(2)和公式(4)可以看出,预设的电压及负载状况下的增益,与当前的电压及负载状况下的增益,两者之间可以相互转换。由此可以看出,在其他实施例中,也可以将预设的电压及负载状况下的基准增益,等效到当前的电压及负载状况下的增益,从而实现直接基于第一增益识别所述农业植保无人机的当前作业结果。
例如,假设图4所示的关系曲线为预设的电压及负载状况下的关系曲线,且所述控制信号的频率为f0,则可以将g1等效到当前的电压及负载状况下的增益以得到增益g1’,并将g2等效到当前的电压及负载状况下的增益以得到增益g2’。进一步的,可以基于g1’和g2’确定gx’,其中gx’位于g1’和g2’之间。最后,可以基于所述第一增益与gx’的大小关系识别所述农业植保无人机的当前作业结构。示例性的,如果所述第一增益大于gx’,则可以将所述农业植保无人机的当前作业结构识别为普通作业结构;如果所述第一增益小于或等于gx’,则可以将所述农业植保无人机的当前作业结构识别为果树作业结构。
步骤54,基于所述第二增益,识别所述农业植保无人机的当前作业结构。
本步骤中,可选的,步骤54具体可以包括:基于所述第二增益,以及所述预设的电压及负载状况下所述至少两个作业结构对于输入的同一控制信号分别产生的基准增益,识别所述农业植保无人机的当前作业结构。
假设所述至少两种作业结构包括普通作业结构和果树作业结构,两者的增益-频率曲线如图4所示,且所述控制信号的频率为f0,则可以基于(g1-g’)/(g’-g2)与比例阈值的大小关系,识别所述农业植保无人机的当前作业结构。如果所述(g1-g’)/(g’-g2)大于所述比例阈值,则将所述农业植保无人机的当前作业结构识别为所述普通作业结构;如果所述(g1-g’)/(g’-g2)小于或等于所述比例阈值,则将所述农业植保无人机的当前作业结构识别为所述果树作业结构。
或者,可选的,所述基于所述第二增益,识别所述农业植保无人机的当前作业结构,具体可以包括:基于所述第二增益与增益阈值的大小关系,识别所述农业植保无人机的当前作业结构;其中,所述增益阈值是基于所述预设的电压及负载状况下,所述至少两个作业结构对于输入的同一控制信号分别产生的基准增益而确定的。
一个实施例中,所述至少两种作业结构包括第一作业结构和第二作业结构,所述第一作业结构产生第一基准增益,所述第二作业结构产生第二基准增益,所述增益阈值位于所述第一基准增益和所述第二基准增益之间。在所述第一作业结构为普通作业结构,第二作业结构为果树作业结构情况下,所述第一基准增益例如可以为图4中的g1、第二基准增益例如可以为图4中的g2
可选的,在所述第一作业结构为普通作业结构,第二作业结构为非普通作业结构的情况下,所述增益阈值可以靠近所述第二基准增益。考虑到普通作业结构的使用概率相对非普通作业结构要大,如果增益阈值靠近第一基准增益很容易出现将普通作业结构误识别为非普通作业结构,因此通过增益阈值靠近第二基准增益,有利于降低出现识别错误的概率。一个实施例中,第一基准增益g1、第二基准增益g2以及增益阈值gx可以满足如下公式(6)。
Figure BDA0003167390540000111
可选的,在所述第一基准增益大于第二基准增益的情况下,所述基于所述第二增益与增益阈值的大小关系,识别所述农业植保无人机的当前作业结构,具体可以包括:如果所述第二增益大于所述增益阈值,则将所述农业植保无人机的当前作业结构识别为所述第一作业结构;如果所述第二增益小于或等于所述增益阈值,则将所述农业植保无人机的当前作业结构识别为所述第二作业结构。
假设第一基准增益为图4中的g1,第二基准增益为图4中的g2,且基于g1和g2确定的增益阈值为gx,则如果所述第二阈值大于gx,则将所述农业植保无人机的当前作业结构识别为所述普通作业结构;如果所述第二阈值小于或等于gx,则将所述农业植保无人机的当前作业结构识别为果树作业结构;
本申请实施例提供的方法,通过基于当前的电压和负载状况,将第一增益等效到预设的电压及负载状况下的增益,以得到第二增益,基于第二增益,识别农业植保无人机的当前作业结构,实现了自动识别农业植保无人机的当前作业结构的识别,从而降低了使用成本。
可选的,在上述方法实施例的基础上,所述控制信号的频率可以是满足预设条件的特定频率。从而避免所述控制信号与所述农业植保无人机中存在其他频率相同,导致信号干扰较大的问题。
进一步可选的,所述特定频率为除所述农业植保无人机的螺旋桨的激励频率以及所述农业植保无人机所搭载负载的工作频率之外的其他频率。从而避免所述控制信号与所述农业植保无人机的螺旋桨的激励频率以及所述农业植保无人机所搭载负载的工作频率相同,导致信号干扰较大的问题。
可选的,在上述方法实施例的基础上,所述基于所述第一增益,确定所述农业植保无人机的当前作业结构之后,还可以包括:基于所述当前作业结构,进行控制参数的适配。从而能够实现采用与当前作业结构适配的控制参数进行相应控制,有利于提高控制的灵活性。
图6为本申请又一实施例提供的农业植保无人机的控制方法的流程示意图,本实施例的执行主体可以为装置13,具体可以为装置13的处理器。如图6所示,本实施例的方法可以包括:
步骤61,获取所述农业植保无人机的当前姿态信息以及当前动力参数。
本步骤中,所述动力参数是指用于控制所述农业植保无人机的姿态变化的作用力的参数,所述姿态信息是指用于表征所述农业植保无人机的姿态变化情况的信息。
一个实施例中,所述动力参数可以包括用于控制所述农业植保无人机绕目标轴转动的控制信号。
一个实施例中,所述姿态信息可以包括所述农业植保无人机绕所述目标轴转动的速度数据,示例性的,所述速度数据可以包括角速度。
步骤62,根据所述当前姿态信息以及所述当前动力参数,确定所述农业植保无人机的作业模式,所述作业模式包括如下至少一种:普通作业模式,果树作业模式。
本步骤中,确定的所述农业植保无人机的作业模式是与所述农业植保无人机的当前作业结构对应的作业模式。在所述农业植保无人机的当前作业结构是果树作业结构的情况下,确定的所述农业植保无人机的作业模式可以是果树作业模式。在所述农业植保无人机的当前作业结构是普通作业结构的情况下,确定的所述农业植保无人机的作业模式可以是普通作业模式。因此,可以采用基于农业植保无人机的当前姿态信息以及当前动力参数识别农业植保无人机的当前作业结构的方式,确定所述农业植保无人机的作业模式。
示例性的,步骤62具体可以包括根据所述当前速度数据以及所述控制信号,计算得到第一增益;根据所述第一增益,确定所述农业植保无人机的作业模式。需要说明的是,根据所述当前姿态信息以及所述当前动力参数,确定农业植保无人机的作业模式的具体方式,与前述实施例所述的识别农业植保无人机的当前作业结构的具体方式类似,在此不再赘述。
步骤63,根据确定的作业模式,选择相适应的控制参数。
本步骤中,示例性的,在确定的作业模式是果树作业模式的情况下,可以选择与果树作业模式相适应的控制参数;在确定的作业模式是普通作业模式的情况下,可以选择与普通作业模式相适应的控制参数。
本申请实施例提供的方法,通过获取农业植保无人机的当前姿态信息以及当前动力参数,根据当前姿态信息以及当前动力参数,确定农业植保无人机的作业模式,根据确定的作业模式,选择相适应的控制参数,实现了自动确定农业植保无人机的作业模式,并基于确定的作业模式进行控制参数的适配,与由用户使用终端将作业结构告知农业植保无人机以由农业植保无人机基于用户告知的作业结构进行参数适配相比,无需由用户将作业结构告知植保无人机,从而能够降低使用成本。
图7为本申请一实施例提供的农业植保无人机的作业结构识别装置的结构示意图,如图7所示,该装置70可以包括:处理器71和存储器72。
所述存储器72,用于存储指令;
所述处理器71,调用所述指令,当指令被执行时,用于执行以下操作:
获取所述农业植保无人机相对于目标轴转动的当前速度数据;
基于所述当前速度数据以及当前的控制信号,计算得到第一增益,所述控制信号用于控制所述农业植保无人机相对于所述目标轴转动;
基于所述第一增益,识别所述农业植保无人机的当前作业结构。
本实施例提供的装置,可以用于执行前述图3、图5所示方法实施例的技术方案,其实现原理和技术效果与方法实施例类似,在此不再赘述。
图8为本申请一实施例提供的农业植保无人机的控制装置的结构示意图。如图8所示,该装置80可以包括:处理器81和存储器82。
所述存储器82,用于存储指令;
所述处理器81,调用所述指令,当指令被执行时,用于执行以下操作:
获取所述农业植保无人机的当前姿态信息以及当前动力参数;
根据所述当前姿态信息以及所述当前动力参数,确定所述农业植保无人机的作业模式,所述作业模式包括如下至少一种:普通作业模式,果树作业模式;
根据确定的作业模式,选择相适应的控制参数。
本实施例提供的装置,可以用于执行前述图6所示方法实施例的技术方案,其实现原理和技术效果与方法实施例类似,在此不再赘述。
另外,本申请实施例还提供一种农业植保无人机,所述农业植保无人机包括机身、设置于所述机身上的动力系统和作业结构识别装置;
所述动力系统,用于为所述农业植保无人机提供动力;
所述作业结构识别装置包括存储器和处理器;
所述存储器,用于存储指令;
所述处理器,调用所述指令,当指令被执行时,用于执行以下操作:
获取所述农业植保无人机相对于目标轴转动的当前速度数据;
基于所述当前速度数据以及当前的控制信号,计算得到第一增益,所述控制信号用于控制所述农业植保无人机相对于所述目标轴转动;
基于所述第一增益,识别所述农业植保无人机的当前作业结构。
其中,所述作业结构识别装置的具体内容可以参见图7所示实施例,在此不再赘述。
此外,本申请实施例还提供一种农业植保无人机,所述农业植保无人机包括机身、设置于所述机身上的动力系统和控制装置;
所述动力系统,用于为所述农业植保无人机提供动力;
所述控制装置包括存储器和处理器;
所述存储器,用于存储指令;
所述处理器,调用所述指令,当指令被执行时,用于执行以下操作:
获取所述农业植保无人机的当前姿态信息以及当前动力参数;
根据所述当前姿态信息以及所述当前动力参数,确定所述农业植保无人机的作业模式,所述作业模式包括如下至少一种:普通作业模式,果树作业模式;
根据确定的作业模式,选择相适应的控制参数。
其中,所述控制装置的具体内容可以参见图7所示实施例,在此不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储指令的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (104)

1.一种农业植保无人机的作业结构识别方法,其特征在于,所述方法包括:
获取所述农业植保无人机相对于目标轴转动的当前速度数据;
基于所述当前速度数据以及当前的控制信号,计算得到第一增益,所述控制信号用于控制所述农业植保无人机相对于所述目标轴转动;
基于所述第一增益,识别所述农业植保无人机的当前作业结构。
2.根据权利要求1所述的方法,其特征在于,所述基于所述第一增益,识别所述农业植保无人机的当前作业结构,包括:
基于当前的电压和负载状况,将所述第一增益等效到预设的电压及负载状况下的增益,以得到第二增益;
基于所述第二增益,识别所述农业植保无人机的当前作业结构。
3.根据权利要求2所述的方法,其特征在于,所述基于当前的电压和负载状况,将所述第一增益等效到预设的电压及负载状况下的增益,以得到第二增益,包括:
基于当前的电压及负载状况,确定所述农业植保无人机的第一等效输出升力;
基于所述第一等效输出升力、第二等效输出升力以及所述第一增益,计算得到第二增益,其中,所述第二等效输出升力为所述预设的电压及负载状况下所述农业植保无人机的等效输出升力。
4.根据权利要求2所述的方法,其特征在于,所述基于当前的电压和负载状况,将所述第一增益等效到预设的电压及负载状况下的增益,以得到第二增益,包括:
基于当前的电压及负载状况下的整机质量、预设的电压及负载状况下的整机质量以及所述第一增益,计算得到第二增益。
5.根据权利要求2所述的方法,其特征在于,所述基于所述第二增益,识别所述农业植保无人机的当前作业结构,包括:
基于所述第二增益,以及所述预设的电压及负载状况下所述至少两个作业结构对于输入的同一控制信号分别产生的基准增益,识别所述农业植保无人机的当前作业结构。
6.根据权利要求2所述的方法,其特征在于,所述基于所述第二增益,识别所述农业植保无人机的当前作业结构,包括:
基于所述第二增益与增益阈值的大小关系,识别所述农业植保无人机的当前作业结构;其中,所述增益阈值是基于所述预设的电压及负载状况下,所述至少两个作业结构对于输入的同一控制信号分别产生的基准增益而确定的。
7.根据权利要求6所述的方法,其特征在于,所述农业植保无人机存在至少两种作业结构,所述至少两种作业结构包括第一作业结构和第二作业结构,所述第一作业结构产生第一基准增益,所述第二作业结构产生第二基准增益,所述增益阈值位于所述第一基准增益和所述第二基准增益之间。
8.根据权利要求7所述的方法,其特征在于,所述第一作业结构为普通作业结构,第二作业结构为非普通作业结构;所述增益阈值靠近所述第二基准增益。
9.根据权利要求7所述的方法,其特征在于,所述第一基准增益大于第二基准增益;
所述基于所述第二增益与增益阈值的大小关系,识别所述农业植保无人机的当前作业结构,包括:
如果所述第二增益大于所述增益阈值,则将所述农业植保无人机的当前作业结构识别为所述第一作业结构;
如果所述第二增益小于或等于所述增益阈值,则将所述农业植保无人机的当前作业结构识别为所述第二作业结构。
10.根据权利要求2所述的方法,其特征在于,所述预设的电压及负载状况包括满电压且空载。
11.根据权利要求1所述的方法,其特征在于,所述控制信号的频率是特定频率。
12.根据权利要求11所述的方法,其特征在于,所述特定频率为除所述农业植保无人机的螺旋桨的激励频率以及所述农业植保无人机所搭载负载的工作频率之外的其他频率。
13.根据权利要求1所述的方法,其特征在于,所述基于所述当前速度数据以及当前的所述控制信号,计算得到第一增益,包括:
将所述当前速度数据的傅里叶变换结果与当前的所述控制信号的傅里叶变换结果之比,作为第一增益。
14.根据权利要求1所述的方法,其特征在于,所述当前速度数据包括角速度,所述控制信号用于表示角速度控制相关的物理量。
15.根据权利要求1所述的方法,其特征在于,所述至少两个作业结构包括:果树作业结构和普通作业结构。
16.根据权利要求1所述的方法,其特征在于,所述目标轴包括俯仰轴、横滚轴和偏航轴中的至少一者。
17.根据权利要求1所述的方法,其特征在于,所述基于所述第一增益,确定所述农业植保无人机的当前作业结构之后,还包括:
基于所述当前作业结构,进行控制参数的适配。
18.一种农业植保无人机的控制方法,其特征在于,包括:
获取所述农业植保无人机的当前姿态信息以及当前动力参数;
根据所述当前姿态信息以及所述当前动力参数,确定所述农业植保无人机的作业模式,所述作业模式包括如下至少一种:普通作业模式,果树作业模式;
根据确定的作业模式,选择相适应的控制参数。
19.根据权利要求18所述的方法,其特征在于,所述当前姿态信息包括所述农业植保无人机相对于目标轴转动的当前速度数据;
所述当前动力参数包括当前的控制信号,所述控制信号用于控制所述农业植保无人机相对于所述目标轴转动。
20.根据权利要求19所述的方法,其特征在于,所述根据所述当前姿态信息以及所述当前动力参数,确定所述农业植保无人机的作业模式,包括:
根据所述当前速度数据以及所述控制信号,计算得到第一增益;
根据所述第一增益,确定所述农业植保无人机的作业模式。
21.根据权利要求20所述的方法,其特征在于,所述根据所述第一增益,确定所述农业植保无人机的作业模式,包括:
基于当前的电压和负载状况,将所述第一增益等效到预设的电压及负载状况下的增益,以得到第二增益;
基于所述第二增益,确定所述农业植保无人机的作业模式。
22.根据权利要求21所述的方法,其特征在于,所述基于当前的电压和负载状况,将所述第一增益等效到预设的电压及负载状况下的增益,以得到第二增益,包括:
基于当前的电压及负载状况,确定所述农业植保无人机的第一等效输出升力;
基于所述第一等效输出升力、第二等效输出升力以及所述第一增益,计算得到第二增益,其中,所述第二等效输出升力为所述预设的电压及负载状况下所述农业植保无人机的等效输出升力。
23.根据权利要求21所述的方法,其特征在于,所述基于当前的电压和负载状况,将所述第一增益等效到预设的电压及负载状况下的增益,以得到第二增益,包括:
基于当前的电压及负载状况下的整机质量、预设的电压及负载状况下的整机质量以及所述第一增益,计算得到第二增益。
24.根据权利要求21所述的方法,其特征在于,所述农业植保无人机存在至少两种作业结构,所述基于所述第二增益,确定所述农业植保无人机的作业模式,包括:
基于所述第二增益,以及所述预设的电压及负载状况下所述至少两个作业结构对于输入的同一控制信号分别产生的基准增益,识别所述农业植保无人机的当前作业结构。
25.根据权利要求21所述的方法,其特征在于,所述农业植保无人机存在至少两种作业结构,所述基于所述第二增益,确定所述农业植保无人机的作业模式,包括:
基于所述第二增益与增益阈值的大小关系,确定所述农业植保无人机的作业模式;其中,所述增益阈值是基于所述预设的电压及负载状况下,所述至少两种作业结构对于同一控制信号分别产生的基准增益而确定的。
26.根据权利要求25所述的方法,其特征在于,所述至少两种作业结构包括普通作业结构和果树作业结果;所述普通作业结构产生第一基准增益,所述果树作业结构产生第二基准增益,所述增益阈值位于所述第一基准增益和所述第二基准增益之间。
27.根据权利要求26所述的方法,其特征在于,所述增益阈值靠近所述第二基准增益。
28.根据权利要求26所述的方法,其特征在于,所述第一基准增益大于第二基准增益;
所述基于所述第二增益与增益阈值的大小关系,确定所述农业植保无人机的作业模式,包括:
如果所述第二增益大于所述增益阈值,则确定所述农业植保无人机的作业模式为普通作业模式;
如果所述第二增益小于或等于所述增益阈值,则确定所述农业植保无人机的作业模式为果树作业模式。
29.根据权利要求21所述的方法,其特征在于,所述预设的电压及负载状况包括满电压且空载。
30.根据权利要求20所述的方法,其特征在于,所述根据所述当前速度数据以及所述控制信号,计算得到第一增益,包括:
将所述当前速度数据的傅里叶变换结果与所述控制信号的傅里叶变换结果之比,作为第一增益。
31.根据权利要求19所述的方法,其特征在于,所述控制信号的频率是特定频率。
32.根据权利要求31所述的方法,其特征在于,所述特定频率为除所述农业植保无人机的螺旋桨的激励频率以及所述农业植保无人机所搭载负载的工作频率之外的其他频率。
33.根据权利要求19所述的方法,其特征在于,所述当前速度数据包括角速度,所述控制信号用于表示角速度控制相关的物理量。
34.根据权利要求19所述的方法,其特征在于,所述目标轴包括俯仰轴、横滚轴和偏航轴中的至少一者。
35.一种农业植保无人机的作业结构识别装置,其特征在于,所述装置包括:存储器和处理器;
所述存储器,用于存储指令;
所述处理器,调用所述指令,当指令被执行时,用于执行以下操作:
获取所述农业植保无人机相对于目标轴转动的当前速度数据;
基于所述当前速度数据以及当前的控制信号,计算得到第一增益,所述控制信号用于控制所述农业植保无人机相对于所述目标轴转动;
基于所述第一增益,识别所述农业植保无人机的当前作业结构。
36.根据权利要求35所述的装置,其特征在于,所述处理器用于基于所述第一增益,识别所述农业植保无人机的当前作业结构,具体包括:
基于当前的电压和负载状况,将所述第一增益等效到预设的电压及负载状况下的增益,以得到第二增益;
基于所述第二增益,识别所述农业植保无人机的当前作业结构。
37.根据权利要求36所述的装置,其特征在于,所述处理器用于基于当前的电压和负载状况,将所述第一增益等效到预设的电压及负载状况下的增益,以得到第二增益,具体包括:
基于当前的电压及负载状况,确定所述农业植保无人机的第一等效输出升力;
基于所述第一等效输出升力、第二等效输出升力以及所述第一增益,计算得到第二增益,其中,所述第二等效输出升力为所述预设的电压及负载状况下所述农业植保无人机的等效输出升力。
38.根据权利要求36所述的装置,其特征在于,所述处理器用于基于当前的电压和负载状况,将所述第一增益等效到预设的电压及负载状况下的增益,以得到第二增益,具体包括:
基于当前的电压及负载状况下的整机质量、预设的电压及负载状况下的整机质量以及所述第一增益,计算得到第二增益。
39.根据权利要求36所述的装置,其特征在于,所述处理器用于基于所述第二增益,识别所述农业植保无人机的当前作业结构,具体包括:
基于所述第二增益,以及所述预设的电压及负载状况下所述至少两个作业结构对于输入的同一控制信号分别产生的基准增益,识别所述农业植保无人机的当前作业结构。
40.根据权利要求36所述的装置,其特征在于,所述处理器用于基于所述第二增益,识别所述农业植保无人机的当前作业结构,具体包括:
基于所述第二增益与增益阈值的大小关系,识别所述农业植保无人机的当前作业结构;其中,所述增益阈值是基于所述预设的电压及负载状况下,所述至少两个作业结构对于输入的同一控制信号分别产生的基准增益而确定的。
41.根据权利要求40所述的装置,其特征在于,所述农业植保无人机存在至少两种作业结构,所述至少两种作业结构包括第一作业结构和第二作业结构,所述第一作业结构产生第一基准增益,所述第二作业结构产生第二基准增益,所述增益阈值位于所述第一基准增益和所述第二基准增益之间。
42.根据权利要求41所述的装置,其特征在于,所述第一作业结构为普通作业结构,第二作业结构为非普通作业结构;所述增益阈值靠近所述第二基准增益。
43.根据权利要求41所述的装置,其特征在于,所述第一基准增益大于第二基准增益;
所述处理器用于基于所述第二增益与增益阈值的大小关系,识别所述农业植保无人机的当前作业结构,具体包括:
如果所述第二增益大于所述增益阈值,则将所述农业植保无人机的当前作业结构识别为所述第一作业结构;
如果所述第二增益小于或等于所述增益阈值,则将所述农业植保无人机的当前作业结构识别为所述第二作业结构。
44.根据权利要求36所述的装置,其特征在于,所述预设的电压及负载状况包括满电压且空载。
45.根据权利要求35所述的装置,其特征在于,所述控制信号的频率是特定频率。
46.根据权利要求45所述的装置,其特征在于,所述特定频率为除所述农业植保无人机的螺旋桨的激励频率以及所述农业植保无人机所搭载负载的工作频率之外的其他频率。
47.根据权利要求35所述的装置,其特征在于,所述处理器用于基于所述当前速度数据以及当前的所述控制信号,计算得到第一增益,具体包括:
将所述当前速度数据的傅里叶变换结果与当前的所述控制信号的傅里叶变换结果之比,作为第一增益。
48.根据权利要求35所述的装置,其特征在于,所述当前速度数据包括角速度,所述控制信号用于表示角速度控制相关的物理量。
49.根据权利要求35所述的装置,其特征在于,所述至少两个作业结构包括:果树作业结构和普通作业结构。
50.根据权利要求35所述的装置,其特征在于,所述目标轴包括俯仰轴、横滚轴和偏航轴中的至少一者。
51.根据权利要求35所述的装置,其特征在于,所述处理器还用于:基于所述当前作业结构,进行控制参数的适配。
52.一种农业植保无人机的处理装置,其特征在于,包括:存储器和处理器;
所述存储器,用于存储指令;
所述处理器,调用所述指令,当指令被执行时,用于执行以下操作:
获取所述农业植保无人机的当前姿态信息以及当前动力参数;
根据所述当前姿态信息以及所述当前动力参数,确定所述农业植保无人机的作业模式,所述作业模式包括如下至少一种:普通作业模式,果树作业模式;
根据确定的作业模式,选择相适应的控制参数。
53.根据权利要求52所述的装置,其特征在于,所述当前姿态信息包括所述农业植保无人机相对于目标轴转动的当前速度数据;
所述当前动力参数包括当前的控制信号,所述控制信号用于控制所述农业植保无人机相对于所述目标轴转动。
54.根据权利要求53所述的装置,其特征在于,所述处理器用于根据所述当前姿态信息以及所述当前动力参数,确定所述农业植保无人机的作业模式,具体包括:
根据所述当前速度数据以及所述控制信号,计算得到第一增益;
根据所述第一增益,确定所述农业植保无人机的作业模式。
55.根据权利要求54所述的装置,其特征在于,所述处理器用于根据所述第一增益,确定所述农业植保无人机的作业模式,具体包括:
基于当前的电压和负载状况,将所述第一增益等效到预设的电压及负载状况下的增益,以得到第二增益;
基于所述第二增益,确定所述农业植保无人机的作业模式。
56.根据权利要求55所述的装置,其特征在于,所述处理器用于基于当前的电压和负载状况,将所述第一增益等效到预设的电压及负载状况下的增益,以得到第二增益,具体包括:
基于当前的电压及负载状况,确定所述农业植保无人机的第一等效输出升力;
基于所述第一等效输出升力、第二等效输出升力以及所述第一增益,计算得到第二增益,其中,所述第二等效输出升力为所述预设的电压及负载状况下所述农业植保无人机的等效输出升力。
57.根据权利要求55所述的装置,其特征在于,所述处理器用于基于当前的电压和负载状况,将所述第一增益等效到预设的电压及负载状况下的增益,以得到第二增益,具体包括:
基于当前的电压及负载状况下的整机质量、预设的电压及负载状况下的整机质量以及所述第一增益,计算得到第二增益。
58.根据权利要求55所述的装置,其特征在于,所述农业植保无人机存在至少两种作业结构,所述处理器用于基于所述第二增益,确定所述农业植保无人机的作业模式,具体包括:
基于所述第二增益,以及所述预设的电压及负载状况下所述至少两个作业结构对于输入的同一控制信号分别产生的基准增益,识别所述农业植保无人机的当前作业结构。
59.根据权利要求55所述的装置,其特征在于,所述农业植保无人机存在至少两种作业结构,所述处理器用于基于所述第二增益,确定所述农业植保无人机的作业模式,具体包括:
基于所述第二增益与增益阈值的大小关系,确定所述农业植保无人机的作业模式;其中,所述增益阈值是基于所述预设的电压及负载状况下,所述至少两种作业结构对于同一控制信号分别产生的基准增益而确定的。
60.根据权利要求59所述的装置,其特征在于,所述至少两种作业结构包括普通作业结构和果树作业结果;所述普通作业结构产生第一基准增益,所述果树作业结构产生第二基准增益,所述增益阈值位于所述第一基准增益和所述第二基准增益之间。
61.根据权利要求60所述的装置,其特征在于,所述增益阈值靠近所述第二基准增益。
62.根据权利要求60所述的装置,其特征在于,所述第一基准增益大于第二基准增益;
所述处理器用于基于所述第二增益与增益阈值的大小关系,确定所述农业植保无人机的作业模式,具体包括:
如果所述第二增益大于所述增益阈值,则确定所述农业植保无人机的作业模式为普通作业模式;
如果所述第二增益小于或等于所述增益阈值,则确定所述农业植保无人机的作业模式为果树作业模式。
63.根据权利要求55所述的装置,其特征在于,所述预设的电压及负载状况包括满电压且空载。
64.根据权利要求54所述的装置,其特征在于,所述处理器用于根据所述当前速度数据以及所述控制信号,计算得到第一增益,具体包括:
将所述当前速度数据的傅里叶变换结果与所述控制信号的傅里叶变换结果之比,作为第一增益。
65.根据权利要求53所述的装置,其特征在于,所述控制信号的频率是特定频率。
66.根据权利要求65所述的装置,其特征在于,所述特定频率为除所述农业植保无人机的螺旋桨的激励频率以及所述农业植保无人机所搭载负载的工作频率之外的其他频率。
67.根据权利要求53所述的装置,其特征在于,所述当前速度数据包括角速度,所述控制信号用于表示角速度控制相关的物理量。
68.根据权利要求53所述的装置,其特征在于,所述目标轴包括俯仰轴、横滚轴和偏航轴中的至少一者。
69.一种农业植保无人机,其特征在于,所述农业植保无人机包括机身、设置于所述机身上的动力系统和作业结构识别装置;
所述动力系统,用于为所述农业植保无人机提供动力;
所述作业结构识别装置包括存储器和处理器;
所述存储器,用于存储指令;
所述处理器,调用所述指令,当指令被执行时,用于执行以下操作:
获取所述农业植保无人机相对于目标轴转动的当前速度数据;
基于所述当前速度数据以及当前的控制信号,计算得到第一增益,所述控制信号用于控制所述农业植保无人机相对于所述目标轴转动;
基于所述第一增益,识别所述农业植保无人机的当前作业结构。
70.根据权利要求69所述的农业植保无人机,其特征在于,所述处理器用于基于所述第一增益,识别所述农业植保无人机的当前作业结构,具体包括:
基于当前的电压和负载状况,将所述第一增益等效到预设的电压及负载状况下的增益,以得到第二增益;
基于所述第二增益,识别所述农业植保无人机的当前作业结构。
71.根据权利要求70所述的农业植保无人机,其特征在于,所述处理器用于基于当前的电压和负载状况,将所述第一增益等效到预设的电压及负载状况下的增益,以得到第二增益,具体包括:
基于当前的电压及负载状况,确定所述农业植保无人机的第一等效输出升力;
基于所述第一等效输出升力、第二等效输出升力以及所述第一增益,计算得到第二增益,其中,所述第二等效输出升力为所述预设的电压及负载状况下所述农业植保无人机的等效输出升力。
72.根据权利要求70所述的农业植保无人机,其特征在于,所述处理器用于基于当前的电压和负载状况,将所述第一增益等效到预设的电压及负载状况下的增益,以得到第二增益,具体包括:
基于当前的电压及负载状况下的整机质量、预设的电压及负载状况下的整机质量以及所述第一增益,计算得到第二增益。
73.根据权利要求70所述的农业植保无人机,其特征在于,所述处理器用于基于所述第二增益,识别所述农业植保无人机的当前作业结构,具体包括:
基于所述第二增益,以及所述预设的电压及负载状况下所述至少两个作业结构对于输入的同一控制信号分别产生的基准增益,识别所述农业植保无人机的当前作业结构。
74.根据权利要求70所述的农业植保无人机,其特征在于,所述处理器用于基于所述第二增益,识别所述农业植保无人机的当前作业结构,具体包括:
基于所述第二增益与增益阈值的大小关系,识别所述农业植保无人机的当前作业结构;其中,所述增益阈值是基于所述预设的电压及负载状况下,所述至少两个作业结构对于输入的同一控制信号分别产生的基准增益而确定的。
75.根据权利要求74所述的农业植保无人机,其特征在于,所述农业植保无人机存在至少两种作业结构,所述至少两种作业结构包括第一作业结构和第二作业结构,所述第一作业结构产生第一基准增益,所述第二作业结构产生第二基准增益,所述增益阈值位于所述第一基准增益和所述第二基准增益之间。
76.根据权利要求75所述的农业植保无人机,其特征在于,所述第一作业结构为普通作业结构,第二作业结构为非普通作业结构;所述增益阈值靠近所述第二基准增益。
77.根据权利要求75所述的农业植保无人机,其特征在于,所述第一基准增益大于第二基准增益;
所述处理器用于基于所述第二增益与增益阈值的大小关系,识别所述农业植保无人机的当前作业结构,具体包括:
如果所述第二增益大于所述增益阈值,则将所述农业植保无人机的当前作业结构识别为所述第一作业结构;
如果所述第二增益小于或等于所述增益阈值,则将所述农业植保无人机的当前作业结构识别为所述第二作业结构。
78.根据权利要求70所述的农业植保无人机,其特征在于,所述预设的电压及负载状况包括满电压且空载。
79.根据权利要求69所述的农业植保无人机,其特征在于,所述控制信号的频率是特定频率。
80.根据权利要求79所述的农业植保无人机,其特征在于,所述特定频率为除所述农业植保无人机的螺旋桨的激励频率以及所述农业植保无人机所搭载负载的工作频率之外的其他频率。
81.根据权利要求69所述的农业植保无人机,其特征在于,所述处理器用于基于所述当前速度数据以及当前的所述控制信号,计算得到第一增益,具体包括:
将所述当前速度数据的傅里叶变换结果与当前的所述控制信号的傅里叶变换结果之比,作为第一增益。
82.根据权利要求69所述的农业植保无人机,其特征在于,所述当前速度数据包括角速度,所述控制信号用于表示角速度控制相关的物理量。
83.根据权利要求69所述的农业植保无人机,其特征在于,所述至少两个作业结构包括:果树作业结构和普通作业结构。
84.根据权利要求69所述的农业植保无人机,其特征在于,所述目标轴包括俯仰轴、横滚轴和偏航轴中的至少一者。
85.根据权利要求69所述的农业植保无人机,其特征在于,所述处理器还用于:基于所述当前作业结构,进行控制参数的适配。
86.一种农业植保无人机,其特征在于,所述农业植保无人机包括机身、设置于所述机身上的动力系统和控制装置;
所述动力系统,用于为所述农业植保无人机提供动力;
所述控制装置包括存储器和处理器;
所述存储器,用于存储指令;
所述处理器,调用所述指令,当指令被执行时,用于执行以下操作:
获取所述农业植保无人机的当前姿态信息以及当前动力参数;
根据所述当前姿态信息以及所述当前动力参数,确定所述农业植保无人机的作业模式,所述作业模式包括如下至少一种:普通作业模式,果树作业模式;
根据确定的作业模式,选择相适应的控制参数。
87.根据权利要求86所述的农业植保无人机,其特征在于,所述当前姿态信息包括所述农业植保无人机相对于目标轴转动的当前速度数据;
所述当前动力参数包括当前的控制信号,所述控制信号用于控制所述农业植保无人机相对于所述目标轴转动。
88.根据权利要求87所述的农业植保无人机,其特征在于,所述处理器用于根据所述当前姿态信息以及所述当前动力参数,确定所述农业植保无人机的作业模式,具体包括:
根据所述当前速度数据以及所述控制信号,计算得到第一增益;
根据所述第一增益,确定所述农业植保无人机的作业模式。
89.根据权利要求88所述的农业植保无人机,其特征在于,所述处理器用于根据所述第一增益,确定所述农业植保无人机的作业模式,具体包括:
基于当前的电压和负载状况,将所述第一增益等效到预设的电压及负载状况下的增益,以得到第二增益;
基于所述第二增益,确定所述农业植保无人机的作业模式。
90.根据权利要求89所述的农业植保无人机,其特征在于,所述处理器用于基于当前的电压和负载状况,将所述第一增益等效到预设的电压及负载状况下的增益,以得到第二增益,具体包括:
基于当前的电压及负载状况,确定所述农业植保无人机的第一等效输出升力;
基于所述第一等效输出升力、第二等效输出升力以及所述第一增益,计算得到第二增益,其中,所述第二等效输出升力为所述预设的电压及负载状况下所述农业植保无人机的等效输出升力。
91.根据权利要求89所述的农业植保无人机,其特征在于,所述处理器用于基于当前的电压和负载状况,将所述第一增益等效到预设的电压及负载状况下的增益,以得到第二增益,具体包括:
基于当前的电压及负载状况下的整机质量、预设的电压及负载状况下的整机质量以及所述第一增益,计算得到第二增益。
92.根据权利要求89所述的农业植保无人机,其特征在于,所述农业植保无人机存在至少两种作业结构,所述处理器用于基于所述第二增益,确定所述农业植保无人机的作业模式,具体包括:
基于所述第二增益,以及所述预设的电压及负载状况下所述至少两个作业结构对于输入的同一控制信号分别产生的基准增益,识别所述农业植保无人机的当前作业结构。
93.根据权利要求89所述的农业植保无人机,其特征在于,所述农业植保无人机存在至少两种作业结构,所述处理器用于基于所述第二增益,确定所述农业植保无人机的作业模式,具体包括:
基于所述第二增益与增益阈值的大小关系,确定所述农业植保无人机的作业模式;其中,所述增益阈值是基于所述预设的电压及负载状况下,所述至少两种作业结构对于同一控制信号分别产生的基准增益而确定的。
94.根据权利要求93所述的农业植保无人机,其特征在于,所述至少两种作业结构包括普通作业结构和果树作业结果;所述普通作业结构产生第一基准增益,所述果树作业结构产生第二基准增益,所述增益阈值位于所述第一基准增益和所述第二基准增益之间。
95.根据权利要求94所述的农业植保无人机,其特征在于,所述增益阈值靠近所述第二基准增益。
96.根据权利要求94所述的农业植保无人机,其特征在于,所述第一基准增益大于第二基准增益;
所述处理器用于基于所述第二增益与增益阈值的大小关系,确定所述农业植保无人机的作业模式,具体包括:
如果所述第二增益大于所述增益阈值,则确定所述农业植保无人机的作业模式为普通作业模式;
如果所述第二增益小于或等于所述增益阈值,则确定所述农业植保无人机的作业模式为果树作业模式。
97.根据权利要求89所述的农业植保无人机,其特征在于,所述预设的电压及负载状况包括满电压且空载。
98.根据权利要求88所述的农业植保无人机,其特征在于,所述处理器用于根据所述当前速度数据以及所述控制信号,计算得到第一增益,具体包括:
将所述当前速度数据的傅里叶变换结果与所述控制信号的傅里叶变换结果之比,作为第一增益。
99.根据权利要求87所述的农业植保无人机,其特征在于,所述控制信号的频率是特定频率。
100.根据权利要求99所述的农业植保无人机,其特征在于,所述特定频率为除所述农业植保无人机的螺旋桨的激励频率以及所述农业植保无人机所搭载负载的工作频率之外的其他频率。
101.根据权利要求87所述的农业植保无人机,其特征在于,所述当前速度数据包括角速度,所述控制信号用于表示角速度控制相关的物理量。
102.根据权利要求87所述的农业植保无人机,其特征在于,所述目标轴包括俯仰轴、横滚轴和偏航轴中的至少一者。
103.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,所述指令可由处理器执行,以控制所述处理器执行如权利要求1-17任一项所述的方法。
104.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,所述指令可由处理器执行,以控制所述处理器执行如权利要求18-34任一项所述的方法。
CN202080009777.8A 2020-09-30 2020-09-30 农业植保无人机的作业结构识别、控制方法、装置及设备 Pending CN113330385A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119448 WO2022067687A1 (zh) 2020-09-30 2020-09-30 农业植保无人机的作业结构识别、控制方法、装置及设备

Publications (1)

Publication Number Publication Date
CN113330385A true CN113330385A (zh) 2021-08-31

Family

ID=77413342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080009777.8A Pending CN113330385A (zh) 2020-09-30 2020-09-30 农业植保无人机的作业结构识别、控制方法、装置及设备

Country Status (2)

Country Link
CN (1) CN113330385A (zh)
WO (1) WO2022067687A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105217038A (zh) * 2015-10-23 2016-01-06 吉林省农业机械研究院 一种植保飞机定向喷洒装置及其控制方法
CN105253303A (zh) * 2015-10-23 2016-01-20 杨珊珊 一种无人机喷洒范围调整装置及方法
CN111273693A (zh) * 2020-02-27 2020-06-12 辽宁壮龙无人机科技有限公司 一种植保无人机作业的控制方法及系统
CN111295332A (zh) * 2018-12-28 2020-06-16 深圳市大疆软件科技有限公司 农业植保无人机的控制方法、农业植保无人机和计算机可读存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3226738B2 (ja) * 1994-12-14 2001-11-05 ヤマハ発動機株式会社 無人ヘリコプターによる薬剤散布装置
CN104554726B (zh) * 2014-12-01 2017-02-22 嵊州领航信息科技有限公司 一种农林业专用智能无人机
CN110162087A (zh) * 2019-05-17 2019-08-23 安徽舒州农业科技有限责任公司 一种植保无人机自动识别农作物病害的方法及装置
CN211281487U (zh) * 2019-11-28 2020-08-18 石家庄中皇尚品农业发展有限公司 一种可避让非作业区的植保无人机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105217038A (zh) * 2015-10-23 2016-01-06 吉林省农业机械研究院 一种植保飞机定向喷洒装置及其控制方法
CN105253303A (zh) * 2015-10-23 2016-01-20 杨珊珊 一种无人机喷洒范围调整装置及方法
CN111295332A (zh) * 2018-12-28 2020-06-16 深圳市大疆软件科技有限公司 农业植保无人机的控制方法、农业植保无人机和计算机可读存储介质
CN111273693A (zh) * 2020-02-27 2020-06-12 辽宁壮龙无人机科技有限公司 一种植保无人机作业的控制方法及系统

Also Published As

Publication number Publication date
WO2022067687A1 (zh) 2022-04-07

Similar Documents

Publication Publication Date Title
CN107065902A (zh) 基于非线性模型的无人机姿态模糊自适应预测控制方法及系统
CN113110588B (zh) 一种无人机编队及其飞行方法
US9085371B2 (en) Automatic throttle roll angle compensation
CN109799699A (zh) 一种控制参数处理方法及其装置、设备、存储介质
CN109582030A (zh) 一种调整无人机姿态控制中待整定参数方法及相关装置
CN114840027A (zh) 异构四旋翼飞行器编队姿态容错控制方法
CN114879668B (zh) 电动船舶的控制方法、电动船舶及计算机可读存储介质
CN113777932B (zh) 一种基于Delta算子的四旋翼自适应滑模容错控制方法
CN115079565A (zh) 变系数的带落角约束制导方法、装置和飞行器
CN113883008B (zh) 一种可抑制多扰动因素的风机模糊自适应变桨距控制方法
CN112198888A (zh) 一种考虑无人机在机动平台自主起降的自适应pid控制方法
CN113330385A (zh) 农业植保无人机的作业结构识别、控制方法、装置及设备
CN112817338B (zh) 无人机的控制方法、装置、存储介质及电子设备
CN111061262B (zh) 一种减少无效操舵的航向控制方法
CN116175548B (zh) 一种机器人自适应变阻抗电驱动系统及控制方法、装置
CN115857544A (zh) 一种无人机集群编队飞行控制方法、装置及设备
CN108958270A (zh) 飞行器自抗扰控制方法和装置
CN111706463A (zh) 双叶轮漂浮式风力发电机组的偏航控制方法及装置、机组
CN108170030B (zh) 动力系统控制分配方法及相关装置
NIKITIN et al. MULTILEVEL CONTROL OF A TRANSPORT ROBOT.
CN113093782B (zh) 一种无人机指定性能姿态控制方法及系统
CN109086487A (zh) 持续激励型共形傅里叶变换的无人机微小故障检测方法
Jafari et al. Adaptive neural network based intelligent control for unmanned aerial systems with system uncertainties and disturbances
WO2022095063A1 (zh) 控制无人机的方法、无人机及存储介质
US20210072708A1 (en) Variable bandwidth actuator controller

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination