CN113316489A - 一种制造锆合金管状制品的方法 - Google Patents

一种制造锆合金管状制品的方法 Download PDF

Info

Publication number
CN113316489A
CN113316489A CN201980044163.0A CN201980044163A CN113316489A CN 113316489 A CN113316489 A CN 113316489A CN 201980044163 A CN201980044163 A CN 201980044163A CN 113316489 A CN113316489 A CN 113316489A
Authority
CN
China
Prior art keywords
vacuum heat
heat treatment
product
temperature
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980044163.0A
Other languages
English (en)
Inventor
V·V·诺维科夫
A·A·卡巴诺夫
A·V·尼库林娜
V·A·马基洛夫
M·N·沙布林
N·K·菲拉托娃
V·N·索洛维夫
K·V·奥奇梅戈夫
S·V·奇内金
S·V·卢齐茨基
A·G·兹甘辛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tvel JSC
Original Assignee
Tvel JSC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tvel JSC filed Critical Tvel JSC
Publication of CN113316489A publication Critical patent/CN113316489A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/78Control of tube rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/008Using a protective surface layer
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明涉及一种可用作水冷核反应堆外壳产品的锆合金管材制品的制造方法。一种由锆合金制造管材产品的方法,其含有质量百分比为:铌‑0.9‑1.7;铁‑0.10‑0.20;氧‑0.10‑0.20;硅‑小于0.02,碳‑小于0.02,锆‑合金的基础。该方法包括通过重复的真空电弧重熔熔化铸锭,对铸锭进行机械加工,加热,热多级锻造以获得锻造,以及对锻造进行热处理。该方法还包括随后对锻件进行机械加工以获得管坯并进行真空热处理,对其施加保护涂层并将其加热到热压温度,热压,除去保护涂层,以及真空热处理。该方法还包括多次冷轧,每次轧制总变形度为58‑74%,管材系数Q=1.18‑2.01,并进行中间真空热处理以生产管材产品。最终的真空热处理在最终尺寸下进行,然后进行精加工操作。技术结果是改善了用于制造管道产品的材料在热和冷压处理的各个阶段的加工性能,以及具有稳定机械性能和抗形状变化的管道产品的高耐腐蚀性。

Description

一种制造锆合金管状制品的方法
技术领域
本发明涉及核工程领域,具体涉及一种由锆合金(用于水冷核反应堆,特别是VVER型反应堆的壳管和通道管)制造管道产品的方法。
背景技术
锆合金由于其独特的特性,被用作电力核反应堆结构元件的材料:热中子吸收截面小,在高温水和水蒸气中的耐腐蚀性,抗氧化和氢化,小辐射生长和其他物理和机械性能。管材产品的性能取决于化学成分和每个工艺操作,从锭熔炼开始,到精加工结束。
有一种已知的″由锆合金制造管材产品的方法(变体)″(RU 2123065S1 publ.1997年3月12日,CL C22R/1/18),其包括用于二元锆合金获得初始钢坯、获得管坯、对管坯进行中间和最终退火的冷轧。
该方法的缺点是,在热挤压之前,没有在工件上施加保护涂层,这在制造过程中导致金属氧化,降低了管道产品的可制造性。此外,还没有最终的精加工操作,用于去除管道产品表面残留的技术污染,降低表面粗糙度,从而降低产品的耐腐蚀性。
在技术领域中,已知一种″由锆合金生产产品的方法″(RU 2110600S 1publ.1998年5月10日,CL。C22F/1/18)。首先,通过热成形从锭中获得初始坯料。然后,使用热成形,获得中间坯件。再有就是淬火和回火的切割尺寸坯料,热成型和冷轧前回火,冷轧。
这种方法的缺点是,在热挤压之前,保护涂层没有施加到锭上。这导致在挤出过程中金属氧化,这降低了管材产品的可制造性。也没有用于去除管道产品表面残留技术污染的最终精加工作业。加工作业降低表面粗糙度,从而降低产品的耐腐蚀性。
最接近要求保护的方法是″用于燃料棒壳的耐腐蚀性增加的锆合金及其生产方法″(US 2016/0307651A1publ.20/10/2016,CL G21S 3/07,B22D 21/00,B22D 7/00,S22S16/00,S22F 1/18)。该方法显示了耐腐蚀锆合金的组成以及由其制造燃料棒壳的方法。该工艺包括熔炼钢锭、用保护钢套管涂复钢锭、热轧前用套管对钢锭进行热处理、热轧、去除保护钢涂层、热轧管坯的热处理、三道冷轧工序、每道轧制后的中间热处理以及精加工热处理。
该方法的主要缺点是在冷轧材料的小发展,每道次的总变形高达60%,这导致不完全消除不均匀的热轧结构。此外,该方法的缺点是:使用含有碳的钢套管,其在热轧温度下与锆合金相互作用,可能形成碳化物。材料的再结晶程度是决定锆合金的耐形状变化特性的重要因素(抗热,辐射-热蠕变和辐射生长)。
低温的中间退火(从570℃到590℃的第一道,从560℃到580℃的第二道,从560℃到580℃的第三道)与选定的变形方案制造(在第一和第三阶段30-40%变形,在冷变形的第二阶段50-60%)不足以松弛残余应力和完成再结晶过程。这不仅对材料的技术性能产生负面影响,还对其抗形状变化的特性产生负面影响,包括在辐射的影响下。使用三个级别的长期光洁度退火(第一个级别从460℃到470℃,第二个级别从510℃到520℃,第三个级别从580℃到590℃)可以提高材料的强度。与此同时,耐形状变化的特性劣化主要是由于再结晶过程的不完全性。该技术方案不提供精加工操作,使能够从管道产品的表面去除残留的技术污染,并减少表面粗糙度,从而降低了产品的耐腐蚀性。
发明内容
本发明的目的是开发一种从锆合金生产各种直径的管材产品的方法,用于在水冷核反应堆中用作壳管。
技术结果是改善材料的技术特点在所有阶段的热和冷的压力处理(用于制造管道产品)。创造具有稳定的机械性能和抗成形特性的高耐腐蚀性管道产品。
其技术结果如下实现。从锆合金制造管道产品的方法(包含质量百分比%:铌-0.9-1.7质量百分比;铁-0.10-0.20质量百分比;氧-0.10-0.20质量百分比;硅-小于0.02质量百分比;碳-小于0.02质量百分比;锆-其余)。该方法包括通过重复的真空电弧重熔熔化铸锭,对铸锭进行机械加工,加热,热多级锻造以获得锻造,以及对锻造进行热处理。该方法还包括锻件的后续机械加工,获得管坯并进行真空热处理,对其施加保护涂层并将其加热到热压温度,热压,除去保护涂层,以及真空热处理。它也允许多次冷轧,与58-74%的总变形度和管系数Q=1.18-2.01,与中间真空热处理生产管产品。最终的真空热处理在最终尺寸下进行,然后进行精加工操作。
锭的热多级锻造在980℃至700℃的温度下进行,总变形度高达93%,中间预热在850℃至800℃的温度下进行。
锻件的热处理在1050℃至1100℃的温度下进行,然后在水中冷却。
管坯通过钻孔获得,然后在锻造中镗削轴向中心孔,切割成测量长度。
在热压之前对管坯进行真空热处理,温度为570℃至600℃。
热压的管坯进行的温度从600℃到620℃和提取物的p=8.9。
热压后的管坯真空热处理在565℃至595℃的温度下进行。
管道产品的中间真空热处理在565℃至595℃的温度下进行。
真空热处理管坯和产品是在1*10-4-1*10-5毫米汞柱的炉中的残余压力下进行的。
在管道产品的最终尺寸时,对其表面进行化学和机械处理。
所选比例的合金成分在锆合金提供的技术性能、耐腐蚀性、稳定的特性的机械性能和耐成形的管道产品。
根据所要求保护的方法获得管材产品的优点是,热锻和热压确保沿铸锭的长度和横截面均匀加工铸造结构。铜保护涂层的使用提供了防止气体饱和的保护,并消除了涂层和工件的扩散相互作用。冷轧与中间热处理提供了一个统一的再结晶结构的管产品具有高机械性能,以及所需的各向异性的性质在横向和纵向方向。精加工操作在外表面和内表面上提供小于Ka=0.8微米的粗糙度,这增加了腐蚀性能的稳定性。内表面的粗糙度使其能够改善将燃料颗粒装入管道产品的工艺流程。
具体实施方式
实施本发明的方法如下:
示例
根据所要求保护的技术方案,所述锆制管产品的技术包括以下操作。熔炼合金锭的组成如下:铌-1.00-1.03质量百分比%,铁-0.116-0.119质量百分比%,氧-0.120-0.125质量百分比%,硅-0.002-0.003质量百分比%,碳-0.003-0.005质量百分比%,其余为锆。
将初始合金组分与锆磁热海绵混合,然后形成自耗电极,这是由三重真空电弧重熔重熔。锭是机械加工的。将锭加热至930℃至980℃的温度在电阻炉中。加热后的锭的多级锻造在980℃到700℃的温度范围内进行,在电阻炉中进行中间预热,温度范围为850℃至800℃。在锭的热变形处理过程中,总变形率高达93%。锻造是加热到1050℃至1100℃的温度,随后在水中冷却。
锻件被切割成测量的长度并机械加工成直径为109x28.5mm,然后钻孔并随后镗削轴向中心孔。这是如何获得管坯。
真空热处理在570℃至600℃的温度下进行。工件的表面粗糙度不超过Ra=2.5微米。接下来,在管坯上涂复铜涂层,以防止在随后的加热和热压过程中气体饱和。用于热压的管坯加热在感应炉中进行。热压前管坯的加热温度范围为600℃至620℃。
压制是用提取物μ=8,9进行的。然后去除铜涂层并进行真空热处理,温度为565℃至595℃。管坯在HPT,2HPTS,KPW型管道的冷轧机上进行轧制,4道次,总变形∑ε从58到74%,而管道系数Q**在1.18-2.01的范围内。中间热处理在温度范围从565°V到595℃的真空中进行,炉内的残余压力不高于1*10-4-1*10-5mm Hg。
管材产品在565℃至595℃的温度下进行最终真空热处理后,进行间歇或喷射蚀刻、内表面研磨处理、外表面研磨和抛光。
工业实用性由锆合金制成的管产品,根据所要求保护的技术方案制造,其特征在于具有以下性质(表1)。
因此,所提出的管道制造方法允许获得具有稳定的机械性能和抗形状变化特性的高度耐腐蚀的管道产品。
Figure BDA0002867845900000051

Claims (10)

1.一种由锆合金制造管材产品的方法,其含有质量百分比为:铌-0.9-1.7;铁-0.10-0.20;氧-0.10-0.20;硅-小于0.02,碳-小于0.02,锆-其余。方法包括多段真空电弧重熔铸锭熔炼、铸锭机械加工、加热、多段热锻制锻件、锻件热处理等。方法还包括锻件的后续机械加工以生产管坯并进行真空热处理,在其上施加保护涂层并将其加热到热压温度。方法还包括热压,去除保护涂层,真空热处理,多次冷轧,总变形度为58-74%,管道系数=1.18-2.01,中间真空热处理生产管道产品。最终的真空热处理在最终尺寸下进行,然后进行精加工操作。
2.根据权利要求1的方法,其特征在于,锭的热多级锻造是在980℃至700℃的温度下进行的,总变形度高达93%,并在850℃至800℃的温度下进行中间预热。
3.根据权利要求1的方法,其特征在于锻件的热处理是在1050℃至1100℃的温度下进行的,然后在水中冷却。
4.根据权利要求1的方法,其特征在于,管坯是通过钻孔,然后镗孔在锻造轴向中心孔,切割成测量长度。
5.根据权利要求1的方法,其特征在于,在热压之前对管坯的真空热处理是在570℃至600℃的温度下进行的。
6.根据权利要求1的方法,其特征在于,热压管5的工件是在600℃至620℃的温度下进行的,并且抽风机m=8,9.
7.根据权利要求1的方法,其特征在于,对热压后的空心坯料进行真空热处理是在565°至595℃的温度下进行的。
8.根据权利要求1的方法,其特征在于,在重复冷轧和最终真空热处理之间对管材产品进行中间真空热处理是在565°c至595℃的温度下进行的。
9.根据权利要求5、7、8的方法,其特征在于,在炉内的残余压力下对管坯和产品进行真空热处理1*10-4-1*10-5mm Hg。
10.根据权利要求1的方法,其特征在于,对管道产品的最终尺寸进行化学和机械处理的其二十个表面。
CN201980044163.0A 2019-12-26 2019-12-26 一种制造锆合金管状制品的方法 Pending CN113316489A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2019/001023 WO2021133194A1 (ru) 2019-12-26 2019-12-26 Способ изготовления трубных изделий из циркониевого сплава

Publications (1)

Publication Number Publication Date
CN113316489A true CN113316489A (zh) 2021-08-27

Family

ID=76574876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980044163.0A Pending CN113316489A (zh) 2019-12-26 2019-12-26 一种制造锆合金管状制品的方法

Country Status (6)

Country Link
US (1) US20220314289A1 (zh)
EP (1) EP4082685A4 (zh)
KR (1) KR20220023761A (zh)
CN (1) CN113316489A (zh)
WO (1) WO2021133194A1 (zh)
ZA (1) ZA202008083B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764223A (en) * 1985-06-27 1988-08-16 Pechiney Process for the manufacture of a rough-shaped, cold-rolled cladding tube of zirconium alloy
US5560790A (en) * 1993-03-04 1996-10-01 A.A. Bochvar All-Russian Inorganic Materials Research Institute Zirconium-based material, products made from said material for use in the nuclear reactor core, and process for producing such products
RU2110600C1 (ru) * 1996-09-10 1998-05-10 Открытое акционерное общество "Чепецкий механический завод" Способ получения изделий из циркониевых сплавов
JPH1150148A (ja) * 1997-08-06 1999-02-23 Sumitomo Metal Ind Ltd 高強度高耐食継目無鋼管の製造方法
EP1225243A1 (en) * 2001-01-19 2002-07-24 Korea Atomic Energy Research Institute Method for manufacturing a tube and a sheet of niobium-containing zirconium alloy for a high burn-up nuclear fuel
US20030098105A1 (en) * 2001-11-02 2003-05-29 Jeong Yong Hwan Method for manufacturing zirconium-based alloys containing niobium for use in nuclear fuel rod cladding
KR20120102969A (ko) * 2011-03-09 2012-09-19 한국원자력연구원 우수한 내식성 및 고강도를 가지는 지르코늄합금의 제조방법
US20160307651A1 (en) * 2015-04-14 2016-10-20 Kepco Nuclear Fuel Co., Ltd. Zirconium alloy having excellent corrosion resistance for nuclear fuel cladding tube and method of manufacturing the same
US20160304991A1 (en) * 2015-04-14 2016-10-20 Kepco Nuclear Fuel Co., Ltd. Zirconium alloy having excellent corrosion resistance and creep resistance and method of manufacturing the same
CN107042247A (zh) * 2016-12-26 2017-08-15 中核北方核燃料元件有限公司 一种U‑Zr合金管的制备方法及挤压模具
CN107116339A (zh) * 2017-05-03 2017-09-01 中国核动力研究设计院 一种锆合金包壳管材制备工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA53696C2 (uk) 1997-03-12 2003-02-17 Откритоє Акціонєрноє Общєство "Чєпєцкій Мєханічєскій Завод" Спосіб виготовлення трубних виробів з цирконієвих сплавів (варіанти)
KR100831578B1 (ko) * 2006-12-05 2008-05-21 한국원자력연구원 원자력용 우수한 내식성을 갖는 지르코늄 합금 조성물 및이의 제조방법
KR101104648B1 (ko) * 2010-09-30 2012-01-16 한전원자력연료 주식회사 핵연료 충격흡수관용 필거 다이, 맨드렐, 그 제작방법 및 핵연료 충격흡수관

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764223A (en) * 1985-06-27 1988-08-16 Pechiney Process for the manufacture of a rough-shaped, cold-rolled cladding tube of zirconium alloy
US5560790A (en) * 1993-03-04 1996-10-01 A.A. Bochvar All-Russian Inorganic Materials Research Institute Zirconium-based material, products made from said material for use in the nuclear reactor core, and process for producing such products
RU2110600C1 (ru) * 1996-09-10 1998-05-10 Открытое акционерное общество "Чепецкий механический завод" Способ получения изделий из циркониевых сплавов
JPH1150148A (ja) * 1997-08-06 1999-02-23 Sumitomo Metal Ind Ltd 高強度高耐食継目無鋼管の製造方法
EP1225243A1 (en) * 2001-01-19 2002-07-24 Korea Atomic Energy Research Institute Method for manufacturing a tube and a sheet of niobium-containing zirconium alloy for a high burn-up nuclear fuel
US20030098105A1 (en) * 2001-11-02 2003-05-29 Jeong Yong Hwan Method for manufacturing zirconium-based alloys containing niobium for use in nuclear fuel rod cladding
KR20120102969A (ko) * 2011-03-09 2012-09-19 한국원자력연구원 우수한 내식성 및 고강도를 가지는 지르코늄합금의 제조방법
US20160307651A1 (en) * 2015-04-14 2016-10-20 Kepco Nuclear Fuel Co., Ltd. Zirconium alloy having excellent corrosion resistance for nuclear fuel cladding tube and method of manufacturing the same
US20160304991A1 (en) * 2015-04-14 2016-10-20 Kepco Nuclear Fuel Co., Ltd. Zirconium alloy having excellent corrosion resistance and creep resistance and method of manufacturing the same
CN107429331A (zh) * 2015-04-14 2017-12-01 韩电原子力燃料株式会社 用于核燃料包壳管的具有优异的耐腐蚀性的锆合金以及其制备方法
CN107438675A (zh) * 2015-04-14 2017-12-05 韩电原子力燃料株式会社 具有优异的耐腐蚀性和抗蠕变性的锆合金及其制备方法
CN107042247A (zh) * 2016-12-26 2017-08-15 中核北方核燃料元件有限公司 一种U‑Zr合金管的制备方法及挤压模具
CN107116339A (zh) * 2017-05-03 2017-09-01 中国核动力研究设计院 一种锆合金包壳管材制备工艺

Also Published As

Publication number Publication date
ZA202008083B (en) 2022-06-29
WO2021133194A1 (ru) 2021-07-01
KR20220023761A (ko) 2022-03-02
EP4082685A4 (en) 2024-01-17
EP4082685A1 (en) 2022-11-02
US20220314289A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
US5141566A (en) Process for manufacturing corrosion-resistant seamless titanium alloy tubes and pipes
CN108637033A (zh) 一种制备钛合金毛细管材的方法
CN109825675B (zh) 用于快堆蒸汽发生器的换热管及其制备方法
RU2742176C1 (ru) Способ изготовления прутков и проволоки из гафния
JP2012066279A (ja) ベアリングレースの製造方法
CN114107834A (zh) 一种高强铁镍钼合金丝材及其低成本制备方法
CN111809080B (zh) 一种tc2合金薄壁挤压型材的制备方法
JPS61213362A (ja) 核燃料用複合被覆管の製法及びその製品
KR102631715B1 (ko) 지르코늄 합금 배관의 제조방법
WO2013171935A1 (ja) 継目無鋼管の製造方法
CN104959506B (zh) 一种难变形阻燃钛合金板材的制备方法
CN113316489A (zh) 一种制造锆合金管状制品的方法
RU2798020C1 (ru) Способ изготовления трубных изделий из циркониевого сплава
RU2798021C1 (ru) Способ изготовления трубных изделий из циркониевого сплава
CN114438298A (zh) 一种高温扩散方法及一种合金钢
CN111744984A (zh) 一种钽合金、铌合金管坯的制备方法
CN114032375A (zh) 超级13Cr不锈钢锻材的加工方法
RU2798022C1 (ru) Способ получения трубных изделий из сплава на основе циркония
EA043131B1 (ru) Способ изготовления трубных изделий из циркониевого сплава
CN113316490A (zh) 锆基合金管材制造方法
CN114602994B (zh) 一种冷作硬化不锈钢棒材的制备方法
JP2019167584A (ja) α+β型チタン合金押出形材
EA043590B1 (ru) Способ изготовления трубных изделий из циркониевого сплава
CN109234555B (zh) 小口径ta18钛合金无缝管的制备方法
EA042580B1 (ru) Способ получения трубных изделий из сплава на основе циркония

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination