CN113315431A - 基于等价输入干扰系统的pmsm失磁故障控制方法、电机 - Google Patents

基于等价输入干扰系统的pmsm失磁故障控制方法、电机 Download PDF

Info

Publication number
CN113315431A
CN113315431A CN202110438654.2A CN202110438654A CN113315431A CN 113315431 A CN113315431 A CN 113315431A CN 202110438654 A CN202110438654 A CN 202110438654A CN 113315431 A CN113315431 A CN 113315431A
Authority
CN
China
Prior art keywords
loss
fault
equivalent input
pmsm
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110438654.2A
Other languages
English (en)
Other versions
CN113315431B (zh
Inventor
黄刚
黄伟
于惠钧
何静
张昌凡
胡家喜
刘建华
马振宇
南永辉
李佳俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Technology
Original Assignee
Hunan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Technology filed Critical Hunan University of Technology
Priority to CN202110438654.2A priority Critical patent/CN113315431B/zh
Publication of CN113315431A publication Critical patent/CN113315431A/zh
Application granted granted Critical
Publication of CN113315431B publication Critical patent/CN113315431B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0007Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using sliding mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明涉及一种基于改进等价输入干扰的容错控制方法。该方法首先建立永磁同步电机失磁故障的数学模型,然后用控制输入通道上的等效输入失磁来描述模型,设计了一种改进的等价输入干扰方法来抑制失磁故障的影响,采用超螺旋滑模观测器代替传统的龙贝格观测器。该方法有效的增强了等价输入故障的估计精度和系统的鲁棒性,大大提高了故障估计和抑制的响应速度和精度。

Description

基于等价输入干扰系统的PMSM失磁故障控制方法、电机
技术领域
本发明涉及一种永磁同步电机失磁故障控制方法,尤其涉及一种基于改进等价输入干扰的容错控制方法。
背景技术
永磁同步电机永磁体失磁故障的检测和抑制问题,是PMSM转子永磁体(PM) 的励磁性能下降的主要原因。目前均采用鲁棒控制、自适应控制、预测控制、滑模控制等都被广泛应用于机电系统中的扰动检测及抑制。
然而上述方法使用反馈策略来设计系统,导致了系统需要在控制性能之间做出权衡,如鲁棒性和容错性,当系统的外部扰动大时,通常采用高增益来减少扰动的影响。高增益在有效减小扰动影响的同时,带来的是系统鲁棒性能和标称性能的降低。与这些单自由度方法相比,具有两个自由度的主动扰动抑制方法得到广泛的关注。一个用于扰动抑制,另一个用于反馈补偿,但上述两种主动扰动抑制方法,都是通过对控制器进行重构,实现对扰动和故障的容错控制,这改变了原有控制器的结构,大大增加了系统的风险。公开号为CN110581677A的专利申请公开一种滑模和等价输入干扰方法的永磁同步电机抑制方法,设计等价输入干扰控制器进一步抑制扰动,同时减小滑模控制器产生的抖振,但该方法没有对失磁故障进行估计,无法消除失磁故障对系统的影响。
发明内容
本发明针对上述技术问题,提出一种基于等价输入干扰系统的PMSM失磁故障控制方法,有效的增强了等价输入故障的估计精度和系统的鲁棒性,稳定性高,估计精准。
本发明采用的技术方案是:
基于等价输入干扰系统的PMSM失磁故障控制方法,运用等价输入干扰系统抑制PMSM失磁故障;所述等价输入干扰系统运用超螺旋滑模观测器和低通滤波器对失磁故障进行估计,在原始状态输入值中去除失磁故障的等价输入干扰估计值,获得PMSM失磁故障控制输入值,使最终系统不受失磁故障影响;
所述超螺旋滑模观测器方程为:
Figure BDA0003034129420000021
其中:
Figure BDA0003034129420000022
Figure BDA0003034129420000023
是x、y的估计;uf是输入;v是滑模控制函数;k1、k2为待设计的增益; e是一个状态估计误差,具体为:
Figure BDA0003034129420000024
所述低通滤波器为:
|M(jω)|≈1,
Figure BDA0003034129420000025
ωr为截止角频率;
最终获得的状态反馈控制率为:
Figure BDA0003034129420000026
u为系统输入,uf为失磁故障影响下的系统输入,
Figure BDA0003034129420000027
为失磁故障的等价输入估计值。
进一步地,在固定于转子永磁体磁场方向的d-q坐标系下,永磁同步电机电压方程为:
Figure BDA0003034129420000028
永磁同步电机的磁链方程为:
Figure BDA0003034129420000029
式中:Rs为定子电阻;Ld、Lq分别为定子绕组的d-q轴电感;ud、uq分别为定子绕组的d-q轴电压;id、iq分别为定子绕组的d-q轴电流;ψd、ψq分别为d-q 坐标系中定子磁链分量;ψro为转子永磁体磁链;ωe为转子电角速度。
进一步地,失磁故障的系统为:
Figure BDA00030341294200000210
其中x=[id iq]T;u=[ud uq]T;f=[Vψrdrq]T;y是系统输出。
进一步地,使用矢量fe=[fed feq]T对所述失磁故障的系统描述为:
Figure BDA0003034129420000031
其中fe是f的等价输入干扰。
进一步地,等价输入干扰的估计输入值为:
Figure BDA0003034129420000032
进一步地,滤波后的失磁故障
Figure BDA0003034129420000033
为:
Figure BDA0003034129420000034
进一步地,所述失磁故障对系统的影响为零。
进一步地,超螺旋滑模观测器误差方程的二阶滑模的标准形式为:
Figure BDA0003034129420000035
其中
Figure BDA0003034129420000036
Bk1=diag{λ12};Bk2=diag{γ12},
所述误差方程系统在有限时间内收敛到原点。
进一步地,所述失磁故障为永磁体的励磁性能下降。
更进一步地,本发明还涉及一种永磁同步电机,采用上述基于等价输入干扰系统的PMSM失磁故障控制方法。
与现有技术相比,本发明的有益效果是:
本发明利用超螺旋滑模观测器(STSMO)代替传统等价输入干扰中的龙贝格观测器,有效的增强了等价输入故障的估计精度和系统的鲁棒性,PMSM系统失磁故障控制精度高,失磁故障对系统的影响可以接近零。
附图说明
图1为永磁同步电机磁链的变化。
图2为基于IEID的系统配置。
图3为具有PM失磁抑制功能的PMSM驱动器结构图。
具体实施方式
下面结合具体实施例进一步说明本发明。除非特别说明,本发明实施例中采用的原料和方法为本领域常规市购的原料和常规使用的方法。
实施例1
基于改进等价输入干扰的容错控制方法,该方法有如下步骤:
S1.建立永磁同步电机系统及失磁故障模型
在固定于转子永磁体磁场方向的d-q坐标系下,永磁同步电机电压方程为
Figure BDA0003034129420000041
永磁同步电机的磁链方程为
Figure BDA0003034129420000042
式中:Rs为定子电阻;Ld、Lq分别为定子绕组的d-q轴电感;ud、uq分别为定子绕组的d-q轴电压;id、iq分别为定子绕组的d-q轴电流;ψd、ψq分别为d-q坐标系中定子磁链分量;ψro为转子永磁体磁链;ωe为转子电角速度。
当永磁电机发生失磁故障,而导致永磁体磁链矢量幅值和方向发生如图1变化时,ψro变为ψr,相应式(2)的磁链方程变为
Figure BDA0003034129420000043
其中
Figure BDA0003034129420000044
这里Vψrd、Vψrq表示d-q轴磁链的扰动。
把(3)式带入(1)式得到失磁永磁同步电机模型为
Figure BDA0003034129420000045
电磁转矩方程由
Figure BDA0003034129420000046
变为
Figure BDA0003034129420000047
考虑到在实际工程系统中,永磁体磁链的变化率比电流等状态变量变化慢的多,所以d-q轴磁链相对于电流等状态变量可当作稳态值处理,即
Figure BDA0003034129420000051
这样式(5)可改写为
Figure BDA0003034129420000052
由此可以给出具有失磁故障的系统
Figure BDA0003034129420000053
选取
Figure BDA0003034129420000054
则系统(10)可描述为
Figure BDA0003034129420000055
其中x=[id iq]T;u=[ud uq]T;f=[Vψrdrq]T;y是系统输出。
S2.基于改进的等价输入干扰的永磁同步电机失磁抑制
根据等价输入干扰理论(EID),使用矢量fe=[fed feq]T来描述系统(11)为
Figure BDA0003034129420000056
其中fe是f的等价输入干扰。用于永磁体失磁的IEID系统如图2所示。主要包括具有等价输入失磁的系统,EID估计器和超螺旋滑模观测器。
S21.设计超螺旋滑模观测器
对系统(12)设计超螺旋滑模观测器为
Figure BDA0003034129420000061
其中
Figure BDA0003034129420000062
这里
Figure BDA0003034129420000063
是x、y的估计;uf是输入;v是滑模控制函数;k1、k2为待设计的增益;e是一个状态估计误差被描述为
Figure BDA0003034129420000064
根据(12)和(13)可知,e的导数为
Figure BDA0003034129420000065
把(13)带入(16)有
Figure BDA0003034129420000066
根据(17)有
Figure BDA0003034129420000067
引入变量Vf并定义
Figure BDA0003034129420000068
假设fe的估计
Figure BDA0003034129420000069
将(19)和(20)代入(18)得到一个新的系统
Figure BDA00030341294200000610
比较(21)与(13)得到
Figure BDA00030341294200000611
那么
Figure BDA00030341294200000612
S22.采用低通滤波器滤波
低通滤波器M(s)设计为
Figure BDA0003034129420000071
这里ωr为截止角频率。滤波后的失磁故障
Figure BDA0003034129420000072
Figure BDA0003034129420000073
其中
Figure BDA0003034129420000074
Figure BDA0003034129420000075
的拉普拉斯变换。因此,我们得到了状态反馈控制律为
Figure BDA0003034129420000076
式中u为最终系统输入、uf为失磁故障影响下的系统输入,
Figure BDA0003034129420000077
为失磁故障的等价输入估计值。
由此可以得到永磁同步电机失磁故障控制的结果,即原始输入值uf中减去失磁故障估计值
Figure BDA0003034129420000078
即可得到失磁故障控制的输入值u,估计值
Figure BDA0003034129420000079
越精准,输入值 u失磁故障就越小。采用该控制方法后获得的失磁故障控制后的系统输入u接近零,消除了失磁故障对系统的影响。
S3.对基于等价输入估计的失磁故障控制结果进行测试
S31.首先是超螺旋滑模观测器稳定性分析:
将式(26)代入式(16)得到误差方程
Figure BDA00030341294200000710
将误差方程(27)改写成二阶滑模的标准形式,即
Figure BDA00030341294200000711
其中
Figure BDA00030341294200000712
Bk1=diag{λ12};Bk2=diag{γ12}。
定理1:对于系统(28)而言,假设
Figure BDA00030341294200000713
当λi,γi(i=1,2)的取值满足
Figure BDA00030341294200000714
则系统(28)能在有限时间内收敛到原点。
证明:取正定对称矩阵
Figure BDA0003034129420000081
选取Lyapunov函数
V=ξTPξ (31)
其中
Figure BDA0003034129420000082
Figure BDA0003034129420000083
C=[1 0];D=[0 1]T
Figure BDA0003034129420000084
对ξ求导有
Figure BDA0003034129420000085
对V沿系统轨迹求导有
Figure BDA0003034129420000086
由于
Figure BDA0003034129420000087
所以
Figure BDA0003034129420000088
令Q=-(GTP+PG+δ2CTC+PDDTP),则
Figure BDA0003034129420000089
此时
Figure BDA0003034129420000091
由式(30)可得出Q是正定对称的,这就证明了系统是稳定的。
S32.系统稳定性分析如下:
使用包含系统(12)、设计观测器和滤波器的增广系统来分析稳定性。描述 M(s)的状态方程
Figure BDA0003034129420000092
由(23)、(26)、(38)有
Figure BDA0003034129420000093
把(26)、(38)代入(12)有
Figure BDA0003034129420000094
根据(14)、(26)、(38)有
Figure BDA0003034129420000095
由(39)、(40)、(41)有
Figure BDA0003034129420000096
其中
Figure BDA0003034129420000097
X1=x;
Figure BDA0003034129420000098
Figure BDA0003034129420000099
Figure BDA00030341294200000910
定理2:选择合适的k1、k2、F(s)使
Figure BDA00030341294200000911
其中ζ、σ1、σ2和σ3是正数,I是单位矩阵,因此在有限时间内X到达原点的小邻域:
Figure BDA00030341294200000912
其中μ是正数。因此,系统(40)是全局一致最终有界。
证明:选取Lyapunov函数为
V1=XTX (44)
V1的导数为
Figure BDA0003034129420000101
因为
Figure BDA0003034129420000102
Figure BDA0003034129420000103
Figure BDA0003034129420000104
那么
Figure BDA0003034129420000105
如果X不属于Ω,即
Figure BDA0003034129420000106
那么
Figure BDA0003034129420000107
这就完成了系统稳定性证明。
通过应用到PMSM驱动器示例中,验证了基于IEID的失磁抑制方法,如图3所示。
显然,上述实例仅仅是为清楚地说明本发明的技术方案所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.基于等价输入干扰系统的PMSM失磁故障控制方法,其特征在于,运用等价输入干扰系统抑制PMSM失磁故障;所述等价输入干扰系统运用超螺旋滑模观测器和低通滤波器对失磁故障进行估计;在失磁故障影响的系统输入中去除等价输入干扰估计值,获得PMSM失磁故障控制输入值;
所述超螺旋滑模观测器方程为:
Figure FDA0003034129410000011
其中:
Figure FDA0003034129410000012
Figure FDA0003034129410000013
是x、y的估计;uf是输入;v是滑模控制函数;k1、k2为待设计的增益;e是一个状态估计误差,具体为:
Figure FDA0003034129410000014
所述低通滤波器为:
|M(jω)|≈1,
Figure FDA0003034129410000015
ωr为截止角频率;
最终获得的状态反馈控制率为:
Figure FDA0003034129410000016
式中u为最终系统输入、uf为失磁故障影响下的系统输入,
Figure FDA0003034129410000017
为失磁故障的等价输入估计值。
2.根据权利要求1所述基于等价输入干扰系统的PMSM失磁故障控制方法,其特征在于,在固定于转子永磁体磁场方向的d-q坐标系下,永磁同步电机电压方程为:
Figure FDA0003034129410000018
永磁同步电机的磁链方程为:
Figure FDA0003034129410000019
式中:Rs为定子电阻;Ld、Lq分别为定子绕组的d-q轴电感;ud、uq分别为定子绕组的d-q轴电压;id、iq分别为定子绕组的d-q轴电流;ψd、ψq分别为d-q坐标系中定子磁链分量;ψro为转子永磁体磁链;ωe为转子电角速度。
3.根据权利要求2所述基于等价输入干扰系统的PMSM失磁故障控制方法,其特征在于,失磁故障的系统为:
Figure FDA0003034129410000021
其中x=[id iq]T;u=[ud uq]T;f=[Vψrdrq]T;y是系统输出。
4.根据权利要求3所述基于等价输入干扰系统的PMSM失磁故障控制方法,其特征在于,使用矢量fe=[fed feq]T对所述失磁故障的系统描述为:
Figure FDA0003034129410000022
其中fe是f的等价输入干扰。
5.根据权利要求1所述基于等价输入干扰系统的PMSM失磁故障控制方法,其特征在于,失磁故障的等价输入干扰的估计输入值为:
Figure FDA0003034129410000023
6.根据权利要求1所述基于等价输入干扰系统的PMSM失磁故障控制方法,其特征在于,滤波后的失磁故障
Figure FDA0003034129410000024
为:
Figure FDA0003034129410000025
7.根据权利要求1所述基于等价输入干扰系统的PMSM失磁故障控制方法,其特征在于,所述失磁故障对系统的影响为零。
8.根据权利要求1所述基于等价输入干扰系统的PMSM失磁故障控制方法,其特征在于,超螺旋滑模观测器误差方程的二阶滑模的标准形式为:
Figure FDA0003034129410000026
其中
Figure FDA0003034129410000027
Bk1=diag{λ12};Bk2=diag{γ12},
所述误差方程系统在有限时间内收敛到原点。
9.根据权利要求3所述基于等价输入干扰系统的PMSM失磁故障控制方法,其特征在于,所述失磁故障为永磁体的励磁性能下降。
10.一种电机,所述电机为永磁同步电机,其特征在于,采用权利要求1-7任一所述基于等价输入干扰系统的PMSM失磁故障控制方法。
CN202110438654.2A 2021-04-22 2021-04-22 基于等价输入干扰系统的pmsm失磁故障控制方法、电机 Active CN113315431B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110438654.2A CN113315431B (zh) 2021-04-22 2021-04-22 基于等价输入干扰系统的pmsm失磁故障控制方法、电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110438654.2A CN113315431B (zh) 2021-04-22 2021-04-22 基于等价输入干扰系统的pmsm失磁故障控制方法、电机

Publications (2)

Publication Number Publication Date
CN113315431A true CN113315431A (zh) 2021-08-27
CN113315431B CN113315431B (zh) 2023-07-28

Family

ID=77372617

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110438654.2A Active CN113315431B (zh) 2021-04-22 2021-04-22 基于等价输入干扰系统的pmsm失磁故障控制方法、电机

Country Status (1)

Country Link
CN (1) CN113315431B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159753A (ja) * 1999-12-02 2001-06-12 Seiko Epson Corp 液晶パネルの駆動方法、液晶装置および電子機器
US20130033215A1 (en) * 2011-08-01 2013-02-07 Illinois Institute Of Technology Apparatus and method for permanent magnet electric machine condition monitoring
CN103339148A (zh) * 2011-01-06 2013-10-02 康普里斯有限公司 特异性结合细胞因子或生长因子和/或细胞因子或生长因子受体的alphabody
CN107359837A (zh) * 2017-09-06 2017-11-17 湖南工业大学 基于滑模观测器和自抗扰控制的永磁同步电机转矩控制系统及方法
CN109450321A (zh) * 2018-11-28 2019-03-08 中国地质大学(武汉) 基于等价输入干扰的永磁同步电机混沌抑制方法及系统
CN110581677A (zh) * 2019-08-21 2019-12-17 中国地质大学(武汉) 一种滑模和等价输入干扰方法的永磁同步电机抑制方法
CN110726933A (zh) * 2018-07-16 2020-01-24 上海汽车集团股份有限公司 永磁同步电机的故障诊断方法、系统及装置、可读介质
CN111162707A (zh) * 2020-01-10 2020-05-15 湖南工业大学 一种永磁同步电机有限集无模型容错预测控制方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159753A (ja) * 1999-12-02 2001-06-12 Seiko Epson Corp 液晶パネルの駆動方法、液晶装置および電子機器
CN103339148A (zh) * 2011-01-06 2013-10-02 康普里斯有限公司 特异性结合细胞因子或生长因子和/或细胞因子或生长因子受体的alphabody
US20130033215A1 (en) * 2011-08-01 2013-02-07 Illinois Institute Of Technology Apparatus and method for permanent magnet electric machine condition monitoring
CN107359837A (zh) * 2017-09-06 2017-11-17 湖南工业大学 基于滑模观测器和自抗扰控制的永磁同步电机转矩控制系统及方法
CN110726933A (zh) * 2018-07-16 2020-01-24 上海汽车集团股份有限公司 永磁同步电机的故障诊断方法、系统及装置、可读介质
CN109450321A (zh) * 2018-11-28 2019-03-08 中国地质大学(武汉) 基于等价输入干扰的永磁同步电机混沌抑制方法及系统
CN110581677A (zh) * 2019-08-21 2019-12-17 中国地质大学(武汉) 一种滑模和等价输入干扰方法的永磁同步电机抑制方法
CN111162707A (zh) * 2020-01-10 2020-05-15 湖南工业大学 一种永磁同步电机有限集无模型容错预测控制方法及系统

Also Published As

Publication number Publication date
CN113315431B (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
CN110429881B (zh) 一种永磁同步电机的自抗扰控制方法
CN110347044B (zh) 一种考虑输出约束的pmsm混沌系统神经网络动态面控制方法
Volpato Filho et al. Observers for high-speed sensorless pmsm drives: Design methods, tuning challenges and future trends
Xiao et al. Improved feature-position-based sensorless control scheme for SRM drives based on nonlinear state observer at medium and high speeds
CN110581677B (zh) 一种滑模和等价输入干扰方法的永磁同步电机抑制方法
CN110557070A (zh) 基于二阶滑模观测器的永磁同步电机参数辨识方法
Wu et al. Indirect adaptive robust control of nonlinear systems with time‐varying parameters in a strict feedback form
Sun et al. A modified dynamic surface approach for control of nonlinear systems with unknown input dead zone
CN114726278A (zh) 基于机械参数辨识的永磁同步电机自适应控制方法
Fu et al. A strongly robust and easy-tuned current controller for PMSM considering parameters variation
CN113315431B (zh) 基于等价输入干扰系统的pmsm失磁故障控制方法、电机
JP5692572B2 (ja) 同期電動機の駆動制御装置
CN111682819A (zh) 基于改进ladrc的异步电机电流内环解耦控制方法
CN113517835B (zh) Pmsm驱动系统失磁故障控制方法、永磁同步电机
Wang et al. A high performance permanent magnet synchronous motor servo system using predictive functional control and Kalman filter
CN109768752B (zh) 一种基于多用途扰动观测器的永磁同步电机无差拍电流预测控制方法
Zurita-Bustamante et al. On the robust flat-filtering control of MIMO nonlinear systems: The PMSM experimental case study
Toso et al. Moving horizon estimator of PMSM N onlinearities
Eker et al. An assessment of active disturbance rejection technique from a theoretical perspective
CN117254735B (zh) 基于高频方波注入的无位置传感器自抗扰控制方法
Qian et al. Mutual torque ripple suppression of surface-mounted permanent magnet synchronous motor
Geweth et al. Numerical framework for the field oriented economic model predictive control of permanent magnet synchronous motors
Wang et al. Sensorless PMSM Harmonic Suppression Strategy Based on PLL with Embedded Double Quasi-Proportional-Resonant Controllers
Xu et al. An optimized nonlinear extended state observer for sensorless IPM synchronous motor drives
Alfehaid Sensor and Sensorless Speed Control of Permanent Magnet Synchronous Motor Using Extended High-Gain Observer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant