CN113322511B - 在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜及其制备 - Google Patents

在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜及其制备 Download PDF

Info

Publication number
CN113322511B
CN113322511B CN202110586628.4A CN202110586628A CN113322511B CN 113322511 B CN113322511 B CN 113322511B CN 202110586628 A CN202110586628 A CN 202110586628A CN 113322511 B CN113322511 B CN 113322511B
Authority
CN
China
Prior art keywords
film
single crystal
flexible
sacrificial layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110586628.4A
Other languages
English (en)
Other versions
CN113322511A (zh
Inventor
闻利杰
杨永杰
芦增星
汪志明
郝险峰
郭媛媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Yanshan University
University of Science and Technology Liaoning USTL
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Yanshan University
University of Science and Technology Liaoning USTL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS, Yanshan University, University of Science and Technology Liaoning USTL filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN202110586628.4A priority Critical patent/CN113322511B/zh
Publication of CN113322511A publication Critical patent/CN113322511A/zh
Application granted granted Critical
Publication of CN113322511B publication Critical patent/CN113322511B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Magnetic Films (AREA)

Abstract

本发明公开了一种在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜及其制备方法,包括:在晶向为[001]、[110]或[111]的衬底上依次制备可溶性牺牲层薄膜、SrRuO3单晶薄膜和柔性材料,然后溶解掉可溶性牺牲层薄膜进行柔性转移,得到在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜。该方法为堆垛制备出不同晶向、且具有垂直磁各向异性的柔性氧化物异质结构,提供了一种可行的方法,对柔性钙钛矿氧化物薄膜在器件上的应用有着重要的意义。

Description

在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧 化物单晶薄膜及其制备
技术领域
本发明涉及柔性薄膜领域,具体涉及一种在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜及其制备方法。
背景技术
磁各向异性作为磁性材料的重要参量之一,在宏观上表现为磁化轴的择优取向,在不同方向上有“难”、“易”之分。当易磁化轴与材料的表面相垂直时,材料具有垂直磁各向异性(Perpendicular Magnetic Anisotropy,PMA)。在技术应用领域,PMA有助于制备高存储密度、高稳定性、低功耗的高性能磁存储器和逻辑器件;在基础研究方面,PMA可与诸多物理机制竞争,产生新奇的现象,比如与Dzyaloshinskii-Moriya相互作用(DMI)之间的协同效应可诱发具有拓扑保护的独特自旋结构等。
随着物联网时代的到来,在学术界和产业界兴起了一门新的学科,即柔性电子学,其中的一项重要研究内容是柔性磁电器件。制备和发展具有PMA的柔性磁性材料对于发展柔性存储器件、柔性磁传感器等柔性自旋电子器件有重要意义。
钙钛矿氧化物具有丰富的物理性质和稳定的化学性质,是下一代功能材料的重要候选材料之一。晶向,作为晶体薄膜的一项固有属性,对钙钛矿氧化物的物性有着重要意义。在钙钛矿氧化物中存在着很多与晶向相关的性质,例如BiFeO3薄膜中与晶向相关的铁电极化、磁交换偏置效应等。而且通过对薄膜晶向调控,可能对其结构的对称性、极性、氧八面体耦合等产生微小的影响,从而可能导致诸如金属绝缘体相变、二维电子气等性质。因此,可通过对具有PMA的柔性薄膜进行不同晶向的调控,进而调控其其他物性,这不但能够丰富材料的物理性质,还能够有效的扩展并提高柔性钙钛矿薄膜在自旋电子学器件中的应用,为柔性钙钛矿薄膜带来更加广泛的发展前景。
发明内容
针对本领域存在的不足之处,本发明提供了一种在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜的制备方法,具有简单易行,衬底可回收利用,对功能层无损害等优点。
一种在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜的制备方法,包括:在晶向为[001]、[110]或[111]的衬底上依次制备可溶性牺牲层薄膜、SrRuO3单晶薄膜和柔性材料,然后溶解掉所述可溶性牺牲层薄膜进行柔性转移,得到所述在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜;
所述衬底的晶格常数与可溶性牺牲层薄膜晶格常数相匹配。
所述衬底的材料不限,可以是SrTiO3(STO)、Nb-SrTiO3、LaAlO3、SrLaGaO4、SrLaAlO4、DyScO3、GdScO3、BaTiO3、LiNbO3、MgO、PMN-PT(铌镁钛酸铅)等。
作为优选,本发明衬底选择使用具有良好化学稳定性并且能与各种氧化物薄膜材料的晶格常数良好匹配的SrTiO3
作为优选,为了更好地生长高质量外延的钙钛矿氧化物单晶薄膜,衬底需具有平坦的、单一截止原子面,将所述衬底在使用前先进行表面预处理,所述衬底表面预处理的方式不限,包括酸腐蚀(如氢氟酸腐蚀、盐酸腐蚀等)、氩离子轰击、加热退火等中的至少一种。
所述可溶性牺牲层薄膜可为钙钛矿氧化物和/或类钙钛矿氧化物,包括但不限于Sr3Al2O6(SAO)、Ca3-xSrxAl2O6(CSAO)、La1-ySryMnO3(LSMO)等中的至少一种,0≤x≤3,0≤y≤1;
作为优选,本发明为方便制备且能够达到目标而选择的可溶性牺牲层为(Ca0.5Sr0.5)3Al2O6,其可与衬底SrTiO3有较好的晶格匹配。
所述的制备方法,制备可溶性牺牲层薄膜、SrRuO3单晶薄膜的方法不限,可包括脉冲激光沉积(Pulsed Laser Deposition,PLD)、磁控溅射(Sputtering)、分子束外延(Molecular Beam Epitaxy,MBE)等中的至少一种。
作为优选,本发明选择有沉积速率高,结晶质量高,应用范围广,系统污染少,能够精确控制生长温度、气压、脉冲激光能量的脉冲激光沉积(PLD)方法,制备高质量生长的薄膜。
所述柔性材料包括但不限于聚酰亚胺(PI)胶带、布基胶带、聚对苯二甲酸乙二醇酯(PET)胶带、聚二甲基硅氧烷(PDMS)、聚甲基丙烯酸甲酯(PMMA)等中的至少一种。
制备柔性材料的方法可以为粘贴或涂覆。
作为优选,由于聚二甲基硅氧烷(PDMS)在高温下黏性降低甚至失效(90℃),更加方便制备自支撑薄膜,因此本发明选用聚二甲基硅氧烷(PDMS)作为转移支撑的柔性材料。
所述的制备方法,可采用可溶解所述可溶性牺牲层薄膜的溶剂溶解掉所述可溶性牺牲层薄膜,所述溶剂不溶解所述衬底、SrRuO3单晶薄膜、柔性材料,也不与所述衬底、SrRuO3单晶薄膜、柔性材料反应。
所述溶剂优选为去离子水。
柔性转移获取SrRuO3单晶薄膜的方法不限,包括溶解柔性材料、加热释放等方法的一种或几种。
作为优选,根据柔性材料的性质选用加热释放的方法获得自支撑SrRuO3单晶薄膜。
本发明还提供了所述的制备方法制备得到的在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜。
与现有技术相比,本发明以可溶性类钙钛矿或钙钛矿氧化物薄膜作为牺牲层,直接在牺牲层表面制备具有垂直磁各向异性的钙钛矿氧化物功能层薄膜,然后利用溶剂溶解牺牲层,进而得到柔性自支撑钙钛矿氧化物单晶薄膜,具有如下增益效果:
1、该方法在衬底和钙钛矿氧化物单晶薄膜之间引入可溶性类钙钛矿或钙钛矿氧化物薄膜作为牺牲层,能够制备自支撑钙钛矿氧化物单晶薄膜。
2、该方法具有简单、快捷、环保,衬底可回收利用对柔性钙钛矿氧化物功能层损伤,适合制备柔性功能性钙钛矿氧化物薄膜。
3、该方法可以保证在不损害超薄钙钛矿氧化物单晶薄膜的情况下,将其柔性化,从而可以研究柔性化的钙钛矿氧化物单晶薄膜的磁学性质。
4、该方法可以制备具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜,堆垛不同晶向自支撑单晶薄膜,进而制备不同晶向柔性自支撑钙钛矿氧化物异质结构薄膜,对于调控柔性钙钛矿氧化物薄膜的新奇物性具有重要意义,并且提供了一种制备新兴功能器件的可行方案。
附图说明
图1为本发明中实施例1中[001]晶向SrRuO3单晶薄膜柔性化前后的表面形貌和反射高能电子衍射图;
图2为本发明中实施例1中[001]晶向SrRuO3单晶薄膜柔性化前后的X-射线衍射图谱;
图3为本发明中实施例1中[001]晶向SrRuO3单晶薄膜柔性化前后的磁化强度随温度变化曲线;
图4为本发明中实施例2中[110]晶向SrRuO3单晶薄膜柔性化前后的表面形貌和反射高能电子衍射图;
图5为本发明中实施例2中[110]晶向SrRuO3单晶薄膜柔性化前后的X-射线衍射图谱;
图6为本发明中实施例2中[110]晶向SrRuO3单晶薄膜柔性化前后的磁化强度随温度变化曲线;
图7为本发明中实施例3中[111]晶向SrRuO3单晶薄膜柔性化前后的表面形貌和反射高能电子衍射图;
图8为本发明中实施例3中[111]晶向SrRuO3单晶薄膜柔性化前后的X-射线衍射图谱;
图9为本发明中实施例3中[111]晶向SrRuO3单晶薄膜柔性化前后的磁化强度随温度变化曲线。
具体实施方式
下面结合附图及具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的操作方法,通常按照常规条件,或按照制造厂商所建议的条件。
以下各实施例选用(Ca0.5Sr0.5)3Al2O6(CSAO)作为牺牲层,因为它是一种类钙钛矿氧化物,具有立方结构且晶格常数为
Figure BDA0003087821010000041
约为SrTiO3(STO)晶格常数(
Figure BDA0003087821010000042
立方结构)的四倍,即一个CSAO单胞晶面匹配4×4个STO单胞,能够很好地外延生长;并且CSAO易溶于水,是作为牺牲层的优选材料。
实施例1
本实施例中,[001]晶向的柔性自支撑CSAO单晶薄膜制备方法如下:
(1)选择[001]晶向的STO基片作为衬底,在该衬底上制备可溶性物质薄膜作为牺牲层,具体如下:
(1-1)[001]晶向STO衬底的面积为4.4×4.4mm2,厚度为0.5mm;
(1-2)利用氢氟酸缓冲液腐蚀[001]晶向STO基片,获得台阶笔直且宽度为200nm左右的表面;
(1-3)在[001]晶向STO衬底上制备厚度为10unit cell(u.c.)的CSAO薄膜,每个单胞厚度所需脉冲数为90,利用脉冲激光沉积系统制备CSAO薄膜时的衬底温度为700℃,氧气气压为2×10-3mbar,脉冲激光能量密度为1.3J/cm2,脉冲激光频率为2Hz;
(2)在以上CSAO薄膜上制备SrRuO3(SRO)单晶薄膜,然后进行柔性转移,具体如下:
(2-1)在以上CSAO薄膜上制备厚度为40u.c.的SRO单晶薄膜,每个单胞厚度所需脉冲数为47,沉积SRO薄膜步骤中衬底温度为700℃,氧气气压为1×10-1mbar,脉冲激光能量密度为1.3J/cm2,脉冲激光频率为2Hz,薄膜具有良好的表面形貌(图1左图)和结晶质量(图2)。
(2-2)将聚二甲基硅氧烷(PDMS)平整粘贴在干净的单晶硅片上,然后将制备的STO/CSAO/SRO异质结构薄膜表面朝下贴在PDMS表面,最终结构为PDMS/SRO/CSAO/STO。
(3)将以上得到的异质结构薄膜浸没在去离子水中3小时,水解CSAO牺牲层,然后用镊子取出粘附在PDMS上的柔性SRO单晶薄膜(图1右图)。同时薄膜柔性化后,晶格常数c变小,接近于体相晶格常数,说明来自于衬底和牺牲层的应力被释放(图2)。
利用磁学测量系统(MPMS)测试CSAO牺牲层上SRO单晶薄膜(Strained)和剥离后的柔性自支撑SRO单晶薄膜(Freestanding)的磁学性质,从图3中可以看出其性质并没有明显变化。
实施例2
本实施例中,[110]晶向的柔性自支撑SRO单晶薄膜制备方法中,选择[110]晶向的STO基片作为衬底,其他方法步骤与实施案例1相同。
实施例3
本实施例中,[111]晶向的柔性自支撑SRO单晶薄膜制备方法中,选择[111]晶向的STO基片作为衬底,其他方法步骤与实施案例1相同。
此外应理解,在阅读了本发明的上述描述内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (6)

