CN109450321A - 基于等价输入干扰的永磁同步电机混沌抑制方法及系统 - Google Patents

基于等价输入干扰的永磁同步电机混沌抑制方法及系统 Download PDF

Info

Publication number
CN109450321A
CN109450321A CN201811434993.8A CN201811434993A CN109450321A CN 109450321 A CN109450321 A CN 109450321A CN 201811434993 A CN201811434993 A CN 201811434993A CN 109450321 A CN109450321 A CN 109450321A
Authority
CN
China
Prior art keywords
permanent magnet
magnet synchronous
synchronous motor
formula
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811434993.8A
Other languages
English (en)
Other versions
CN109450321B (zh
Inventor
佘锦华
吴敏
刘振焘
张传科
李子君
殷翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN201811434993.8A priority Critical patent/CN109450321B/zh
Publication of CN109450321A publication Critical patent/CN109450321A/zh
Application granted granted Critical
Publication of CN109450321B publication Critical patent/CN109450321B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明提供了一种基于等价输入干扰的永磁同步电机混沌抑制方法及系统,其方法包括:首先建立永磁同步电机的系统模型,然后加入输入,得到永磁同步电机的系统混沌模型,并采用基于等价输入干扰方法的控制器对系统干扰进行抑制,采用PI控制器对系统电流和转速进行控制,最后得到基于等价输入干扰的闭环系统输入;一种基于等价输入干扰的永磁同步电机混沌抑制系统,包括不同模块,根据永磁同步电机的混沌抑制要求,对系统干扰进行抑制。本发明的有益效果是:本发明提供的技术方案计算量小,实时性强;避免了系统的抖振问题,提高了适用范围;参数设计简单,便于实际应用;系统保守性低,同时有较强的鲁棒性,控制精度更高。

Description

基于等价输入干扰的永磁同步电机混沌抑制方法及系统
技术领域
本发明涉及电机控制领域,尤其涉及一种基于等价输入干扰的永磁同步电机混沌抑制方法及系统。
背景技术
永磁同步电机广泛应用于现代工业生产发展过程中,并起着重要的作用。与其他电机相比,它拥有效率高、省电、功率因数高、可靠性高、体积小、功率密度大和噪音小等优点。但是永磁同步电机同样拥有多变量、多参数和强耦合的特点,这样会导致系统产生复杂的动力学行为。近年来,国内外学者的研究表明,在一些情况下,永磁同步电机存在混沌现象,混沌的本质特征(初值敏感性和内敛随机性等)与永磁同步电机高速高精度的控制目标相悖,而且混沌的存在导致系统出现了转矩或转速的间歇振荡、控制不稳定、系统无规律电磁噪声等现象,甚至可能破坏系统的稳定性。同时传统的线性控制方法对抑制或消除混沌的存在已失去效用,因此研究一种有效的永磁同步电机控制系统的混沌抑制方法,实现永磁同步电机的高速高精度控制具有重要科学意义和应用价值。
现有类似已公开的专利和论文有:一种基于神经网络的永磁同步电机混沌系统快速终端滑模控制方法(CN 105450123 B),该发明的技术方案是:首先建立永磁同步电机混沌系统模型,初始化系统参数,然后设计基于神经网络的快速终端滑膜控制器,该发明利用神经网络与终端滑膜方法实现了永磁同步电机混沌系统的镇定问题,但是该方法计算量大,实时性差,且系统存在抖振问题,不便于电机的实时控制;基于扩张状态观测器的双永磁同步电机混沌同步控制方法(CN 105846741 A),该发明的技术方案是:首先建立永磁同步电机混沌系统模型,初始化系统参数,然后定义同步误差系统,并扩张系统状态,最后设计非线性扩张状态观测器和自适应滑模控制器,该发明利用非线性扩张状态观测器,估计和补偿系统中的不确定项和外部干扰,设计自适应滑模控制器,保证系统的状态快速稳定并收敛,但该方法参数选取复杂,在实际应用中有困难;类似论文有:Jinpeng Yu,BingChen,Haisheng Yu,Junwei Gao,Adaptive fuzzy tracking control for the chaoticpermanent magnet synchronous motor drive system via backstepping,NonlinearAnalysis:Real World Applications,2011,12:671-682.该论文的方法为:首先建立永磁同步电机数学模型,然后设计具有反步技术的自适应模糊控制器,该论文利用神经网络与模糊逻辑算法逼近系统中非线性项,但是该方法计算量大,实时性差,不便于电机的实时控制;Jian Hu,Yang Qiu,Hui Lu,Adaptive robust nonlinear feedback control ofchaos in PMSM system with modeling uncertainty,Applied MathematicalModelling,2016,40:8265-8275,该论文的方法是:首先建立永磁同步电机系统模型,并对混沌特性进行分析,然后,设计自适应鲁棒非线性反馈控制器,该论文用一种鲁棒非线性反馈的方法处理混沌和系统的模型不确定性。但是该方法保守性大,导致控制精度有限,不利于电机的高速高精度控制。
本发明可以有效处理永磁同步电机系统的混沌特性,同时改善或避免了现有技术的缺陷。计算简单,不用考虑抖振问题,参数选取容易,对扰动的鲁棒性更好,且提高了系统的控制精度,实现永磁同步电机的高速高精度控制。
发明内容
为了解决有效处理永磁同步电机系统的混沌特性,同时改善或避免现有技术的缺陷,提高系统的控制精度,实现永磁同步电机的高速高精度控制问题,本发明提供了一种基于等价输入干扰的永磁同步电机混沌抑制方法及系统,一种基于等价输入干扰的永磁同步电机混沌抑制方法,主要包括以下步骤:
S101:设置永磁同步电机的期望转速r(t),并对永磁同步电机系统模型添加控制输入电压,得到永磁同步电机系统混沌模型,如公式(1)所示:
上式中,ud和uq分别为d轴和q轴的输入电压;x1,x2,x3为状态变量, 为d轴电流,为q轴电流,为转子角频率;Lq为q轴电感;R为电阻;ψr为磁链;β为黏性阻尼系数;J为电磁转矩;P为极对数;TL=αcos(2πfτ)Nm,为负载转矩,在负载转矩频率f或幅值α在一定范围内变化时,会产生混沌;所述永磁同步电机系统模型为:
S102:采用基于等价输入干扰方法的控制器,对永磁同步电机系统混沌模型中的干扰项进行估计,得到估计的与系统干扰项等价的扰动信号所述扰动信号分别为与公式(1)中各表达式中的干扰项:对应的扰动信号x2x3对应的扰动信号对应的扰动信号
S103:根据期望转速r(t)和扰动信号计算得到基于等价输入干扰的闭环系统控制输入ud和uq;并将得到的ud和uq作为永磁同步电机的最终输入电压;ud和uq的表达式如公式(2)所示:
上式中,ω为实际转速,可通过测量得到;Iq为永磁同步电机的q轴电流,可通过测量得到;Kp1、Kv2、Kp2和Kv2为PI控制器的控制参数,为预设值;τ=λt,λ为时间常数,为预设值。
进一步地,步骤S101中,建立永磁同步电机系统模型的步骤包括:
S201:利用与转子同步运转的d-q轴下的Park方程表示永磁同步电机电流环与速度环的动态方程,如公式(3)所示:
上式中,id、iq和ω为状态变量;id、iq和ω为线性化之前的d轴电流、q轴电流和转速;ud为d轴输入电压;uq为q轴输入电压;Ld为d轴电感;Lq为q轴电感;R为电阻;ψr为磁链;β为黏性阻尼系数;J为电磁转矩;P为极对数;TL为负载转矩;
S202:利用公式(4)对永磁同步电机Park方程进行线性化,得到永磁同步电机系统方程,如公式(5)所示:
上式中,
S203:根据实际系统对永磁同步电机系统方程参数进行具体化,得到:并基于同步气隙对永磁同步电机系统方程进行分析,即ud=uq=0,得到如公式(6)所示的永磁同步电机系统模型:
进一步地,步骤S102中,利用PI控制器对永磁同步电机的q轴电流和永磁同步电机的转速进行控制;所述PI控制器包括:第一PI控制器和第二PI控制器;所述第一PI控制器用于对q轴电流进行跟踪控制,第二PI控制器用于对转速进行跟踪控制。
进一步地,一种基于等价输入干扰的永磁同步电机混沌抑制系统,其特征在于:包括以下模块:
系统模型建立模块,用于设置永磁同步电机的期望转速r(t),并对永磁同步电机系统模型添加控制输入电压,得到永磁同步电机系统混沌模型,如公式(7)所示:
上式中,ud和uq分别为d轴和q轴的输入电压;x1,x2,x3为状态变量, 为d轴电流,为q轴电流,为转子角频率;Lq为q轴电感;R为电阻;ψr为磁链;β为黏性阻尼系数;J为电磁转矩;P为极对数;TL=αcos(2πfτ)Nm,为负载转矩,在负载转矩频率f或幅值α在一定范围内变化时,会产生混沌;所述永磁同步电机系统模型为:
混沌抑制模块,用于采用基于等价输入干扰方法的控制器,对永磁同步电机系统混沌模型中的干扰项进行估计,得到估计的与系统干扰项等价的扰动信号 所述扰动信号分别为与公式(7)中各表达式中的干扰项:对应的扰动信号x2x3对应的扰动信号对应的扰动信号
电压输出模块,用于根据期望转速r(t)和扰动信号计算得到基于等价输入干扰的闭环系统控制输入ud和uq;并将得到的ud和uq作为永磁同步电机的最终输入电压;ud和uq的表达式如公式(8)所示:
上式中,ω为实际转速,可通过测量得到;Iq为永磁同步电机的q轴电流,可通过测量得到;Kp1、Kv2、Kp2和Kv2为PI控制器的控制参数,为预设值;τ=λt,λ为时间常数,为预设值。
进一步地,系统模型建立模块中,建立永磁同步电机系统模型,包括以下单元:
Park单元,用于利用与转子同步运转的d-q轴下的Park方程表示永磁同步电机电流环与速度环的动态方程,如公式(9)所示:
上式中,id、iq和ω为状态变量;id、iq和ω为线性化之前的d轴电流、q轴电流和转速;uq为q轴输入电压;Ld为d轴电感;Lq为q轴电感;R为电阻;ψr为磁链;β为黏性阻尼系数;J为电磁转矩;P为极对数;TL为负载转矩;
线性化单元,用于利用公式(10)对永磁同步电机Park方程进行线性化,得到永磁同步电机系统方程,如公式(11)所示:
上式中,
具体化单元,用于根据实际系统对永磁同步电机系统方程参数进行具体化,得到:并基于同步气隙对永磁同步电机系统方程进行分析,即ud=uq=0,得到如公式(12)所示的永磁同步电机系统模型:
进一步地,混沌抑制模块中,利用PI控制器对永磁同步电机的q轴电流和永磁同步电机的转速进行控制;所述PI控制器包括:第一PI控制器和第二PI控制器;所述第一PI控制器用于对q轴电流进行跟踪控制,第二PI控制器用于对转速进行跟踪控制。
本发明提供的技术方案带来的有益效果是:本发明提供的技术方案计算量小,实时性强;避免了系统的抖振问题,提高了适用范围;参数设计简单,便于实际应用;系统保守性低,同时有较强的鲁棒性,控制精度更高。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例中一种基于等价输入干扰的永磁同步电机混沌抑制方法的流程图;
图2是本发明实施例中混沌抑制系统的控制框图;
图3是本发明实施例中一种基于等价输入干扰的永磁同步电机混沌抑制系统的模块组成示意图;
图4是本发明实施例中混沌抑制方法的具体控制原理图;
图5是本发明实施例中f=0.2时的系统混沌波形图;
图6是本发明实施例中f=0.2时的系统混沌抑制后的波形图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
本发明的实施例提供了一种基于等价输入干扰的永磁同步电机混沌抑制方法、设备及存储设备。
请参考图1,图1是本发明实施例中一种基于等价输入干扰的永磁同步电机混沌抑制方法的流程图,应用于图2所示的混沌抑制系统中,具体包括如下步骤:
S101:设置永磁同步电机的期望转速r(t),并对永磁同步电机系统模型添加控制输入电压,得到永磁同步电机系统混沌模型,如公式(1)所示:
上式中,ud和uq分别为d轴和q轴的输入电压;x1,x2,x3为状态变量, 为d轴电流,为q轴电流,为转子角频率;Lq为q轴电感,为永磁同步电机参数;R为电阻,为永磁同步电机参数;ψr为磁链,为永磁同步电机参数;β为黏性阻尼系数,为永磁同步电机参数;J为电磁转矩,为永磁同步电机参数;P为极对数,为永磁同步电机参数;TL=αcos(2πfτ)Nm,为负载转矩,在负载转矩频率f或幅值α在一定范围内变化时,会产生混沌;所述永磁同步电机系统模型为:
S102:采用基于等价输入干扰方法的控制器,对永磁同步电机系统混沌模型中的干扰项进行估计,得到估计的与系统干扰项等价的扰动信号(具体可见文献:Jin-Hua She,Mingxing Fang,Yasuhiro Ohyama,Hiroshi Hashimoto,Min Wu;ImprovingDisturbance-Rejection Performance Based on an Equivalent-Input-DisturbanceApproach;IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS;VOL.55,NO.1,JANUARY2008);所述扰动信号分别为与公式(1)中各表达式中的干扰项:对应的扰动信号x2x3对应的扰动信号对应的扰动信号具体如下:
利用等价输入干扰方法将非线性耦合项和外部扰动统一当做干扰进行处理;将公式(1)的三个表达式从上到下分别用(1a)、(1b)和(1c)表示,观察可知非线性耦合项存在于(1a)和(1b),而外部扰动存在于(1c);
请参考图2,图2是本发明实施例中控制器的设计方案示意图,图中的EID控制器为基于等价输入干扰方法的控制器;处理方法具体包括:
永磁同步电机的控制,大都采用id=0的控制方法,对应于(1a)中使x1=0,通过第二EID(基于等价输入干扰方法)控制器对x2x3进行补偿,得到估计的与系统干扰项等价的扰动信号
永磁同步电机q轴电流解耦与扰动抑制,对应于抑制(1b)中通过第一EID控制器完成,得到估计的与系统干扰项等价的扰动信号
永磁同步电机速度环解耦与扰动抑制,对应于抑制(1c)中得到估计的与系统干扰项等价的扰动信号
对永磁同步电机系统混沌模型中的表达式(1a)、(1b)和(1c)分别设计EID控制器,实现系统外扰抑制与解耦;具体如下:
得到含有干扰的永磁同步电机系统模型,如公式(2)所示:
将公式(2)的三个式子从上到下分别用(2a)、(2b)和(2c)表示;由公式(2)可知,若将外扰和内部非线性作为扰动处理,那么(2a)与(2b)、(2c)之间没有耦合关系,整个系统只有(2b)与(2c)之间存在联系,即x2为(2c)的控制输入;
根据等价输入干扰的定义:假设在控制输入端存在一个控制输入信号de(t),其对输出的影响与d(t)完全相同,称de(t)为干扰输入d(t)的等价输入干扰;
因此,基于等价输入干扰的被控对象状态空间方程如公式(3)所示:
对基于等价输入干扰的被控对象状态空间方程设计如公式(4)所示的状态观测器,以便于基于等价输入干扰的被控对象状态空间方程重构为被控对象的状态:
上式中,是x(t)的重构状态,矩阵L是待定增益,当系统时延已知时,可用来观测被控对象状态;
等价输入干扰的估计值如公式(5)所示:
上式中,B+=(BTB)-1BT
由于输出y(t)包含噪声,所以采用低通滤波器来对扰动进行估计,滤波器的状态空间描述如公式(6)所示:
上式中,为经过滤波之后的估计的扰动信号;xF(t)为状态变量,滤波器的传递函数需满足:
S103:根据期望转速r(t)和扰动信号计算得到基于等价输入干扰的闭环系统控制输入uq和uq;并将得到的ud和uq作为永磁同步电机的最终输入电压;ud和uq的表达式如公式(7)所示:
上式中,ω为实际转速,可通过测量得到;Iq为永磁同步电机的q轴电流,可通过测量得到;Kp1、Kv2、Kp2和Kv2为PI控制器的控制参数,为预设值;τ=λt,λ为时间常数,为预设值。
步骤S101中,建立永磁同步电机系统模型的步骤包括:
S201:利用与转子同步运转的d-q轴下的Park方程表示永磁同步电机电流环与速度环的动态方程,如公式(8)所示:
上式中,id、iq和ω为状态变量;id、iq和ω为线性化之前的d轴电流、q轴电流和转速;ud为d轴输入电压;uq为q轴输入电压;Ld为d轴电感;Lq为q轴电感;R为电阻;ψr为磁链;β为黏性阻尼系数;J为电磁转矩;P为极对数;TL为负载转矩;
S202:利用公式(9)对永磁同步电机Park方程进行线性化,得到永磁同步电机系统方程,如公式(10)所示:
上式中,
S203:根据实际系统对永磁同步电机系统方程参数进行具体化,得到:并基于同步气隙对永磁同步电机系统方程进行分析,即ud=uq=0,得到如公式(11)所示的永磁同步电机系统模型:
步骤S102中,利用PI控制器对永磁同步电机的q轴电流和永磁同步电机的转速进行控制;所述PI控制器包括:第一PI控制器和第二PI控制器;所述第一PI控制器用于对q轴电流进行跟踪控制,第二PI控制器用于对转速进行跟踪控制。
请参见图3,图3是本发明实施例中一种基于等价输入干扰的永磁同步电机混沌抑制系统的模块组成示意图,其特征在于:该系统包括顺次连接的系统模型建立模块11、混沌抑制模块12和电压输出模块13;
系统模型建立模块11,用于设置永磁同步电机的期望转速r(t),并对永磁同步电机系统模型添加控制输入电压,得到永磁同步电机系统混沌模型,如公式(12)所示:
上式中,ud和uq分别为d轴和q轴的输入电压;x1,x2,x3为状态变量, 为d轴电流,为q轴电流,为转子角频率;Lq为q轴电感;R为电阻;ψr为磁链;β为黏性阻尼系数;J为电磁转矩;P为极对数;TL=αcos(2πfτ)Nm,为负载转矩,在负载转矩频率f或幅值α在一定范围内变化时,会产生混沌;所述永磁同步电机系统模型为:
混沌抑制模块12,用于采用基于等价输入干扰方法的控制器,对永磁同步电机系统混沌模型中的干扰项进行估计,得到估计的与系统干扰项等价的扰动信号所述扰动信号分别为与公式(12)中各表达式中的干扰项:对应的扰动信号x2x3对应的扰动信号对应的扰动信号
电压输出模块13,用于根据期望转速r(t)和扰动信号计算得到基于等价输入干扰的闭环系统控制输入ud和uq;并将得到的ud和uq作为永磁同步电机的最终输入电压;ud和uq的表达式如公式(13)所示:
上式中,ω为实际转速,可通过测量得到;Iq为永磁同步电机的q轴电流,可通过测量得到;Kp1、Kv2、Kp2和Kv2为PI控制器的控制参数,为预设值;τ=λt,λ为时间常数,为预设值。
在本实施例中,系统模型建立模块11中,建立永磁同步电机系统模型,包括以下单元:
Park单元,用于利用与转子同步运转的d-q轴下的Park方程表示永磁同步电机电流环与速度环的动态方程,如公式(14)所示:
上式中,id、iq和ω为状态变量;id、iq和ω为线性化之前的d轴电流、q轴电流和转速;uq为q轴输入电压;Ld为d轴电感;Lq为q轴电感;R为电阻;ψr为磁链;β为黏性阻尼系数;J为电磁转矩;P为极对数;TL为负载转矩;
线性化单元,用于利用公式(15)对永磁同步电机Park方程进行线性化,得到永磁同步电机系统方程,如公式(16)所示:
上式中,
具体化单元,用于根据实际系统对永磁同步电机系统方程参数进行具体化,得到:并基于同步气隙对永磁同步电机系统方程进行分析,即ud=uq=0,得到如公式(17)所示的永磁同步电机系统模型:
在本实施例中,混沌抑制模块12中,利用PI控制器对永磁同步电机的q轴电流和永磁同步电机的转速进行控制;所述PI控制器包括:第一PI控制器和第二PI控制器;所述第一PI控制器用于对q轴电流进行跟踪控制,第二PI控制器用于对转速进行跟踪控制。
以下将对本发明所提出的技术方案的实施效果进行说明:
采用本发明所提出的技术方案对永磁同步电机系统的混沌进行抑制,具体控制原理图如图4所示,包括:第二PI控制器1、第一PI控制器2、第二EID控制器3、第一EID控制器4和第二EID控制器5;
对应的参数设置如下:
Ad=-1,Bd=3.38,Ld=100,Bd +=0.295,
Aq=-1,Bq=3.38,Ld=100,Bq +=0.295,Fq(s)=1/(0.01s+1);
Aw=-1.35,Bw=1.35,Lw=100,Bw +=0.74,Fw(s)=1/(0.01s+1);
第一PI控制器:Kp=20,Kv=10;
第二PI控制器:Kp=4.5,Kv=3;
r(t)=5;
当f=0.2时,未采用本发明所提出的方法的原永磁同步电机系统的波形图如图5所示,由图5可知,此时系统处于极不规则状态,即属于混沌状态(至于为何为混沌状态,见文献:Dynamic Analysis and Control of a Permanent Magnet Synchronous MotorWith External Perturbation);
图6为采用本发明所提出的方法对系统混沌进行抑制后的波形图,由此可知,本发明所提出的技术方案对永磁同步电机的混沌抑制具有非常明显的效果,所以具有很强的创造性。图5和图6中的横坐标tau为τ。
本发明在永磁同步电机中另外的一种混沌产生途径。该方法不仅可以抑制负载转矩频率引起的混沌,而且可以抑制负载转矩幅值引起的混沌。由于本发明所提出的技术方案中的控制器的设计不需要根据外部扰动的先验信息,只需要通过EID方法就可以估计扰动,直接在输入端进行补偿,对于外部扰动具有很好的鲁棒性。另外,在应用方面,本文也是首次将EID方法与PI方法控制结合用于永磁同步电机的转速控制,首次将EID方法用于解决复杂非线性中的混沌特性,所以具有很强的新颖性。
本发明的有益效果是:本发明提供的技术方案计算量小,实时性强;避免了系统的抖振问题,提高了适用范围;参数设计简单,便于实际应用;系统保守性低,同时有较强的鲁棒性,控制精度更高。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种基于等价输入干扰的永磁同步电机混沌抑制方法,其特征在于:包括以下步骤:
S101:设置永磁同步电机的期望转速r(t),并对永磁同步电机系统模型添加控制输入电压,得到永磁同步电机系统混沌模型,如公式(1)所示:
上式中,ud和uq分别为d轴和q轴的输入电压;x1,x2,x3为状态变量, 为d轴电流,为q轴电流,为转子角频率;Lq为q轴电感;R为电阻;ψr为磁链;β为黏性阻尼系数;J为电磁转矩;P为极对数;TL=αcos(2πfτ)Nm,为负载转矩,在负载转矩频率f或幅值α在一定范围内变化时,会产生混沌;所述永磁同步电机系统模型为:
S102:采用基于等价输入干扰方法的控制器,对永磁同步电机系统混沌模型中的干扰项进行估计,得到估计的与系统干扰项等价的扰动信号所述扰动信号分别为与公式(1)各表达式中的干扰项:对应的扰动信号x2x3对应的扰动信号对应的扰动信号
S103:根据期望转速r(t)和扰动信号计算得到基于等价输入干扰的闭环系统控制输入ud和uq;并将得到的ud和uq作为永磁同步电机的最终输入电压;ud和uq的表达式如公式(2)所示:
上式中,ω为实际转速,可通过测量得到;iq为永磁同步电机的q轴电流,可通过测量得到;Kp1、Kv2、Kp2和Kv2为PI控制器的控制参数,为预设值;τ=λt,λ为时间常数,为预设值。
2.如权利要求1所述的一种基于等价输入干扰的永磁同步电机混沌抑制方法,其特征在于:步骤S101中,建立永磁同步电机系统模型的步骤包括:
S201:利用与转子同步运转的d-q轴下的Park方程表示永磁同步电机电流环与速度环的动态方程,如公式(3)所示:
上式中,id、iq和ω为状态变量;id、iq和ω为线性化之前的d轴电流、q轴电流和转速;ud为d轴输入电压;uq为q轴输入电压;Ld为d轴电感;Lq为q轴电感;R为电阻;ψr为磁链;β为黏性阻尼系数;J为电磁转矩;P为极对数;TL为负载转矩;
S202:利用公式(4)对永磁同步电机Park方程进行线性化,得到永磁同步电机系统方程,如公式(5)所示:
上式中,
S203:根据实际系统对永磁同步电机系统方程参数进行具体化,得到:并基于同步气隙对永磁同步电机系统方程进行分析,即ud=uq=0,得到如公式(6)所示的永磁同步电机系统模型:
3.如权利要求1所述的一种基于等价输入干扰的永磁同步电机混沌抑制方法,其特征在于:步骤S102中,利用PI控制器对永磁同步电机的q轴电流和永磁同步电机的转速进行控制;所述PI控制器包括:第一PI控制器和第二PI控制器;所述第一PI控制器用于对q轴电流进行跟踪控制,第二PI控制器用于对转速进行跟踪控制。
4.一种基于等价输入干扰的永磁同步电机混沌抑制系统,其特征在于:包括以下模块:
系统模型建立模块,用于设置永磁同步电机的期望转速r(t),并对永磁同步电机系统模型添加控制输入电压,得到永磁同步电机系统混沌模型,如公式(7)所示:
上式中,ud和uq分别为d轴和q轴的输入电压;x1,x2,x3为状态变量, 为d轴电流,为q轴电流,为转子角频率;Lq为q轴电感;R为电阻;ψr为磁链;β为黏性阻尼系数;J为电磁转矩;P为极对数;TL=α cos(2πfτ)Nm,为负载转矩,在负载转矩频率f或幅值α在一定范围内变化时,会产生混沌;所述永磁同步电机系统模型为:
混沌抑制模块,用于采用基于等价输入干扰方法的控制器,对永磁同步电机系统混沌模型中的干扰项进行估计,得到估计的与系统干扰项等价的扰动信号 所述扰动信号分别为与公式(7)中各表达式中的干扰项:对应的扰动信号x2x3对应的扰动信号对应的扰动信号
电压输出模块,用于根据期望转速r(t)和扰动信号计算得到基于等价输入干扰的闭环系统控制输入ud和uq;并将得到的ud和uq作为永磁同步电机的最终输入电压;ud和uq的表达式如公式(8)所示:
上式中,ω为实际转速,可通过测量得到;Iq为永磁同步电机的q轴电流,可通过测量得到;Kp1、Kv2、Kp2和Kv2为PI控制器的控制参数,为预设值;τ=λt,λ为时间常数,为预设值。
5.如权利要求4所述的一种基于等价输入干扰的永磁同步电机混沌抑制系统,其特征在于:系统模型建立模块中,建立永磁同步电机系统模型,包括以下单元:
Park单元,用于利用与转子同步运转的d-q轴下的Park方程表示永磁同步电机电流环与速度环的动态方程,如公式(9)所示:
上式中,id、iq和ω为状态变量;id、iq和ω为线性化之前的d轴电流、q轴电流和转速;uq为q轴输入电压;Ld为d轴电感;Lq为q轴电感;R为电阻;ψr为磁链;β为黏性阻尼系数;J为电磁转矩;P为极对数;TL为负载转矩;
线性化单元,用于利用公式(10)对永磁同步电机Park方程进行线性化,得到永磁同步电机系统方程,如公式(11)所示:
上式中,
具体化单元,用于根据实际系统对永磁同步电机系统方程参数进行具体化,得到:并基于同步气隙对永磁同步电机系统方程进行分析,即ud=uq=0,得到如公式(12)所示的永磁同步电机系统模型:
6.如权利要求4所述的一种基于等价输入干扰的永磁同步电机混沌抑制系统,其特征在于:混沌抑制模块中,利用PI控制器对永磁同步电机的q轴电流和永磁同步电机的转速进行控制;所述PI控制器包括:第一PI控制器和第二PI控制器;所述第一PI控制器用于对q轴电流进行跟踪控制,第二PI控制器用于对转速进行跟踪控制。
CN201811434993.8A 2018-11-28 2018-11-28 基于等价输入干扰的永磁同步电机混沌抑制方法及系统 Active CN109450321B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811434993.8A CN109450321B (zh) 2018-11-28 2018-11-28 基于等价输入干扰的永磁同步电机混沌抑制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811434993.8A CN109450321B (zh) 2018-11-28 2018-11-28 基于等价输入干扰的永磁同步电机混沌抑制方法及系统

Publications (2)

Publication Number Publication Date
CN109450321A true CN109450321A (zh) 2019-03-08
CN109450321B CN109450321B (zh) 2020-08-25

Family

ID=65555539

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811434993.8A Active CN109450321B (zh) 2018-11-28 2018-11-28 基于等价输入干扰的永磁同步电机混沌抑制方法及系统

Country Status (1)

Country Link
CN (1) CN109450321B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581677A (zh) * 2019-08-21 2019-12-17 中国地质大学(武汉) 一种滑模和等价输入干扰方法的永磁同步电机抑制方法
CN110031757B (zh) * 2019-03-22 2020-08-07 中国地质大学(武汉) 一种用于快速检测电机闭环系统堵转的方法
CN111913506A (zh) * 2020-07-23 2020-11-10 中国地质大学(武汉) 基于等价输入干扰和输入整形器的末端振动抑制方法
CN112737451A (zh) * 2020-12-29 2021-04-30 华中科技大学 一种面向控制的永磁同步直线电机系统辨识方法
CN113315431A (zh) * 2021-04-22 2021-08-27 湖南工业大学 基于等价输入干扰系统的pmsm失磁故障控制方法、电机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3679246B2 (ja) * 1998-04-24 2005-08-03 潔 大石 交流電動機の速度制御装置
CN104218853A (zh) * 2014-08-15 2014-12-17 浙江工业大学 一种双永磁同步电机混沌系统的滑模同步控制方法
CN105450120A (zh) * 2015-11-25 2016-03-30 浙江工业大学 基于动态面滑模控制的永磁同步电机混沌镇定控制方法
CN105631518A (zh) * 2015-12-23 2016-06-01 西安理工大学 多参数多目标混沌粒子群参数寻优方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3679246B2 (ja) * 1998-04-24 2005-08-03 潔 大石 交流電動機の速度制御装置
CN104218853A (zh) * 2014-08-15 2014-12-17 浙江工业大学 一种双永磁同步电机混沌系统的滑模同步控制方法
CN105450120A (zh) * 2015-11-25 2016-03-30 浙江工业大学 基于动态面滑模控制的永磁同步电机混沌镇定控制方法
CN105631518A (zh) * 2015-12-23 2016-06-01 西安理工大学 多参数多目标混沌粒子群参数寻优方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031757B (zh) * 2019-03-22 2020-08-07 中国地质大学(武汉) 一种用于快速检测电机闭环系统堵转的方法
CN110581677A (zh) * 2019-08-21 2019-12-17 中国地质大学(武汉) 一种滑模和等价输入干扰方法的永磁同步电机抑制方法
CN111913506A (zh) * 2020-07-23 2020-11-10 中国地质大学(武汉) 基于等价输入干扰和输入整形器的末端振动抑制方法
CN112737451A (zh) * 2020-12-29 2021-04-30 华中科技大学 一种面向控制的永磁同步直线电机系统辨识方法
CN113315431A (zh) * 2021-04-22 2021-08-27 湖南工业大学 基于等价输入干扰系统的pmsm失磁故障控制方法、电机
CN113315431B (zh) * 2021-04-22 2023-07-28 湖南工业大学 基于等价输入干扰系统的pmsm失磁故障控制方法、电机

Also Published As

Publication number Publication date
CN109450321B (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
CN109450321A (zh) 基于等价输入干扰的永磁同步电机混沌抑制方法及系统
CN110429881B (zh) 一种永磁同步电机的自抗扰控制方法
Han et al. Finite‐time adaptive fuzzy control for induction motors with input saturation based on command filtering
CN110829903B (zh) 抑制永磁同步电机电流谐波的控制系统及方法
CN108459497B (zh) 一种基于adrc和nlpid的稳瞄伺服系统的控制方法
Wang et al. Linear ADRC direct current control of grid‐connected inverter with LCL filter for both active damping and grid voltage induced current distortion suppression
CN106786647A (zh) 一种三相四线制并联apf双闭环非线性复合控制方法
CN110581677B (zh) 一种滑模和等价输入干扰方法的永磁同步电机抑制方法
CN111600518A (zh) 基于扩张状态观测器的永磁同步电流控制器的设计方法
CN109861374B (zh) 一种无需负载电流传感器的三相全桥不间断电源控制方法
Gao et al. A Sliding Mode Control with Nonlinear Fractional Order PID Sliding Surface for the Speed Operation of Surface‐Mounted PMSM Drives Based on an Extended State Observer
CN110011582A (zh) 一种永磁同步电机矢量控制方法
CN109067217A (zh) 三相电压型pwm整流器的线性自抗扰控制器的设计方法
Yang et al. Speed sensorless control of a bearingless induction motor with combined neural network and fractional sliding mode
CN112671027B (zh) 用于控制并网功率变换器的方法和系统
Derets et al. Structural synthesis of an acceleration observer with sliding mode control for precision electric drives
Xia et al. A non-smooth composite control approach for direct torque control of permanent magnet synchronous machines
Zhang et al. Speed regulation of permanent magnet synchronous motor using event triggered sliding mode control
Cui et al. Harmonic current suppression of magnetically suspended rotor system via odd-harmonic fractional RC
CN113067506B (zh) 内模型等价输入干扰的永磁同步电机周期扰动抑制方法
CN113890441A (zh) 基于改进谐波电压补偿的永磁同步电机电流谐波抑制方法
Xiao et al. Rotation‐frequency oscillations suppression strategy for AC drive system with large inertia rotating load
Che et al. A New SMO for Speed Estimation of Sensorless Induction Motor Drives at Zero and Low Speed
Li et al. Resonance analysis of multiple grid‐connected inverters’ series and parallel network
Wei et al. Adaptive Ultra-Localized Time-Series for Improved Model-Free Predictive Current Control on PMSM Drives

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant