WO2022095063A1 - 控制无人机的方法、无人机及存储介质 - Google Patents

控制无人机的方法、无人机及存储介质 Download PDF

Info

Publication number
WO2022095063A1
WO2022095063A1 PCT/CN2020/127630 CN2020127630W WO2022095063A1 WO 2022095063 A1 WO2022095063 A1 WO 2022095063A1 CN 2020127630 W CN2020127630 W CN 2020127630W WO 2022095063 A1 WO2022095063 A1 WO 2022095063A1
Authority
WO
WIPO (PCT)
Prior art keywords
uav
drone
current
mass ratio
flight
Prior art date
Application number
PCT/CN2020/127630
Other languages
English (en)
French (fr)
Inventor
王璐
王晓亮
贾向华
闫光
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/127630 priority Critical patent/WO2022095063A1/zh
Publication of WO2022095063A1 publication Critical patent/WO2022095063A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw

Definitions

  • the present application relates to the technical field of drone control, and in particular, to a method for controlling a drone, a drone and a storage medium.
  • the load of the plant protection drone will change.
  • the change of large load leads to unstable flight status, poor control effect, poor operation feel and poor ground defense flight, which affects the operation effect of plant protection UAV.
  • users usually manually control the drone to carry out spraying/spreading operations.
  • the control feel of the drone due to the change of load, there will be obvious differences in the control feel of the drone; especially in the In an environment with large undulating terrain, the vertical control response will be deteriorated during ground defense flight.
  • the terrain following effect of the unloaded UAV is not good, resulting in the operation effect of the plant protection UAV. worse.
  • the present application provides a method for controlling an unmanned aerial vehicle, an unmanned aerial vehicle and a storage medium.
  • the present application provides a method for controlling an unmanned aerial vehicle, the method comprising:
  • the battery electrical parameters and the reference flight control parameters determine the current flight of the drone control parameters, or, according to the correspondence between the current thrust-to-mass ratio, the current battery electrical parameters and the reference correction parameters of the UAV's thrust-to-mass ratio, battery electrical parameters and flight control parameters, determine the current flight control parameters of the UAV;
  • the flight of the UAV is controlled according to the current flight control parameters.
  • the present application provides an unmanned aerial vehicle, the unmanned aerial vehicle comprising: a memory and a processor;
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program and implement the following steps when executing the computer program:
  • the battery electrical parameters and the reference flight control parameters determine the current flight of the drone control parameters, or, according to the correspondence between the current thrust-to-mass ratio, the current battery electrical parameters and the reference correction parameters of the UAV's thrust-to-mass ratio, battery electrical parameters and flight control parameters, determine the current flight control parameters of the UAV;
  • the flight of the UAV is controlled according to the current flight control parameters.
  • the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor enables the processor to control the drone as described above Methods.
  • the embodiments of the present application provide a method for controlling an unmanned aerial vehicle, an unmanned aerial vehicle, and a storage medium, since the current thrust-to-mass ratio and the current battery electrical parameters of the unmanned aerial vehicle and their differences with reference flight control parameters or flight control parameters are provided.
  • the calibration parameters to determine the current flight control parameters of the UAV and control the flight of the UAV according to the current flight control parameters, that is, the current flight control parameters of the UAV are not fixed, but vary with time. In this way, the UAV can be dynamically adjusted according to the current thrust-to-mass ratio and the current battery electrical parameters of the UAV during the flight.
  • the current flight control parameters can ensure the best control effect of the entire flight process, the best flight performance and operating feel, the user does not perceive the change of load and battery electrical parameters during the whole process, and does not affect the user's control feel and automatic
  • the tracking effect during ground defense can effectively ensure the operation effect of the UAV.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for controlling an unmanned aerial vehicle of the present application
  • FIG. 2 is a schematic flowchart of another embodiment of the method for controlling an unmanned aerial vehicle of the present application
  • FIG. 3 is a schematic flowchart of another embodiment of the method for controlling an unmanned aerial vehicle of the present application.
  • FIG. 4 is a schematic structural diagram of an embodiment of the UAV of the present application.
  • the embodiments of the present application provide a method for controlling an unmanned aerial vehicle, an unmanned aerial vehicle, and a storage medium, since the current thrust-to-mass ratio and the current battery electrical parameters of the unmanned aerial vehicle and their differences with reference flight control parameters or flight control parameters are provided.
  • the calibration parameters to determine the current flight control parameters of the UAV and control the flight of the UAV according to the current flight control parameters, that is, the current flight control parameters of the UAV are not fixed, but vary with time. In this way, the UAV can be dynamically adjusted according to the current thrust-to-mass ratio and the current battery electrical parameters of the UAV during the flight.
  • the current flight control parameters can ensure the best control effect of the entire flight process, the best flight performance and handling feel, and the user does not perceive the change of load and battery electrical parameters during the entire process, and does not affect the user's control feel and automatic
  • the tracking effect during ground defense can effectively ensure the operation effect of the UAV.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for controlling a drone according to the present application, and the method includes:
  • Step S101 Obtain the current thrust-to-mass ratio of the UAV.
  • the thrust-to-mass ratio may refer to the ratio between the thrust and the weight of the UAV, and this value may represent the current residual thrust state of the UAV, that is, the remaining control amount after canceling the weight of the UAV (i.e. residual thrust, residual weight). If the thrust-to-mass ratio of the drone is too low, it means that the controllable power of the drone is very little at this time, and the drone is in an overloaded state; if the thrust-to-mass ratio of the drone is too high, there will be a waste of energy. .
  • the UAV can characterize the current thrust of the UAV by calculating the fixed lift when the UAV hovers or the UAV’s speed is lower than a certain speed threshold according to the current flight state (PWM and other states). Compare.
  • Step S102 Obtain the current battery electrical parameters of the drone.
  • the battery electrical parameters may represent electrical parameters of the battery state, including but not limited to voltage, current, power, and the like.
  • the battery in this embodiment may be a battery that provides energy supply for the drone.
  • the current battery electrical parameters of the drone can be obtained through the battery management system of the drone.
  • step S101 and step S102.
  • Step S103 Determine the UAV according to the corresponding relationship between the current thrust-to-mass ratio, the current battery electrical parameters and the UAV's thrust-to-mass ratio, battery electrical parameters and reference flight control parameters The current flight control parameters, or, according to the current thrust-to-mass ratio, the current battery electrical parameters and the UAV's thrust-to-mass ratio, battery electrical parameters and flight control parameters The correspondence between the reference correction parameters relationship to determine the current flight control parameters of the UAV.
  • Flight control parameters may refer to relevant control parameters for controlling the flight of the UAV, including but not limited to: position, speed, acceleration, angular velocity, angular acceleration, attitude, altitude, heading, trajectory, and so on.
  • the reference flight control parameters may refer to the corresponding flight control parameters under the condition that the thrust-to-mass ratio and battery electrical parameters of the UAV are determined.
  • the reference flight control parameters can be the best flight control parameters corresponding to the determination of the thrust-to-mass ratio and battery electrical parameters of the UAV.
  • the correction parameters may refer to coefficients for correcting flight control parameters.
  • the reference correction parameter may refer to the corresponding correction parameter when the thrust-to-mass ratio of the drone and the battery electrical parameters are determined.
  • the reference correction parameter can be the best corresponding correction parameter when the thrust-to-mass ratio of the UAV and the battery electrical parameters are determined.
  • a reference flight control parameter or a default flight control parameter can be set in advance. After the reference calibration parameter is obtained, the current flight control parameter of the UAV can be the product of the reference flight control parameter and the reference calibration parameter.
  • the correspondence between the thrust-to-mass ratio, the battery electrical parameters and the reference flight control parameters of the drone is pre-existed, or there is a pre-existing relationship between the thrust-to-mass ratio, battery electrical parameters and flight control parameters of the drone.
  • the current flight control parameters of the UAV can be determined in combination with the corresponding relationship.
  • the correspondence is pre-stored in a local storage device of the drone.
  • the corresponding relationship may be acquired first.
  • the method of acquiring the corresponding relationship may include: the drone sends a request for acquiring the corresponding relationship to the control terminal; the control terminal may be a ground control station or a user terminal; after the control terminal receives the request, if the control terminal is local If the corresponding relationship is stored, the corresponding relationship can be sent to the drone. If the control terminal does not store the corresponding relationship locally, the control terminal can obtain the corresponding relationship from the server that saves the corresponding relationship, and then store the corresponding relationship. The correspondence is returned to the drone.
  • Step S104 Control the flight of the UAV according to the current flight control parameters.
  • the flight of the UAV can be controlled according to the current flight control parameters, thereby ensuring the best control effect of the entire flight process, and the best flight performance and manipulation feel.
  • the current flight control parameters of the UAV are determined according to the current thrust-to-mass ratio of the UAV, the current battery electrical parameters and their correspondence with the reference flight control parameters or the reference correction parameters of the flight control parameters.
  • control the flight of the UAV according to the current flight control parameters that is, the current flight control parameters of the UAV are not fixed, but vary with the current thrust-to-mass ratio of the UAV and the current battery electrical parameters.
  • the current flight control parameters of the UAV can be dynamically adjusted according to the current thrust-to-mass ratio and the current battery electrical parameters of the UAV during the flight, so as to ensure the best control effect of the entire flight process.
  • the flight performance and handling feel are the best. The user does not perceive the change of load and battery electrical parameters during the whole process, and does not affect the user's control feel and the tracking effect during automatic ground defense, which can effectively ensure the operation effect of the UAV.
  • the flight control parameters include control coefficients of at least one of an altitude control loop, a position control loop, an attitude control loop, an acceleration control loop, an angular acceleration control loop, and a velocity control loop for flight control.
  • UAV flight control methods such as: linear flight control methods (such as PID control), learning-based flight control methods, model-based nonlinear control methods (such as: feedback linearization), and so on.
  • PID control method Due to the classical PID control method, its control structure is simple, easy to use, and easy to implement. It is one of the most successful and widely used control methods at present. For controls that do not require high flight accuracy.
  • PID control method is to make the output of the system track the input of the system, where P is the proportional control coefficient, I is the integral control coefficient, and D is the differential control coefficient. Different systems need to adjust the appropriate PID control coefficients for control.
  • the main measurement unit and the main controller form a closed loop. Since this loop is on the outside, it is also called the outer loop, or the outer loop for short; the secondary measurement unit and the secondary controller form another closed loop. It is on the inner side, also known as the inner loop, or the inner loop for short.
  • the outer loop and the inner loop have their own different input and output, and also have different control methods.
  • the expected value of the system can only be input to the main controller of the outer loop together with the main measurement results, and the output of the main controller of the outer loop and the secondary measurement results are input to the sub-controller of the inner loop. The output of the sub-controller will ultimately affect the execution result of the actuator.
  • the control system for the UAV can be divided into control loops such as position control loop, altitude control loop, speed control loop, attitude control loop, acceleration control loop, angular acceleration control loop, etc.
  • the flight control parameters can include the position used for flight control
  • the cascade control system is also used. That is, the above-mentioned control loops such as the position control loop, the height control loop, the speed control loop, the attitude control loop, the acceleration control loop, and the angular acceleration control loop can be correlated and nested with each other.
  • vertical speed control is the premise of height control, which is the inner loop of height control, and so on. Each control loop depends on each other. .
  • attitude control the "angle-angular velocity" double-loop cascade feedback control method is used to achieve a stable attitude.
  • the main measurement unit is used to measure the current attitude angle in the UAV system;
  • the main controller is the attitude angle controller,
  • the control method is the proportional control coefficient (P), and its input is the attitude angle error, that is, the attitude angle is expected to decrease.
  • the output result of the attitude angle controller is the expected angular velocity.
  • the secondary measurement unit is used to measure the current angular velocity in the UAV system;
  • the secondary controller is the angular velocity controller,
  • the control method is proportional control coefficient - integral control coefficient - differential control coefficient (PID), and its input is the angular velocity error, that is, the expected angular velocity
  • the output of the angular velocity controller is the control amount of the motor. Since the angular velocity changes faster than the angle, it is better to control the angular velocity directly than to control the angle directly. Therefore, in the attitude control of the UAV, the double-loop cascade feedback control is used to control the outer loop to control the angle and the inner loop to control the angular velocity.
  • the control accuracy and response speed of the control system are greatly improved, so the control effect of the cascade control system is greatly improved compared with the single-loop feedback control system.
  • the physical quantities controlled by the inner loop should be more sensitive and faster than those controlled by the outer loop.
  • the position control of the UAV also adopts the cascade feedback control method. In order to achieve effective control of the position of the UAV, and to quickly perceive and eliminate disturbances, the position control is used as the main controller of the outer loop, and the speed control is used as the sub-controller of the inner loop, because the speed is more sensitive than the position change. fast.
  • the corresponding relationship is determined according to a first corresponding relationship and a second corresponding relationship, and the first corresponding relationship is the thrust-to-mass ratio and the reference flight of the UAV under the same battery electrical parameters.
  • the corresponding relationship between the control parameters, the second corresponding relationship is the corresponding relationship between the battery electrical parameters and the reference flight control parameters of the drone at the same thrust-to-mass ratio.
  • the first correspondence is the correspondence between the thrust-to-mass ratio and the reference flight control parameters of the drone with the same battery electrical parameters, that is, when the first correspondence is determined, the battery electrical parameters are maintained Unchanged, determine the correspondence between the thrust-to-mass ratio of the UAV and the reference flight control parameters.
  • a plurality of different battery electrical parameters can be determined first, and the corresponding relationship between the thrust-to-mass ratio of the UAV and the reference flight control parameters can be determined while keeping the electrical parameters of each battery unchanged.
  • the second correspondence is the correspondence between the battery electrical parameters and the reference flight control parameters of the drone at the same thrust-to-mass ratio, that is, when the second correspondence is determined, keep the thrust-to-mass ratio unchanged.
  • the corresponding relationship between the battery electrical parameters of the drone and the reference flight control parameters is determined. Specifically, a plurality of different thrust-to-mass ratios can be determined first, and the corresponding relationship between the battery electrical parameters of the drone and the reference flight control parameters can be determined while keeping each thrust-to-mass ratio unchanged.
  • a Bode diagram is a graphical method of the frequency response of a system, which consists of a phase diagram and an amplitude diagram, which are plotted according to the logarithm of the frequency, also known as a logarithmic coordinate diagram.
  • (1) under each same battery voltage collect the first sweep frequency curve of the drone when hovering under different thrust-to-mass ratios; according to the first sweep frequency curve, identify the main body characteristics of the aircraft Testo, calculate the optimal flight control parameters of the UAV under the same battery voltage and different thrust-to-mass ratios, and use the optimal flight control parameters as reference flight control parameters, and then obtain the The first correspondence between the thrust-to-mass ratio of the drone at the same battery voltage and the reference flight control parameters.
  • the above-mentioned acquisition of the sweep frequency curve in the hovering state of the aircraft is to input the known excitation signal from the input terminal, and simultaneously collect the corresponding output of the aircraft, and obtain the frequency domain Bode diagram of the aircraft body according to the identification method such as fast Fourier transform.
  • the optimal flight control parameters of the system are obtained by adopting the lead/lag correction method according to the amplitude and phase angle margin required by the system.
  • a reference correction parameter that completely corresponds to the flight control parameters cannot be found in the corresponding relationship, for example, the corresponding relationship includes:
  • the thrust-to-mass ratio of the drone is A1, the battery voltage is B1, the reference correction parameter of the flight control parameters is C1, the thrust-to-mass ratio of the drone is A2, the battery voltage is B2, and the reference correction parameter of the flight control parameters is C2;
  • the current thrust-to-mass ratio of the machine is A (the size of A is between A1 and A2), and the current battery voltage is B (the size of B is between B1 and B2).
  • some methods can be used to determine the target correction coefficient.
  • step S103 the corresponding relationship between the reference calibration parameters according to the current thrust-to-mass ratio, the current battery electrical parameters and the UAV's thrust-to-mass ratio, battery electrical parameters and flight control parameters , to determine the current flight control parameters of the UAV, which may include: sub-step S1031 , sub-step S1032 and sub-step S1033 , as shown in FIG. 2 .
  • Sub-step S1031 Obtain the reference flight control parameters of the UAV.
  • the reference flight control parameters may be preset flight control parameters.
  • the reference flight control parameters can be the flight control parameters in the frequent flying state of the UAV.
  • the frequent flight state is full of pesticides, so the flight control parameters of the drones when they are fully loaded with pesticides can be used as the reference flight control parameters.
  • Sub-step S1032 Determine the target correction according to the correspondence between the current thrust-to-mass ratio, the current battery electrical parameters and the reference correction coefficients of the UAV's thrust-to-mass ratio, battery electrical parameters, and flight control parameters coefficient.
  • sub-step S1032 can be implemented in many ways. For example, according to the current thrust-to-mass ratio and the current battery electrical parameter, determine the corresponding relationship with the current thrust-to-mass ratio and the current battery electrical parameter.
  • the thrust-to-mass ratio of the two closest UAVs, the reference correction coefficients of the two flight control parameters corresponding to the battery electrical parameters, and the target correction can be obtained according to the weight ratio of the reference correction coefficients of the two flight control parameters coefficient.
  • determine the thrust-to-mass ratio and battery power of the drone that is closest to the current thrust-to-mass ratio and the current battery electrical parameters in the corresponding relationship.
  • the reference correction coefficient of the flight control parameter corresponding to the performance parameter is directly used as the target correction coefficient.
  • Sub-step S1033 Correct the reference flight control parameters according to the target correction coefficient to obtain the current flight control parameters of the UAV.
  • the target correction coefficient can be obtained according to the current thrust-to-mass ratio, the current battery electrical parameters and the corresponding relationship, and then the current flight control parameters of the UAV can be obtained.
  • the thrust-to-mass ratio is the ratio of the thrust to the weight of the UAV, when the UAV is overloaded, it will cause the push-to-mass ratio. The ratio is greatly reduced, and the drone is underpowered. Therefore, in one embodiment, the UAV's thrust-to-mass ratio is used for overload protection of the UAV. When the UAV is overloaded, the UAV can take corresponding protection measures to avoid the occurrence of an aircraft explosion accident.
  • the specific instructions are as follows:
  • the method further includes: if it is determined according to the current thrust-to-mass ratio that the UAV is in a flying state with insufficient power, controlling the UAV to perform a safe operation.
  • the size of the thrust-to-mass ratio can reflect whether the UAV is overloaded and whether the UAV is underpowered, in this embodiment, when it is determined that the UAV is in a flying state with insufficient power according to the current thrust-to-mass ratio of the UAV,
  • the drone can be controlled to perform safe operations. In this way, corresponding protection measures can be taken when the drone is overloaded to ensure the safety of the drone and avoid the occurrence of bombing accidents.
  • a threshold value of the thrust-to-mass ratio can be preset, and whether the UAV is in a flying state with insufficient power can be determined by comparing the current thrust-to-mass ratio with the threshold value. That is, the method may further include: if the current thrust-to-mass ratio is less than a first threshold, determining that the UAV is in a flying state with insufficient power.
  • the safety operation includes at least one of the following: sending prompt information to the control terminal to cause the control terminal to display a prompt notification, controlling the flight maneuver parameters of the drone, and controlling the drone to hover. , control the drone to land or return.
  • Sending prompt information to the control terminal to cause the control terminal to display a prompt notification can enable the user to know the current state of the drone and the relevant safety operations performed by the drone.
  • the flight maneuver parameters may refer to parameters that can characterize the flight state and change with time, including but not limited to: speed, attitude, acceleration, angular acceleration, flight distance, flight height, and the like. In one embodiment, the flight maneuver parameters include at least one of the following: speed, attitude, acceleration, angular acceleration, and flight distance.
  • Controlling the drone to land or return can avoid fried chicken and ensure the integrity of the drone.
  • a more refined classification is performed for the underpowered flight state of the UAV, and different safety operations are performed for different levels of underpowered flight states to satisfy the refined control. That is, if it is determined according to the current thrust-to-mass ratio that the UAV is in a flying state with insufficient power, controlling the UAV to perform a safe operation may include:
  • the method may further include:
  • two thresholds are preset, so as to determine a first-level power-deficient flight state and a second-level power-deficient flight state.
  • the first safety operation includes: restricting the flight maneuver parameters of the UAV or controlling the UAV to hover; or, restricting the UAV's flight maneuver parameters or controlling the UAV to hover stop, and send prompt information to the control terminal so that the control terminal displays the prompt notification.
  • the second safety operation includes: controlling the drone to land or return; or, controlling the drone to land or return, and sending prompt information to the control terminal so that the control terminal displays a prompt notification.
  • the obtaining the current thrust-to-mass ratio of the drone may include: obtaining the The current thrust-to-mass ratio of the drone.
  • step S101 the obtaining of the current thrust-to-mass ratio of the drone is further It may include: sub-step S1011 and sub-step S1012, as shown in FIG. 3 .
  • Sub-step S1011 Acquire the rotational speed of the motor used to provide flight power for the drone or the PWM signal for controlling the motor.
  • Sub-step S1012 Obtain the current thrust-to-mass ratio of the UAV according to the rotational speed or the PWM signal.
  • the motor provides the flight power for the drone.
  • the speed of the motor cannot be increased and is lower than the speed of the drone in the normal flight state, it can indicate that the flight power of the drone is insufficient, so it can be determined according to the speed of the motor.
  • the current thrust-to-mass ratio of the drone is the current thrust-to-mass ratio of the drone.
  • the motor is a device that converts electrical energy into mechanical energy. Controlling the size of the current can realize the control of the speed of the motor, and the control of the current size is realized by the PWM signal.
  • the purpose of controlling the current can be achieved by adjusting the period of the PWM and the duty cycle of the PWM.
  • the duty cycle refers to the percentage of the entire signal period when the signal is at a high level in a cycle. For example: if the duty cycle of the PWM signal is large, the current is large, and the corresponding motor speed is large; if the duty cycle of the PWM signal is small, the current is small, and the corresponding motor speed is small.
  • the duty ratio of the PWM signal in the normal flight state of the drone can indicate that the flying power of the drone is insufficient, so the current thrust-to-mass ratio of the drone can be determined according to the PWM signal.
  • FIG. 4 is a schematic structural diagram of an embodiment of an unmanned aerial vehicle of the present application. It should be noted that the unmanned aerial vehicle of this embodiment can execute the steps in the above-mentioned method for controlling an unmanned aerial vehicle. The detailed description of the relevant content, Please refer to the above-mentioned related content of the method of controlling the UAV, which will not be repeated here.
  • the drone includes 100: a memory 1 and a processor 2; the processor 2 and the memory 1 are connected through a bus.
  • the processor 2 may be a microcontroller unit, a central processing unit or a digital signal processor, and so on.
  • the memory 1 may be a Flash chip, a read-only memory, a magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • Described memory 1 is used for storing computer program;
  • Described processor 2 is used for executing described computer program and when executing described computer program, realizes the following steps:
  • the current thrust-to-mass ratio of the drone obtains the current battery electrical parameters of the drone; according to the current thrust-to-mass ratio, the current battery electrical parameters and the thrust-to-mass ratio and battery electrical properties of the drone
  • the corresponding relationship between the parameters and the reference flight control parameters determine the current flight control parameters of the drone, or, according to the current thrust-to-mass ratio, the current battery electrical parameters and the thrust of the drone
  • the current flight control parameters of the UAV are determined according to the corresponding relationship between the ratio, the battery electrical parameters and the reference correction parameters of the flight control parameters; the flight of the UAV is controlled according to the current flight control parameters.
  • the corresponding relationship is pre-stored in the local storage device of the UAV.
  • the flight control parameters include a control coefficient of at least one of the altitude control loop, the position control loop, the attitude control loop, the acceleration control loop, the angular acceleration control loop, and the speed control loop for flight control.
  • the corresponding relationship is determined according to the first corresponding relationship and the second corresponding relationship, and the first corresponding relationship is the thrust-to-mass ratio of the UAV under the same battery electrical parameters and the reference flight control parameters.
  • the second corresponding relationship is the corresponding relationship between the battery electrical parameters and the reference flight control parameters of the UAV at the same thrust-to-mass ratio.
  • the processor when executing the computer program, implements the following steps: obtaining the reference flight control parameters of the drone; according to the current thrust-to-mass ratio, the current battery electrical parameters and the drone’s
  • the correspondence between the thrust-to-mass ratio, the battery electrical parameters, and the reference correction coefficients of the flight control parameters determines the target correction coefficient; according to the target correction coefficient, the reference flight control parameters are corrected to obtain the current flight control parameters.
  • the processor when executing the computer program, implements the following steps: if it is determined according to the current thrust-to-mass ratio that the UAV is in a flying state with insufficient power, controlling the UAV to perform a safe operation.
  • the safety operation includes at least one of the following: sending prompt information to the control terminal to cause the control terminal to display a prompt notification, controlling the flight maneuver parameters of the drone, controlling the drone to hover, controlling the drone The drone lands or returns.
  • the processor executes the computer program, the following steps are implemented: if the current thrust-to-mass ratio is less than a first threshold, it is determined that the UAV is in a flying state with insufficient power.
  • the processor when executing the computer program, implements the following steps: if it is determined according to the current thrust-to-mass ratio that the UAV is in a flight state with insufficient power at the first level, controlling the UAV Execute the first safety operation; if it is determined according to the current thrust-to-mass ratio that the UAV is in a flight state with insufficient power at the second level, control the UAV to perform the second safety operation, and the second level is higher than the first safety operation. one level.
  • the processor when executing the computer program, implements the following steps: if the current thrust-to-mass ratio is less than a first threshold and greater than or equal to a second threshold, determining that the UAV is in a first level of insufficient power If the current thrust-to-mass ratio is less than the second threshold, it is determined that the UAV is in a flight state with insufficient power at the second level.
  • the first safety operation includes: restricting the flight maneuver parameters of the UAV or controlling the UAV to hover; or, restricting the UAV's flight maneuver parameters or controlling the UAV to hover stop, and send prompt information to the control terminal so that the control terminal displays the prompt notification.
  • the flight maneuver parameters include at least one of the following: speed, attitude, acceleration, angular acceleration, and flight distance.
  • the second safety operation includes: controlling the drone to land or return; or, controlling the drone to land or return, and sending prompt information to the control terminal so that the control terminal displays a prompt notification.
  • the processor executes the computer program, the following steps are implemented: when the drone hovers or the flight speed of the drone is less than or equal to a preset flight speed threshold, obtain the current thrust of the drone quality ratio.
  • the processor when executing the computer program, implements the following steps: acquiring the rotational speed of a motor used to provide flight power for the drone or a PWM signal for controlling the motor; according to the rotational speed or the PWM signal Get the current thrust-to-mass ratio of the drone.
  • the electrical parameter includes voltage, current or electric quantity.
  • the present application also provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the processor enables the processor to control the drone according to any one of the above Methods.
  • a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the processor enables the processor to control the drone according to any one of the above Methods.
  • the computer-readable storage medium may be an internal storage unit of the above-mentioned drone, such as a hard disk or a memory.
  • the computer-readable storage medium can also be an external storage device, such as an equipped plug-in hard disk, smart memory card, secure digital card, flash memory card, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种控制无人机的方法、无人机及存储介质,该方法包括:获取无人机的当前推质比(S101);获取无人机的当前电池电性参数(S102);根据当前推质比、当前电池电性参数和无人机的推质比、电池电性参数和参考飞行控制参数之间的对应关系,确定无人机的当前飞行控制参数,或者根据当前推质比、当前电池电性参数和无人机的推质比、电池电性参数和飞行控制参数的参考校正参数之间的对应关系,确定无人机的当前飞行控制参数(S103);根据当前飞行控制参数控制无人机的飞行(S104)。

Description

控制无人机的方法、无人机及存储介质 技术领域
本申请涉及无人机控制技术领域,尤其涉及一种控制无人机的方法、无人机及存储介质。
背景技术
植保无人机在进行喷洒/播撒等作业场景中,植保无人机的载重会发生变化。大载重的变化导致飞行状态不稳,控制效果变差,操作手感变差和防地飞行变差,影响植保无人机的作业效果。例如:对于地势恶劣、无法自动作业的地块,用户通常会手动控制无人机进行喷洒/播撒作业,整个作业过程中由于载重变化会导致无人机的控制手感存在明显的差异;尤其是在地势起伏较大的环境下,进行防地飞行时会导致垂向的控制响应变差,在相同的增益补偿下,不用载重无人机的地形跟随效果不佳,导致植保无人机的作业效果变差。
发明内容
基于此,本申请提供一种控制无人机的方法、无人机及存储介质。
第一方面,本申请提供一种控制无人机的方法,所述方法包括:
获取无人机的当前推质比;
获取无人机的当前电池电性参数;
根据所述当前推质比、所述当前电池电性参数和所述无人机的推质比、电池电性参数和参考飞行控制参数之间的对应关系,确定所述无人机的当前飞行控制参数,或者,根据所述当前推质比、所述当前电池电性参数和所述无人机的推质比、电池电性参数和飞行控制参数的参考校正参数之间的对应关系,确定所述无人机的当前飞行控制参数;
根据所述当前飞行控制参数控制所述无人机的飞行。
第二方面,本申请提供一种无人机,所述无人机包括:存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
获取无人机的当前推质比;
获取无人机的当前电池电性参数;
根据所述当前推质比、所述当前电池电性参数和所述无人机的推质比、电池电性参数和参考飞行控制参数之间的对应关系,确定所述无人机的当前飞行控制参数,或者,根据所述当前推质比、所述当前电池电性参数和所述无人机的推质比、电池电性参数和飞行控制参数的参考校正参数之间的对应关系,确定所述无人机的当前飞行控制参数;
根据所述当前飞行控制参数控制所述无人机的飞行。
第三方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如上所述的控制无人机的方法。
本申请实施例提供了一种控制无人机的方法、无人机及存储介质,由于根据无人机的当前推质比、当前电池电性参数和它们与参考飞行控制参数或者飞行控制参数的参考校正参数之间的对应关系,确定无人机的当前飞行控制参数,根据当前飞行控制参数控制无人机的飞行,即无人机的当前飞行控制参数并不是固定不变的,而是随着无人机的当前推质比、当前电池电性参数的变化而变化,通过这种方式,能够在飞行过程中根据无人机的当前推质比、当前电池电性参数动态调整无人机的当前飞行控制参数,从而能够确保整个飞行过程的控制效果最佳,飞行性能和操作手感最好,用户不感知整个过程中的载重变化、电池电性参数变化,不影响用户的控制手感和自动防地时的跟踪效果,能够有效保证无人机的作业效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请控制无人机的方法一实施例的流程示意图;
图2是本申请控制无人机的方法另一实施例的流程示意图;
图3是本申请控制无人机的方法又一实施例的流程示意图;
图4是本申请无人机一实施例的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
植保无人机在进行喷洒/播撒等作业场景中,植保无人机的载重会发生变化。大载重的变化导致飞行状态不稳,控制效果变差,操作手感变差和防地飞行变差,影响植保无人机的作业效果。
本申请实施例提供了一种控制无人机的方法、无人机及存储介质,由于根据无人机的当前推质比、当前电池电性参数和它们与参考飞行控制参数或者飞行控制参数的参考校正参数之间的对应关系,确定无人机的当前飞行控制参数,根据当前飞行控制参数控制无人机的飞行,即无人机的当前飞行控制参数并不是固定不变的,而是随着无人机的当前推质比、当前电池电性参数的变化而变化,通过这种方式,能够在飞行过程中根据无人机的当前推质比、当前电池电性参数动态调整无人机的当前飞行控制参数,从而能够确保整个飞行过程的控制效果最佳,飞行性能和操纵手感最好,用户不感知整个过程中的载重变 化、电池电性参数变化,不影响用户的控制手感和自动防地时的跟踪效果,能够有效保证无人机的作业效果。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
参见图1,图1是本申请控制无人机的方法一实施例的流程示意图,所述方法包括:
步骤S101:获取无人机的当前推质比。
本实施例中,推质比可以是指无人机的推力和重量的比值,该值可以表征无人机当前的剩余推力状态,即除去抵消无人机自身重量后的剩余控制量的多少(即剩余推力、剩余重量)。若无人机的推质比过低,则意味着此时无人机的可控动力很少,无人机处于过载状态;若无人机的推质比过高则会存在能量浪费的情况。通常情况下,无人机可以根据当前的飞行状态(PWM等状态)计算当前无人机悬停或者无人机的速度低于某一速度阈值时的固定升力来表征无人机当前的推质比。
步骤S102:获取无人机的当前电池电性参数。
本实施例中,电池电性参数可以表征电池状态的电参数,包括但不限于电压、电流、电量,等等。本实施例中的电池可以是为无人机提供能量供应的电池。通过无人机的电池管理系统即可获取到无人机的当前电池电性参数。
需要说明的是,步骤S101和步骤S102没有明确的先后顺序关系。
步骤S103:根据所述当前推质比、所述当前电池电性参数和所述无人机的推质比、电池电性参数和参考飞行控制参数之间的对应关系,确定所述无人机的当前飞行控制参数,或者,根据所述当前推质比、所述当前电池电性参数和所述无人机的推质比、电池电性参数和飞行控制参数的参考校正参数之间的对应关系,确定所述无人机的当前飞行控制参数。
飞行控制参数可以是指控制无人机飞行的相关控制参数,包括但不限于:位置、速度、加速度、角速度、角加速度、姿态、高度、航向、轨迹,等等。参考飞行控制参数可以是指在无人机的推质比和电池电性参数确定情况下对应的飞行控制参数。通常情况下,参考飞行控制参数可以是在无人机的推质比和电池电性参数确定情况下对应的最佳的飞行控制参数。
校正参数可以是指对飞行控制参数进行校正的系数。参考校正参数可以是指在无人机的推质比和电池电性参数确定情况下对应的校正参数。通常情况下,参考校正参数可以是在无人机的推质比和电池电性参数确定情况下对应的最佳的校正参数。预先可以设定一个基准飞行控制参数或者默认飞行控制参数,在得到参考校正参数后,无人机的当前飞行控制参数可以是基准飞行控制参数与参考校正参数之间的乘积。
本实施例中,预先有无人机的推质比、电池电性参数和参考飞行控制参数之间的对应关系,或者预先有无人机的推质比、电池电性参数和飞行控制参数的参考校正参数之间的对应关系,在获取到无人机的当前推质比、所述当前电池电性参数后,结合该对应关系即可确定出无人机的当前飞行控制参数。
在一实施例中,所述对应关系预存在所述无人机的本地存储装置中。
如果所述对应关系预先没有存在所述无人机的本地存储装置中,则可以先获取所述对应关系。获取所述对应关系的方式可以包括:无人机向控制端发送获取所述对应关系的请求;控制端可以是地面控制站,也可以是用户端;控制端接收到请求后,如果控制端本地存储有所述对应关系,可以将所述对应关系发送给无人机,如果控制端本地没有存储所述对应关系,控制端可以从保存所述对应关系的服务器获取所述对应关系,然后再将所述对应关系返回给无人机。
步骤S104:根据所述当前飞行控制参数控制所述无人机的飞行。
在确定了当前飞行控制参数后,即可根据当前飞行控制参数控制所述无人机的飞行,从而能够确保整个飞行过程的控制效果最佳,飞行性能和操纵手感最好。
本申请实施例由于根据无人机的当前推质比、当前电池电性参数和它们与参考飞行控制参数或者飞行控制参数的参考校正参数之间的对应关系,确定无人机的当前飞行控制参数,根据当前飞行控制参数控制无人机的飞行,即无人机的当前飞行控制参数并不是固定不变的,而是随着无人机的当前推质比、当前电池电性参数的变化而变化,通过这种方式,能够在飞行过程中根据无人机的当前推质比、当前电池电性参数动态调整无人机的当前飞行控制参数,从而能够确保整个飞行过程的控制效果最佳,飞行性能和操纵手感最好,用户不感 知整个过程中的载重变化、电池电性参数变化,不影响用户的控制手感和自动防地时的跟踪效果,能够有效保证无人机的作业效果。
在一实施例中,飞行控制参数包括用于飞行控制的高度控制环、位置控制环、姿态控制环、加速度控制环、角加速度控制环、速度控制环中至少一个控制环的控制系数。
无人机的飞行控制方法有很多种,例如:线性飞行控制方法(例如PID控制)、基于学习的飞行控制方法、基于模型的非线性控制方法(例如:反馈线性化),等等。
由于经典的PID控制方法,其控制结构简单、使用方便、易于实现,是目前最成功、用的最广泛的控制方法之一;其控制方法简单,无需前期建模工作,参数物理意义明确,适用于飞行精度要求不高的控制。PID控制方法,目的是为使系统的输出跟踪系统的输入,其中P为比例控制系数,I为积分控制系数,D为微分控制系数。不同的系统需要调整合适的PID控制系数进行控制。
为了提高控制精确,常常采用反馈控制。普通单环反馈控制是在被控对象与期望值之间产生误差之后,将误差反馈给控制器,再由控制重新计算并做出相应的控制调整,重新向被控对象进行输出控制。
普通单环反馈控制,这种控制系统只能是在系统出现误差之后才会重新起到控制作用,对于抗扰动性较差,不能很好的对扰动进行预测和预先调整。为了解决普通单环反馈控制不能快速感知扰动对系统影响的问题,引入串级控制系统思想。串级控制是采用另外一个测量单元,并加入另外一个反馈回路形成第二个闭环来快速的感知和克服系统扰动。这个额外引入的测量单元需要比原有测量单元更敏感,更能快速的感知到系统的扰动。
具体情况是:主测量单元与主控制器组成一个闭合回路,由于这个回路是在外侧,因此也称为外环回路,简称外环;副测量单元和副控制器组成了另一个闭合回路,因其在内侧,也称为内环回路,简称内环。外环和内环都有各自不同的输入和输出,也具有不同的控制方法。但是系统的期望值只会与主测量结果一同输入给外环主控制器,外环主控制器的输出与副测量结果一同作输入给内环副控制器。而副控制器的输出会最终影响执行器的执行结果。
针对无人机的控制系统,可分为位置控制环、高度控制环、速度控制环、 姿态控制环、加速度控制环、角加速度控制环等控制回路,飞行控制参数可以包括用于飞行控制的位置控制环、高度控制环、姿态控制环、加速度控制环、角加速度控制环、速度控制环中至少一个控制环的控制系数。在无人机的控制系统中为了尽快感知和克服干扰,也采用串级控制系统。即上述位置控制环、高度控制环、速度控制环、姿态控制环、加速度控制环、角加速度控制环等各控制回路之间可以相互关联和嵌套。
例如要实现飞行高度的平稳,需要稳定的垂向速度,此时垂向速度控制便是高度控制的前提,为高度控制的内环,以此类推,各个控制环路之间相互依赖于嵌套。
在姿态控制当中,采用“角度-角速度”双环串级反馈控制方法来达到稳定的姿态。其中,主测量单元用于测量无人机系统中当前的姿态角;主控制器为姿态角控制器,控制方法为比例控制系数(P),其输入为姿态角的误差,即姿态角期望减去当前姿态角,姿态角控制器的输出结果是角速度期望。副测量单元用于测量无人机系统中当前的角速度;副控制器为角速度控制器,控制方法为比例控制系数-积分控制系数-微分控制系数(PID),其输入为角速度误差,即角速度期望减去当前角速度,角速度控制器的输出结果为电动机的控制量。由于角速度的变化比角度要快,直接对角速度进行控制要优于直接对角度控制,因此在无人机的姿态控制中,采用的双环串级反馈控制外环控制角度,内环控制角速度。
由于内环回路的存在,控制系统的控制精度和响应速度大大提高了,因而串级控制系统比单环反馈控制系统的控制效果有很大的提升。需要注意的是,内环控制的物理量应该比外环控制的物理量更加敏感,更加快速。例如,无人机的位置控制也是采用的串级反馈控制方法。为了对无人机的位置达到有效的控制,并且能够快速感知和消除扰动,将位置控制作为外环主控制器,而将速度控制作为内环副控制器,因为速度比位置变化更敏感,更快速。
在一实施例中,所述对应关系是根据第一对应关系和第二对应关系确定的,所述第一对应关系是所述无人机在相同电池电性参数时的推质比、参考飞行控制参数之间的对应关系,所述第二对应关系是所述无人机在相同推质比时的电池电性参数、参考飞行控制参数之间的对应关系。
本实施例中,第一对应关系是所述无人机在相同电池电性参数时的推质比、参考飞行控制参数之间的对应关系,即确定第一对应关系时,保持电池电性参数不变,确定无人机的推质比、参考飞行控制参数之间的对应关系。具体地,可以先确定多个不同的电池电性参数,在保持每个电池电性参数不变的情况下,确定无人机的推质比、参考飞行控制参数之间的对应关系。
本实施例中,第二对应关系是所述无人机在相同推质比时的电池电性参数、参考飞行控制参数之间的对应关系,即确定第二对应关系时,保持推质比不变,确定无人机的电池电性参数、参考飞行控制参数之间的对应关系。具体地,可以先确定多个不同的推质比,在保持每个推质比不变的情况下,确定无人机的电池电性参数、参考飞行控制参数之间的对应关系。
要得到控制系统的最优飞行控制参数(P、I、D控制系数),就需要构建该控制系统的本体数学模型,基于本体数学模型可以采用时域、根轨迹或频域伯德图等方法得到该控制系统的最优飞行控制参数。想要获取一个未知系统的本体特性,工程上通常通过扫频的测试方法来获取,即在系统的输入端加入激励信号(例如:伪随机信号等),采集系统的输出,根据已知输入和采集输出,可以使用傅里叶变换等系统辨识方法来获取飞机本体的伯德图。伯德图为系统频率响应的一种图示方法,由相位图和幅值图组成,按频率的对数绘制,也称为对数坐标图。
例如,(1)在每个相同电池电压下,采集所述无人机在不同推质比下悬停时的第一扫频曲线;根据所述第一扫频曲线,辨识飞机的本体特性伯德图,解算所述无人机在每个相同电池电压下、在不同推质比的状态下的最佳飞行控制参数,将该最佳飞行控制参数作为参考飞行控制参数,进而得到所述无人机在相同电池电压时的推质比、参考飞行控制参数之间的第一对应关系。(2)在每个相同推质比下,采集所述无人机在不同电池电压下悬停时的第二扫频曲线;根据所述第二扫频曲线,辨识飞机的本体特性伯德图,解算所述无人机在每个相同推质比下、在不同电池电压的状态下的最佳飞行控制参数,将该最佳飞行控制参数作为参考飞行控制参数,进而得到所述无人机在相同推质比时的电池电压、参考飞行控制参数之间的第二对应关系。(3)对上述的第一对应关系和第二对应关系进行二维整合,得到该无人机的推质比、电池电压、参考 飞行控制参数之间的对应关系。
上述采集飞机悬停状态下的扫频曲线就是采用从输入端输入已知的激励信号,同时采集飞机对应的输出,根据快速傅里叶变换等辨识方法获取到飞机本体的频域伯德图,通过根据系统需要的幅值和相角裕度,采用超前/滞后的校正方法得到该系统的最优飞行控制参数。
在一实施例中,如果根据所述当前推质比、所述当前电池电性参数,在对应关系中找不到完全对应的飞行控制参数的参考校正参数时,例如:对应关系包括:无人机的推质比为A1、电池电压为B1,飞行控制参数的参考校正参数为C1,无人机的推质比为A2、电池电压为B2,飞行控制参数的参考校正参数为C2;无人机的当前推质比为A(A的大小在A1和A2之间),当前电池电压为B(B的大小在B1和B2之间),此时可以通过一些方法确定目标校正系数。
即步骤S103中,所述根据所述当前推质比、所述当前电池电性参数和所述无人机的推质比、电池电性参数和飞行控制参数的参考校正参数之间的对应关系,确定所述无人机的当前飞行控制参数,可以包括:子步骤S1031、子步骤S1032以及子步骤S1033,如图2所示。
子步骤S1031:获取无人机的基准飞行控制参数。
基准飞行控制参数可以是预先设定的飞行控制参数。通常情况下,基准飞行控制参数可以是无人机经常飞行状态下的飞行控制参数。例如对于喷洒农药的农业无人机来说,经常飞行状态是满载农药,因此可以将无人机满载农药飞行时的飞行控制参数作为基准飞行控制参数。
子步骤S1032:根据所述当前推质比、所述当前电池电性参数和所述无人机的推质比、电池电性参数、飞行控制参数的参考校正系数之间的对应关系确定目标校正系数。
本实施例中,子步骤S1032的实现方式很多,例如:根据所述当前推质比、所述当前电池电性参数,确定对应关系中与所述当前推质比、所述当前电池电性参数最靠近的两个无人机的推质比、电池电性参数所对应的两个飞行控制参数的参考校正系数,根据这两个飞行控制参数的参考校正系数的权重比例,即可得到目标校正系数。或者,根据所述当前推质比、所述当前电池电性参数,确定对应关系中与所述当前推质比、所述当前电池电性参数最靠近的无人机的 推质比、电池电性参数所对应的飞行控制参数的参考校正系数,直接将该飞行控制参数的参考校正系数作为目标校正系数。
需要说明的是,子步骤S1031和子步骤S1032没有明确的先后顺序关系。
子步骤S1033:根据所述目标校正系数对所述基准飞行控制参数进行校正,得到所述无人机的当前飞行控制参数。
通过上述方式,能够在对应关系不充分的情况下,依然可以根据所述当前推质比、所述当前电池电性参数和对应关系得到目标校正系数,进而得到无人机的当前飞行控制参数。
由于大过载会导致无人机电池过流使无人机在空中出现自燃而炸机的问题,由于推质比是无人机的推力与重量的比值,当无人机过载,会导致推质比大大下降,无人机动力不足。因此在一实施例中,利用无人机的推质比进行无人机的过载保护,当无人机过载时,无人机能够采取对应的保护措施,避免炸机事故发生。具体说明如下:
在一实施例中,所述方法还包括:若根据所述当前推质比确定所述无人机处于动力不足的飞行状态时,控制所述无人机执行安全操作。
由于推质比的大小能够反映无人机是否过载,反映无人机是否动力不足,本实施例中,根据无人机的当前推质比确定所述无人机处于动力不足的飞行状态时,能够控制所述无人机执行安全操作。通过这种方式,能够在无人机过载时采取对应的保护措施,保证无人机的安全,避免炸机事故发生。
其中,可以预先设定一个推质比的阈值,通过比较当前推质比与阈值的大小来确定无人机是否处于动力不足的飞行状态。即所述方法还可以包括:若所述当前推质比小于第一阈值,则确定所述无人机处于动力不足的飞行状态。
在一实施例中,所述安全操作包括以下至少一个:向控制终端发送提示信息以使所述控制终端显示提示通知,控制所述无人机的飞行机动参数,控制所述无人机悬停,控制所述无人机降落或返航。
向控制终端发送提示信息以使所述控制终端显示提示通知,可以使用户获知无人机的当前状态以及无人机执行的相关安全操作。
飞行状态(速度、高度和飞行方向,等等)随时间变化的飞行,称为机动飞行。单位时间内改变飞行状态的能力称为机动性。飞行机动参数可以是指能 够表征飞行状态、且随时间变化的参数,包括但不限于:速度、姿态、加速度、角加速度、飞行距离、飞行高度,等等。在一实施例中,所述飞行机动参数包括以下至少一个:速度、姿态、加速度、角加速度、飞行距离。
控制所述无人机的飞行机动参数,控制所述无人机悬停,能够控制无人机提供的推力,从而能够改变无人机的推质比,尽量控制推质比在安全的范围内。
控制所述无人机降落或返航,能够避免炸鸡,保证无人机的完整性。
在一实施例中,对无人机所处动力不足的飞行状态进行更加精细化的分级,不同级别的动力不足的飞行状态,执行不同的安全操作,以满足精细化控制。即,若根据所述当前推质比确定所述无人机处于动力不足的飞行状态时,控制所述无人机执行安全操作,可以包括:
A1、若根据所述当前推质比确定所述无人机处于第一级别的动力不足的飞行状态时,控制所述无人机执行第一安全操作。
A2、若根据所述当前推质比确定所述无人机处于第二级别的动力不足的飞行状态时,控制所述无人机执行第二安全操作,第二级别高于第一级别。
为了具体判断上述第一级别和第二级别,所述方法还可以包括:
B1、若所述当前推质比小于第一阈值大于或等于第二阈值,则确定所述无人机处于第一级别的动力不足的飞行状态。
B2、若所述当前推质比小于第二阈值,则确定所述无人机处于第二级别的动力不足的飞行状态。
本实施例预先设定两个阈值,以此来确定第一级别的动力不足的飞行状态和第二级别的动力不足的飞行状态。
其中,所述第一安全操作包括:限制所述无人机的飞行机动参数或控制所述无人机悬停;或,限制所述无人机的飞行机动参数或控制所述无人机悬停,并向控制终端发送提示信息以使所述控制终端显示提示通知。
其中,所述第二安全操作包括:控制所述无人机降落或返航;或,控制所述无人机降落或返航,并向控制终端发送提示信息以使所述控制终端显示提示通知。
在一实施例中,步骤S101,所述获取无人机的当前推质比,可以包括:在无人机悬停或者无人机的飞行速度小于或等于预设飞行速度阈值时,获取所 述无人机的当前推质比。
由于电机转速或对电机进行控制的脉冲宽度调制(PWM,Pulse Width Modulation)信号能够反映当前推质比情况,在一实施例中,步骤S101,所述获取无人机的当前推质比,还可以包括:子步骤S1011和子步骤S1012,如图3所示。
子步骤S1011:获取用于为无人机提供飞行动力的电机的转速或者对所述电机进行控制的PWM信号。
子步骤S1012:根据所述转速或者PWM信号获取所述无人机的当前推质比。
电机是为无人机提供飞行动力的,当电机的转速提升不上去,低于无人机正常飞行状态下的转速的时候,可以说明无人机的飞行动力不足,因此根据电机的转速可以确定无人机的当前推质比。
电机是将电能转换为机械能的装置,控制电流的大小可以实现对电机的转速的控制,而电流大小的控制是通过PWM信号来实现的。可以通过调整PWM的周期、PWM的占空比而达到控制电流的目的。占空比就是指在一个周期内,信号处于高电平的时间占据整个信号周期的百分比。例如:如果PWM信号的占空比大,则电流大,对应电机的转速大;如果PWM信号的占空比小,则电流小,对应电机的转速小,因此,当PWM信号的占空比低于无人机正常飞行状态下的PWM信号的占空比,可以说明无人机的飞行动力不足,因此根据PWM信号可以确定无人机的当前推质比。
参见图4,图4是本申请无人机一实施例的结构示意图,需要说明的是,本实施例的无人机能够执行上述控制无人机的方法中的步骤,相关内容的详细说明,请参见上述控制无人机的方法的相关内容,在此不再赘叙。
所述无人机包括100:存储器1和处理器2;处理器2与存储器1通过总线连接。
其中,处理器2可以是微控制单元、中央处理单元或数字信号处理器,等等。
其中,存储器1可以是Flash芯片、只读存储器、磁盘、光盘、U盘或者移动硬盘等等。
所述存储器1用于存储计算机程序;所述处理器2用于执行所述计算机程 序并在执行所述计算机程序时,实现如下步骤:
获取无人机的当前推质比;获取无人机的当前电池电性参数;根据所述当前推质比、所述当前电池电性参数和所述无人机的推质比、电池电性参数和参考飞行控制参数之间的对应关系,确定所述无人机的当前飞行控制参数,或者,根据所述当前推质比、所述当前电池电性参数和所述无人机的推质比、电池电性参数和飞行控制参数的参考校正参数之间的对应关系,确定所述无人机的当前飞行控制参数;根据所述当前飞行控制参数控制所述无人机的飞行。
其中,所述对应关系预存在所述无人机的本地存储装置中。
其中,飞行控制参数包括用于飞行控制的高度控制环、位置控制环、姿态控制环、加速度控制环、角加速度控制环、速度控制环中至少一个控制环的控制系数。
其中,所述对应关系是根据第一对应关系和第二对应关系确定的,所述第一对应关系是所述无人机在相同电池电性参数时的推质比、参考飞行控制参数之间的对应关系,所述第二对应关系是所述无人机在相同推质比时的电池电性参数、参考飞行控制参数之间的对应关系。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:获取无人机的基准飞行控制参数;根据所述当前推质比、所述当前电池电性参数和所述无人机的推质比、电池电性参数、飞行控制参数的参考校正系数之间的对应关系确定目标校正系数;根据所述目标校正系数对所述基准飞行控制参数进行校正,得到所述无人机的当前飞行控制参数。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:若根据所述当前推质比确定所述无人机处于动力不足的飞行状态时,控制所述无人机执行安全操作。
其中,所述安全操作包括以下至少一个:向控制终端发送提示信息以使所述控制终端显示提示通知,控制所述无人机的飞行机动参数,控制所述无人机悬停,控制所述无人机降落或返航。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:若所述当前推质比小于第一阈值,则确定所述无人机处于动力不足的飞行状态。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:若根据所述 当前推质比确定所述无人机处于第一级别的动力不足的飞行状态时,控制所述无人机执行第一安全操作;若根据所述当前推质比确定所述无人机处于第二级别的动力不足的飞行状态时,控制所述无人机执行第二安全操作,第二级别高于第一级别。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:若所述当前推质比小于第一阈值大于或等于第二阈值,则确定所述无人机处于第一级别的动力不足的飞行状态;若所述当前推质比小于第二阈值,则确定所述无人机处于第二级别的动力不足的飞行状态。
其中,所述第一安全操作包括:限制所述无人机的飞行机动参数或控制所述无人机悬停;或,限制所述无人机的飞行机动参数或控制所述无人机悬停,并向控制终端发送提示信息以使所述控制终端显示提示通知。
其中,所述飞行机动参数包括以下至少一个:速度、姿态、加速度、角加速度、飞行距离。
其中,所述第二安全操作包括:控制所述无人机降落或返航;或,控制所述无人机降落或返航,并向控制终端发送提示信息以使所述控制终端显示提示通知。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:在无人机悬停或者无人机的飞行速度小于或等于预设飞行速度阈值时,获取所述无人机的当前推质比。
其中,所述处理器在执行所述计算机程序时,实现如下步骤:获取用于为无人机提供飞行动力的电机的转速或者对所述电机进行控制的PWM信号;根据所述转速或者PWM信号获取所述无人机的当前推质比。
其中,所述电性参数包括电压、电流或者电量。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如上任一项所述的控制无人机的方法。相关内容的详细说明请参见上述相关内容部分,在此不再赘叙。
其中,该计算机可读存储介质可以是上述无人机的内部存储单元,例如硬盘或内存。该计算机可读存储介质也可以是外部存储设备,例如配备的插接式 硬盘、智能存储卡、安全数字卡、闪存卡,等等。
应当理解,在本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本申请的具体实施例,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (33)

  1. 一种控制无人机的方法,其特征在于,所述方法包括:
    获取无人机的当前推质比;
    获取无人机的当前电池电性参数;
    根据所述当前推质比、所述当前电池电性参数和所述无人机的推质比、电池电性参数和参考飞行控制参数之间的对应关系,确定所述无人机的当前飞行控制参数,或者,根据所述当前推质比、所述当前电池电性参数和所述无人机的推质比、电池电性参数和飞行控制参数的参考校正参数之间的对应关系,确定所述无人机的当前飞行控制参数;
    根据所述当前飞行控制参数控制所述无人机的飞行。
  2. 根据权利要求1所述的方法,其特征在于,所述对应关系预存在所述无人机的本地存储装置中。
  3. 根据权利要求1所述的方法,其特征在于,飞行控制参数包括用于飞行控制的高度控制环、位置控制环、姿态控制环、加速度控制环、角加速度控制环、速度控制环中至少一个控制环的控制系数。
  4. 根据权利要求1所述的方法,其特征在于,所述对应关系是根据第一对应关系和第二对应关系确定的,所述第一对应关系是所述无人机在相同电池电性参数时的推质比、参考飞行控制参数之间的对应关系,所述第二对应关系是所述无人机在相同推质比时的电池电性参数、参考飞行控制参数之间的对应关系。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述当前推质比、所述当前电池电性参数和所述无人机的推质比、电池电性参数和飞行控制参数的参考校正参数之间的对应关系,确定所述无人机的当前飞行控制参数,包括:
    获取无人机的基准飞行控制参数;
    根据所述当前推质比、所述当前电池电性参数和所述无人机的推质比、电池电性参数、飞行控制参数的参考校正系数之间的对应关系确定目标校正系数;
    根据所述目标校正系数对所述基准飞行控制参数进行校正,得到所述无人 机的当前飞行控制参数。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若根据所述当前推质比确定所述无人机处于动力不足的飞行状态时,控制所述无人机执行安全操作。
  7. 根据权利要求6所述的方法,其特征在于,所述安全操作包括以下至少一个:
    向控制终端发送提示信息以使所述控制终端显示提示通知,控制所述无人机的飞行机动参数,控制所述无人机悬停,控制所述无人机降落或返航。
  8. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    若所述当前推质比小于第一阈值,则确定所述无人机处于动力不足的飞行状态。
  9. 根据权利要求6所述的方法,其特征在于,若根据所述当前推质比确定所述无人机处于动力不足的飞行状态时,控制所述无人机执行安全操作,包括:
    若根据所述当前推质比确定所述无人机处于第一级别的动力不足的飞行状态时,控制所述无人机执行第一安全操作;
    若根据所述当前推质比确定所述无人机处于第二级别的动力不足的飞行状态时,控制所述无人机执行第二安全操作,第二级别高于第一级别。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    若所述当前推质比小于第一阈值大于或等于第二阈值,则确定所述无人机处于第一级别的动力不足的飞行状态;
    若所述当前推质比小于第二阈值,则确定所述无人机处于第二级别的动力不足的飞行状态。
  11. 根据权利要求9所述的方法,其特征在于,所述第一安全操作包括:
    限制所述无人机的飞行机动参数或控制所述无人机悬停;
    或,
    限制所述无人机的飞行机动参数或控制所述无人机悬停,并向控制终端发送提示信息以使所述控制终端显示提示通知。
  12. 根据权利要求7或11所述的方法,其特征在于,所述飞行机动参数 包括以下至少一个:速度、姿态、加速度、角加速度、飞行距离。
  13. 根据权利要求9所述的方法,其特征在于,所述第二安全操作包括:
    控制所述无人机降落或返航;
    或,控制所述无人机降落或返航,并向控制终端发送提示信息以使所述控制终端显示提示通知。
  14. 根据权利要求1所述的方法,其特征在于,所述获取无人机的当前推质比,包括:
    在无人机悬停或者无人机的飞行速度小于或等于预设飞行速度阈值时,获取所述无人机的当前推质比。
  15. 根据权利要求14所述的方法,其特征在于,所述获取无人机的当前推质比,包括:
    获取用于为无人机提供飞行动力的电机的转速或者对所述电机进行控制的PWM信号;
    根据所述转速或者PWM信号获取所述无人机的当前推质比。
  16. 根据权利要求1所述的方法,其特征在于,所述电性参数包括电压、电流或者电量。
  17. 一种无人机,其特征在于,所述无人机包括:存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    获取无人机的当前推质比;
    获取无人机的当前电池电性参数;
    根据所述当前推质比、所述当前电池电性参数和所述无人机的推质比、电池电性参数和参考飞行控制参数之间的对应关系,确定所述无人机的当前飞行控制参数,或者,根据所述当前推质比、所述当前电池电性参数和所述无人机的推质比、电池电性参数和飞行控制参数的参考校正参数之间的对应关系,确定所述无人机的当前飞行控制参数;
    根据所述当前飞行控制参数控制所述无人机的飞行。
  18. 根据权利要求17所述的无人机,其特征在于,所述对应关系预存在 所述无人机的本地存储装置中。
  19. 根据权利要求17所述的无人机,其特征在于,飞行控制参数包括用于飞行控制的高度控制环、位置控制环、姿态控制环、加速度控制环、角加速度控制环、速度控制环中至少一个控制环的控制系数。
  20. 根据权利要求17所述的无人机,其特征在于,所述对应关系是根据第一对应关系和第二对应关系确定的,所述第一对应关系是所述无人机在相同电池电性参数时的推质比、参考飞行控制参数之间的对应关系,所述第二对应关系是所述无人机在相同推质比时的电池电性参数、参考飞行控制参数之间的对应关系。
  21. 根据权利要求17所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    获取无人机的基准飞行控制参数;
    根据所述当前推质比、所述当前电池电性参数和所述无人机的推质比、电池电性参数、飞行控制参数的参考校正系数之间的对应关系确定目标校正系数;
    根据所述目标校正系数对所述基准飞行控制参数进行校正,得到所述无人机的当前飞行控制参数。
  22. 根据权利要求17所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    若根据所述当前推质比确定所述无人机处于动力不足的飞行状态时,控制所述无人机执行安全操作。
  23. 根据权利要求22所述的无人机,其特征在于,所述安全操作包括以下至少一个:
    向控制终端发送提示信息以使所述控制终端显示提示通知,控制所述无人机的飞行机动参数,控制所述无人机悬停,控制所述无人机降落或返航。
  24. 根据权利要求22所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    若所述当前推质比小于第一阈值,则确定所述无人机处于动力不足的飞行状态。
  25. 根据权利要求22所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    若根据所述当前推质比确定所述无人机处于第一级别的动力不足的飞行状态时,控制所述无人机执行第一安全操作;
    若根据所述当前推质比确定所述无人机处于第二级别的动力不足的飞行状态时,控制所述无人机执行第二安全操作,第二级别高于第一级别。
  26. 根据权利要求25所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    若所述当前推质比小于第一阈值大于或等于第二阈值,则确定所述无人机处于第一级别的动力不足的飞行状态;
    若所述当前推质比小于第二阈值,则确定所述无人机处于第二级别的动力不足的飞行状态。
  27. 根据权利要求25所述的无人机,其特征在于,所述第一安全操作包括:
    限制所述无人机的飞行机动参数或控制所述无人机悬停;
    或,
    限制所述无人机的飞行机动参数或控制所述无人机悬停,并向控制终端发送提示信息以使所述控制终端显示提示通知。
  28. 根据权利要求23或27所述的无人机,其特征在于,所述飞行机动参数包括以下至少一个:速度、姿态、加速度、角加速度、飞行距离。
  29. 根据权利要求25所述的无人机,其特征在于,所述第二安全操作包括:
    控制所述无人机降落或返航;
    或,控制所述无人机降落或返航,并向控制终端发送提示信息以使所述控制终端显示提示通知。
  30. 根据权利要求17所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    在无人机悬停或者无人机的飞行速度小于或等于预设飞行速度阈值时,获取所述无人机的当前推质比。
  31. 根据权利要求30所述的无人机,其特征在于,所述处理器在执行所述计算机程序时,实现如下步骤:
    获取用于为无人机提供飞行动力的电机的转速或者对所述电机进行控制的PWM信号;
    根据所述转速或者PWM信号获取所述无人机的当前推质比。
  32. 根据权利要求17所述的无人机,其特征在于,所述电性参数包括电压、电流或者电量。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1-16任一项所述的控制无人机的方法。
PCT/CN2020/127630 2020-11-09 2020-11-09 控制无人机的方法、无人机及存储介质 WO2022095063A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127630 WO2022095063A1 (zh) 2020-11-09 2020-11-09 控制无人机的方法、无人机及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127630 WO2022095063A1 (zh) 2020-11-09 2020-11-09 控制无人机的方法、无人机及存储介质

Publications (1)

Publication Number Publication Date
WO2022095063A1 true WO2022095063A1 (zh) 2022-05-12

Family

ID=81458597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127630 WO2022095063A1 (zh) 2020-11-09 2020-11-09 控制无人机的方法、无人机及存储介质

Country Status (1)

Country Link
WO (1) WO2022095063A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160023751A1 (en) * 2014-07-28 2016-01-28 The Board of Regents of the Nevada System of High- er Education on Behalf of the University of Nevad Energy harvesting mechanism for gyroplanes and gyrocopters
CN106647780A (zh) * 2016-10-19 2017-05-10 北京京东尚科信息技术有限公司 无人机飞行控制方法、装置及无人机
US20190135412A1 (en) * 2016-03-28 2019-05-09 Amazon Technologies, Inc. Selectively thrusting propulsion units for aerial vehicles
CN109921108A (zh) * 2019-02-26 2019-06-21 深圳飞马机器人科技有限公司 无人机电池数据管理方法和系统
CN110543180A (zh) * 2018-05-29 2019-12-06 杨炯 基于总重变化量的无人机的控制方法、系统及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160023751A1 (en) * 2014-07-28 2016-01-28 The Board of Regents of the Nevada System of High- er Education on Behalf of the University of Nevad Energy harvesting mechanism for gyroplanes and gyrocopters
US20190135412A1 (en) * 2016-03-28 2019-05-09 Amazon Technologies, Inc. Selectively thrusting propulsion units for aerial vehicles
CN106647780A (zh) * 2016-10-19 2017-05-10 北京京东尚科信息技术有限公司 无人机飞行控制方法、装置及无人机
CN110543180A (zh) * 2018-05-29 2019-12-06 杨炯 基于总重变化量的无人机的控制方法、系统及存储介质
CN109921108A (zh) * 2019-02-26 2019-06-21 深圳飞马机器人科技有限公司 无人机电池数据管理方法和系统

Similar Documents

Publication Publication Date Title
Koksal et al. Backstepping-based adaptive control of a quadrotor UAV with guaranteed tracking performance
Faessler et al. Thrust mixing, saturation, and body-rate control for accurate aggressive quadrotor flight
Rosales et al. Identification and adaptive PID Control of a hexacopter UAV based on neural networks
CN106444799B (zh) 基于模糊扩张状态观测器和自适应滑模的四旋翼无人机控制方法
EP2772817B1 (en) Formation flight control
US9058040B2 (en) Automatic pilot pitch angle compensation
CN106406325B (zh) 基于模糊扩张状态观测器的四旋翼无人机反馈线性化控制方法
US10640224B2 (en) Motor control method, apparatus, and system
US20210181766A1 (en) Return flight control method and device, and unmanned aerial vehicle
RU2683718C2 (ru) Способ определения закона наведения для уклонения от препятствия летательным аппаратом, электронная система и летательный аппарат
CN113342037B (zh) 具有输入饱和的多旋翼无人机时变编队控制方法及系统
CN110413007B (zh) 无人机飞行路径的控制方法、系统、电子设备及介质
EP1630766B1 (en) A system and a method for automatic air collision avoidance
US20030135306A1 (en) Rotor torque predictor
WO2022095063A1 (zh) 控制无人机的方法、无人机及存储介质
CN110162067A (zh) 一种无人机非奇异自适应非光滑姿态跟踪控制方法
CN114610052A (zh) 无人机迫降控制方法、装置、设备及存储介质
CN106292297B (zh) 基于pid控制器和l1自适应控制器的姿态控制方法
CN108107902B (zh) 横航向姿态控制方法及相关装置
CN110832274A (zh) 地面坡度计算方法、装置、设备及存储介质
CN110543180A (zh) 基于总重变化量的无人机的控制方法、系统及存储介质
CN111758034B (zh) 风速确定方法、系统、飞行器及计算机可读存储介质
CN108170030B (zh) 动力系统控制分配方法及相关装置
Islam et al. Modeling and simulation of longitudinal autopilot for general aviation aircraft
CN114047784A (zh) 飞行器控制方法、装置、飞行器及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960520

Country of ref document: EP

Kind code of ref document: A1