1.一种在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜的制备方法,其特征在于,包括:在晶向为[001]、[110]和[111]的衬底上依次制备可溶性牺牲层薄膜、SrRuO3单晶薄膜和柔性材料,然后溶解掉所述可溶性牺牲层薄膜进行柔性转移,得到所述在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜;
所述衬底的晶格常数与可溶性牺牲层薄膜晶格常数相匹配;
所述可溶性牺牲层薄膜为Ca3-xSrxAl2O6,0≤x<3。
2.根据权利要求1所述的制备方法,其特征在于,所述衬底在使用前先进行表面预处理,所述表面预处理包括酸腐蚀、氩离子轰击、加热退火中的至少一种。
3.根据权利要求1所述的制备方法,其特征在于,制备可溶性牺牲层薄膜、SrRuO3单晶薄膜的方法包括脉冲激光沉积、磁控溅射、分子束外延中的至少一种。
4.根据权利要求1所述的制备方法,其特征在于,所述柔性材料包括聚酰亚胺胶带、布基胶带、聚对苯二甲酸乙二醇酯胶带、聚二甲基硅氧烷、聚甲基丙烯酸甲酯中的至少一种;制备柔性材料的方法为粘贴或涂覆。
5.根据权利要求1所述的制备方法,其特征在于,采用可溶解所述可溶性牺牲层薄膜的溶剂溶解掉所述可溶性牺牲层薄膜,所述溶剂不溶解所述衬底、SrRuO3单晶薄膜、柔性材料,也不与所述衬底、SrRuO3单晶薄膜、柔性材料反应;
所述溶剂为去离子水。
6.根据权利要求1~5任一权利要求所述的制备方法制备得到的在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜。
CN202110586628.4A 2021-05-27 2021-05-27 在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜及其制备 Active CN113322511B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110586628.4A CN113322511B (zh) 2021-05-27 2021-05-27 在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜及其制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110586628.4A CN113322511B (zh) 2021-05-27 2021-05-27 在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜及其制备

Publications (2)

Publication Number Publication Date
CN113322511A CN113322511A (zh) 2021-08-31
CN113322511B true CN113322511B (zh) 2022-07-01

Family

ID=77421825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110586628.4A Active CN113322511B (zh) 2021-05-27 2021-05-27 在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜及其制备

Country Status (1)

Country Link
CN (1) CN113322511B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114014253A (zh) * 2021-11-03 2022-02-08 哈尔滨工业大学 一种直径可控的管状单晶钙钛矿氧化物薄膜及其制备方法
CN114197035A (zh) * 2021-12-08 2022-03-18 电子科技大学长三角研究院(湖州) 一种钙钛矿薄膜及其外延制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108517555A (zh) * 2017-12-29 2018-09-11 西安电子科技大学 基于范德华外延获得大面积高质量柔性自支撑单晶氧化物薄膜的方法
CN111270306A (zh) * 2020-03-19 2020-06-12 西安交通大学 一种柔性外延单晶铁氧体薄膜的制备方法
CN111733452A (zh) * 2020-04-30 2020-10-02 深圳先进技术研究院 柔性自支撑单晶磁性Fe3O4薄膜材料的制备、薄膜材料及应用、单晶结构
CN112047298A (zh) * 2020-09-15 2020-12-08 南京大学 一种二维超薄自支撑薄膜、其转移方法及其物理性质调控方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4111032B2 (ja) * 2003-03-26 2008-07-02 セイコーエプソン株式会社 強誘電体素子の製造方法、表面弾性波素子、インクジェットヘッド、インクジェットプリンター、周波数フィルタ、発振器、電子回路、及び電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108517555A (zh) * 2017-12-29 2018-09-11 西安电子科技大学 基于范德华外延获得大面积高质量柔性自支撑单晶氧化物薄膜的方法
CN111270306A (zh) * 2020-03-19 2020-06-12 西安交通大学 一种柔性外延单晶铁氧体薄膜的制备方法
CN111733452A (zh) * 2020-04-30 2020-10-02 深圳先进技术研究院 柔性自支撑单晶磁性Fe3O4薄膜材料的制备、薄膜材料及应用、单晶结构
CN112047298A (zh) * 2020-09-15 2020-12-08 南京大学 一种二维超薄自支撑薄膜、其转移方法及其物理性质调控方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Atomic Layer and Interfacial Oxygen Defect Tailored Magnetic Anisotropy and Dzyaloshinskii-Moriya Interaction in Perovskite SrRuO3/SrTiO3 Heterostructures;Li, Zengjie等;《ACS APPLIED ELECTRONIC MATERIALS》;20200825;第2卷(第8期);第2591-2600页 *

Also Published As

Publication number Publication date
CN113322511A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
Wu Advances in lead-free piezoelectric materials
CN113322511B (zh) 在不同晶向下均具有垂直磁各向异性的柔性自支撑钙钛矿氧化物单晶薄膜及其制备
Prellier et al. The single-phase multiferroic oxides: from bulk to thin film
Desfeux et al. Substrate effect on the magnetic microstructure of La 0.7 Sr 0.3 MnO 3 thin films studied by magnetic force microscopy
Lu et al. Synthesis of single-crystal La0. 67Sr0. 33MnO3 freestanding films with different crystal-orientation
Liu et al. Flexible oxide epitaxial thin films for wearable electronics: Fabrication, physical properties, and applications
Kim et al. Self-assembled multiferroic epitaxial BiFeO 3–CoFe 2 O 4 nanocomposite thin films grown by RF magnetron sputtering
CN113745092A (zh) 一种不同晶向、柔性自支撑钙钛矿氧化物单晶薄膜的制备方法
CN109161847B (zh) 镓掺杂铁酸铋超四方相外延薄膜及其制备方法和应用
CN106756793A (zh) 一种镍酸钕基超晶格相变薄膜材料及其制备和金属‑绝缘转变温度的调控方法
CN104129981B (zh) 一种制备Bi5Ti3Fe0.5Co0.5O15多铁性薄膜的方法
Mathews et al. Magnetic oxide nanowires with strain-controlled uniaxial magnetic anisotropy direction
Fang et al. Growth mechanism and electrical properties of Pb [(Zn1/3Nb2/3) 0.91 Ti0. 09] O3 single crystals by a modified Bridgman method
Li et al. Towards high-performance linear piezoelectrics: Enhancing the piezoelectric response of zinc oxide thin films through epitaxial growth on flexible substrates
Ghasemi et al. Magnetic properties of hexagonal strontium ferrite thick film synthesized by sol–gel processing using SrM nanoparticles
Fujisawa et al. Thick epitaxial Pb (Zr0. 35, Ti0. 65) O3 films grown on (100) CaF2 substrates with polar-axis-orientation
Bolstad et al. Effect of (1 1 1)-oriented strain on the structure and magnetic properties of La0. 7Sr0. 3MnO3 thin films
Yang et al. Structural and ferroelectric properties of textured KNN thick films prepared by sol-gel methods
JP2004342487A (ja) 強誘電体薄膜の作製方法、及び強誘電体薄膜
Zhu et al. Growth control of RF magnetron sputtered SrRuO3 thin films through the thickness of LaNiO3 seed layers
Kranov et al. Barium hexaferrite thick films made by liquid phase epitaxy reflow method
Uchida et al. Orientation control of barium titanate films using metal oxide nanosheet layer
Wei et al. The influence of nitrogen plasma on electrical and magnetic properties of epitaxial SrRuO3 thin films
Bolten et al. Influence of defects on the properties of a 2D ferroelectric: A Monte-Carlo simulation study
CN111926295B (zh) 一种巨四方相PbTiO3薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant