CN113302359B - 工程机械的控制系统、工程机械及工程机械的控制方法 - Google Patents

工程机械的控制系统、工程机械及工程机械的控制方法 Download PDF

Info

Publication number
CN113302359B
CN113302359B CN201980088072.7A CN201980088072A CN113302359B CN 113302359 B CN113302359 B CN 113302359B CN 201980088072 A CN201980088072 A CN 201980088072A CN 113302359 B CN113302359 B CN 113302359B
Authority
CN
China
Prior art keywords
work
bucket
construction machine
unit
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980088072.7A
Other languages
English (en)
Other versions
CN113302359A (zh
Inventor
岩崎吉朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Publication of CN113302359A publication Critical patent/CN113302359A/zh
Application granted granted Critical
Publication of CN113302359B publication Critical patent/CN113302359B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2037Coordinating the movements of the implement and of the frame
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Operation Control Of Excavators (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明的工程机械的控制系统包括:目标值生成部,其生成作业机的控制量的目标值;预测部,其根据目标值和作业机的预测模型,计算作业机的控制量的预测值,并根据预测值,计算用于控制所述作业机的驱动量;以及指令部,其根据驱动量,输出用于控制作业机的控制指令。

Description

工程机械的控制系统、工程机械及工程机械的控制方法
技术领域
本发明涉及工程机械的控制系统、工程机械、以及工程机械的控制方法。
背景技术
工程机械涉及的技术领域中,已知有如专利文献1所公开那样的工程机械的控制系统,其使作业机按照表示施工对象的目标形状的设计面移动。
专利文献1:国际公开第2014/167718号
发明内容
作业机被控制为不挖入设计面。然而,根据施工现场的条件,也有可能作业机挖入设计面。例如,在施工现场设定有多种形状的设计面时,使作业机按照设计面作业可能较为困难。此外,在施工现场需要进行多种内容的作业时,作业机按照设计面作业会存在困难。人们期待无论在何种施工现场条件下都能够使作业机按照设计面作业的技术。
本发明的目的在于,无论在何种施工现场条件下,都使作业机按照设计面作业。
根据本发明,提供一种工程机械的控制系统,该工程机械具备作业机,该系统包括:目标值生成部,其生成所述作业机的控制量的目标值;预测部,其根据所述目标值和所述作业机的预测模型,计算所述作业机的控制量的预测值,并根据所述预测值,计算用于控制所述作业机的驱动量;以及指令部,其根据所述驱动量,输出用于控制所述作业机的控制指令。
根据本发明,无论在何种施工现场条件下,都能够使作业机按照设计面作业。
附图说明
图1是表示本实施方式涉及的工程机械的一个示例的立体图。
图2是表示本实施方式涉及的工程机械的控制系统的框图。
图3是示意性表示本实施方式涉及的工程机械的图。
图4是示意性表示本实施方式涉及的铲斗的图。
图5是表示本实施方式涉及的控制装置的功能框图。
图6是用于说明本实施方式涉及的目标平移速度计算部的铲斗目标平移速度计算方法的图。
图7是表示本实施方式涉及的控制速度表的一个示例的图。
图8是用于说明本实施方式涉及的目标转速计算部的铲斗目标转速计算方法的图。
图9是表示本实施方式涉及的工程机械的动作的一个示例的图。
图10是表示本实施方式涉及的工程机械的控制方法的流程图。
图11是表示以本实施方式涉及的控制方法控制作业机的情况与以对比例涉及的控制方法控制作业机的情况的比较结果的图。
图12是表示本实施方式涉及的计算机系统的一个示例的框图。
具体实施方式
下面,参照附图来说明本发明涉及的实施方式,但本发明并不限于此。以下说明的各实施方式的结构要素可适当组合。此外还可以存在不使用部分结构要素的情况。
在以下说明中,规定三维车身坐标系(X,Y,Z)来说明各部分的位置关系。车身坐标系是指以固定于工程机械的原点为基准的坐标系。车身坐标系由X轴、Y轴和Z轴规定,其中,X轴以设定于工程机械的原点为基准而在规定方向上延伸,Y轴与X轴正交,Z轴分别与X轴及Y轴正交。与X轴平行的方向设为X轴方向。与Y轴平行的方向设为Y轴方向。与Z轴平行的方向设为Z轴方向。以X轴为中心的旋转或倾斜方向设为θX方向。以Y轴为中心的旋转或倾斜方向设为θY方向。以Z轴为中心的旋转或倾斜方向设为θZ方向。
工程机械
图1是表示本实施方式涉及的工程机械100的一个示例的立体图。在本实施方式中说明的是工程机械100为液压挖掘机的示例。在以下说明中,可将工程机械100称为液压挖掘机100。
如图1所示,液压挖掘机100具备:利用液压而工作的作业机1、支承作业机1的回转体2、以及支承回转体2的行走体3。回转体2具有搭乘驾驶员的驾驶室4。驾驶室4配置有供驾驶员就座的座椅4S。回转体2可在支承于行走体3的状态下以回转轴RX为中心回转。
行走体3具有一对履带3C。液压挖掘机100通过履带3C的旋转而行走。另外,行走体3也可以具有轮胎。
作业机1支承于回转体2。作业机1包括可相对移动的多个作业部件。多个作业部件发挥相同或类似的功能。即,多个作业部件分别具有如下的功能:相对于回转体2移动,从而执行液压挖掘机100需要进行的挖掘作业、整地作业和装货作业等作业。
作业部件包括动臂6、斗杆7和铲斗8。动臂6连接于回转体2。斗杆7连接于动臂6的前端部。铲斗8连接于斗杆7的前端部。铲斗8具有刃尖9。在本实施方式中,铲斗8的刃尖9为直线状斗刃的前端部。另外,铲斗8的刃尖9也可以是设于铲斗8的凸状铲齿的前端部。
动臂6能够以动臂轴AX1为中心相对于回转体2旋转。斗杆7能够以斗杆轴AX2为中心相对于动臂6旋转。铲斗8能够分别以铲斗轴AX3、侧倾轴AX4以及旋动轴AX5为中心相对于斗杆7旋转。动臂轴AX1、斗杆轴AX2和铲斗轴AX3与Y轴平行。侧倾轴AX4与铲斗轴AX3正交。旋动轴AX5分别与铲斗轴AX3及侧倾轴AX4正交。回转轴RX与Z轴平行。X轴方向是回转体2的前后方向。Y轴方向是回转体2的车宽方向。Z轴方向是回转体2的上下方向。以坐在座椅4S上的驾驶员为基准而作业机1存在的方向为前方。
图2是表示本实施方式涉及的液压挖掘机100的控制系统200的框图。图3是示意性表示本实施方式涉及的液压挖掘机100的图。图4是示意性表示本实施方式涉及的铲斗8的图。
如图2所示,液压挖掘机100的控制系统200具备:发动机5;使作业机1工作的多个液压缸10;驱动回转体2的回转马达16;排出液压油的液压泵17;将从液压泵17排出的液压油分别分配给多个液压缸10和回转马达16的阀装置18;计算回转体2的位置数据的位置运算装置20;检测作业机1的角度θ的角度检测装置30;操作作业机1和回转体2的操作装置40;以及控制装置50。
作业机1利用由液压缸10产生的动力而工作。液压缸10基于由液压泵17提供的液压油进行驱动。液压缸10是用于使作业机1的作业部件工作的液压致动器。多个液压缸10发挥相同或类似的功能。即,多个液压缸10具有能够使多个作业部件分别工作的功能。
液压缸10包括:使动臂6工作的动臂缸11;使斗杆7工作的斗杆缸12;使铲斗8工作的铲斗缸13;侧倾缸14;以及旋动缸15。动臂缸11产生使动臂6以动臂轴AX1为中心旋转的动力。斗杆缸12产生使斗杆7以斗杆轴AX2为中心旋转的动力。铲斗缸13产生使铲斗8以铲斗轴AX3为中心旋转的动力。侧倾缸14产生使铲斗8以侧倾轴AX4为中心旋转的动力。旋动缸15产生使铲斗8以旋动轴AX5为中心旋转的动力。
以下说明中,可将铲斗8以铲斗轴AX3为中心的旋转称为铲斗旋转,可将铲斗8以侧倾轴AX4为中心的旋转称为侧倾旋转,可将铲斗8以旋动轴AX5为中心的旋转称为旋动旋转。
回转体2利用由回转马达16产生的动力而回转。回转马达16为液压马达,基于由液压泵17提供的液压油进行驱动。回转马达16产生使回转体2以回转轴RX为中心回转的动力。
发动机5搭载于回转体2。发动机5产生用于驱动液压泵17的动力。
液压泵17排出用于驱动液压缸10和回转马达16的液压油。
阀装置18具有多个阀门,用于将从液压泵17提供的液压油分配给多个液压缸10和回转马达16。阀装置18对向多个液压缸10分别提供的液压油的流量进行调整。通过调整向液压缸10提供的液压油的流量,能够调整液压缸10的工作速度。阀装置18对向回转马达16提供的液压油的流量进行调整。通过调整向回转马达16提供的液压油的流量,能够调整回转马达16的旋转速度。
位置运算装置20计算回转体2的位置数据。回转体2的位置数据包括:回转体2的位置、回转体2的姿势和回转体2的方位。位置运算装置20具有:用于计算回转体2的位置的位置运算器21;用于计算回转体2的姿势的姿势运算器22;以及用于计算回转体2的方位的方位运算器23。
作为回转体2的位置,位置运算器21计算全局坐标系中的回转体2的位置。位置运算器21配置于回转体2。全局坐标系是指以固定在地球上的原点为基准的坐标系。全局坐标系是由GNSS(Global Navigation Satellite System)规定的坐标系。GNSS表示全球导航卫星系统。作为全球导航卫星系统的例子,可以举出GPS(Global Positioning System)。GNSS具有多个测位卫星。GNSS检测由纬度、经度和高度的坐标数据规定的位置。回转体2设置有GPS天线。GPS天线从GPS卫星接收电波,并将基于所接收的电波生成的信号输出给位置运算器21。位置运算器21基于由GPS天线提供的信号,计算全局坐标系中的回转体2的位置。位置运算器21计算如图3所示的回转体2的代表点O的位置。在图3所示的示例中,回转体2的代表点O设定在回转轴RX上。另外,代表点O也可以设定在动臂轴AX1上。
作为回转体2的姿势,姿势运算器22计算全局坐标系中相对于水平面的回转体2的倾斜角度。姿势运算器22配置于回转体2。姿势运算器22包括惯性测量装置(IMU:InertialMeasurement Unit)。相对于水平面的回转体2的倾斜角度包括:滚转角α,其表示车宽方向上的回转体2的倾斜角度;以及俯仰角β,其表示前后方向上的回转体2的倾斜角度。
作为回转体2的方位,方位运算器23计算全局坐标系中相对于基准方位的回转体2的方位。基准方位例如为北方。方位运算器23配置于回转体2。方位运算器23包括陀螺仪传感器。另外,方位运算器23也可以基于由GPS天线提供的信号来计算方位。相对于基准方位的回转体2的方位包括横摆角γ,其表示基准方位与回转体2的方位所构成的角度。
角度检测装置30检测作业机1的角度θ。角度检测装置30配置于作业机1。如图3和图4所示,作业机1的角度θ包括:动臂角度θ1,其表示相对于Z轴的动臂6的角度;斗杆角度θ2,其表示相对于动臂6的斗杆7的角度;铲斗角度θ3,其表示相对于斗杆7的铲斗8在铲斗旋转方向上的角度;侧倾角度θ4,其表示相对于XY平面的铲斗8在侧倾旋转方向上的角度;以及旋动角度θ5,其表示相对于YZ平面的铲斗8在旋动旋转方向上的角度。
角度检测装置30具有:检测动臂角度θ1的动臂角度检测器31;检测斗杆角度θ2的斗杆角度检测器32;检测铲斗角度θ3的铲斗角度检测器33;检测侧倾角度θ4的侧倾角度检测器34;以及检测旋动角度θ5的旋动角度检测器35。角度检测装置30可以包括用于检测液压缸10的行程的行程传感器,还可以包括用于检测作业机1的角度θ的角度传感器,例如回转式编码器。角度检测装置30包括行程传感器时,角度检测装置30根据行程传感器的检测数据,计算作业机1的角度θ。
操作装置40为了驱动液压缸10和回转马达16而由驾驶员操作。操作装置40配置于驾驶室4。基于驾驶员对操作装置40的操作,作业机1进行工作。操作装置40包括由液压挖掘机100的驾驶员操作的手柄。操作装置40的手柄包括右操作杆41、左操作杆42和侧倾操作杆43。
将处于中间位置的右操作杆41操作到前方,则动臂6进行落下动作,将其操作到后方,则动臂6进行抬起动作。将处于中间位置的右操作杆41操作到右方,则铲斗8进行翻斗动作,操作到左方,则铲斗8进行挖掘动作。
将处于中间位置的左操作杆42操作到前方,则斗杆7进行伸出动作,操作到后方,则斗杆7进行收回动作。将处于中间位置的左操作杆42操作到右方,则回转体2进行右回转,操作到左方,则回转体2进行左回转。
对侧倾操作杆43进行操作,则铲斗8进行侧倾旋转或旋动旋转。
控制装置
图5是表示本实施方式涉及的控制装置50的功能框图。控制装置50具有:位置数据获取部51、角度数据获取部52、操作数据获取部53、设计面获取部54、目标值生成部55、模型预测控制部56、约束条件计算部57、指令部58、判断部61以及存储部60。
位置数据获取部51从位置运算装置20获取回转体2的位置数据。回转体2的位置数据包括回转体2的位置、回转体2的姿势和回转体2的方位。
角度数据获取部52从角度检测装置30获取表示作业机1的角度θ的角度数据。作业机1的角度数据包括:动臂角度θ1、斗杆角度θ2、铲斗角度θ3、侧倾角度θ4、以及旋动角度θ5。
操作数据获取部53获取对作业机1进行操作的操作装置40的操作数据。操作装置40的操作数据包括针对操作装置40的操作量。操作装置40设置有用于检测手柄的操作量的操作量传感器。操作数据获取部53从操作装置40的操作量传感器获取操作装置40的操作数据。
设计面获取部54获取表示施工对象的目标形状的设计面。设计面表示液压挖掘机100进行施工后的三维目标形状。在本实施方式中,设计面数据提供装置70生成表示设计面的设计面数据。设计面获取部54从设计面数据提供装置70获取设计面数据。设计面数据提供装置70可以设置在远离液压挖掘机100的场所。设计面数据提供装置70所生成的设计面数据可以通过通信系统发送到控制装置50。另外,设计面数据提供装置70所生成的设计面数据也可以存储在存储部60。设计面获取部54可以从存储部60获取设计面数据。
目标值生成部55生成作业机1的控制量的目标值。在本实施方式中,作业机1的控制量包括铲斗8的移动速度和铲斗8的规定部位的位置中的一方或两方。铲斗8的规定部位包括铲斗8的刃尖9。铲斗8的移动速度包括刃尖9的移动速度。铲斗8的规定部位的位置包括刃尖9的位置。目标值生成部55根据操作数据获取部53所获取到的操作数据,生成作业机1的控制量的目标值。
以下说明中,设铲斗8的规定部位为刃尖9。另外,铲斗8的规定部位可以不是刃尖9。铲斗8的规定部位也可以是铲斗8的斗底面(底面)。
铲斗8的移动速度包括铲斗8的平移速度和旋转速度。铲斗8的平移速度是指,X轴方向、Y轴方向和Z轴方向的各移动速度。铲斗8的旋转速度是指θX方向、θY方向和θZ方向的各旋转角速度。在本实施方式中,目标值生成部55包括:目标平移速度计算部551,其计算平移速度的目标值即目标平移速度vtarget:以及目标转速计算部552,其计算旋转速度的目标值即目标转速ωtarget。目标值生成部55根据角度数据获取部52所获取到的角度数据、操作数据获取部53所获取到的操作数据、以及设计面获取部54所获取到的设计面,分别计算目标平移速度vtarget和目标转速ωtarget
图6是用于说明本实施方式涉及的目标平移速度计算部551的铲斗8的目标平移速度vtarget的计算方法的图。目标平移速度计算部551包括:平移速度计算部551A,其根据操作装置40的操作数据和作业机1的角度数据,计算铲斗8的平移速度;限制速度计算部551B,其根据刃尖9与设计面的距离以及设计面数据,计算铲斗8的限制速度;PI控制部551C;以及减速处理部551D。
目标平移速度计算部551计算为了避免挖入设计面所需的铲斗8的目标平移速度vtarget。铲斗8的目标平移速度vtarget可由式(1)至式(6)计算。
n∈R3为与刃尖9最接近的设计面的单位法线向量,wR1∈R3×3为从车身坐标系转换到全局坐标系的旋转矩阵,vsagyo∈R3为在作业机1基于操作装置40的操作而工作时的平移速度中,作业机平面(车身坐标系中的XZ平面)上的动臂6和斗杆7的平移速度分量,VMAX为,为了避免挖入设计面所需的设计面法线方向上的铲斗8的最大速度。Jv∈R3×5和Jω∈R3×5分别表示雅可比矩阵的平移速度分量和旋转速度分量。
目标平移速度计算部551根据位置数据获取部51所获取到的回转体2的位置数据、角度数据获取部52所获取到的作业机1的角度数据、以及存储于存储部60的作业机数据,能够计算刃尖9与设计面的距离。如图3和图4所示,作业机数据包括动臂长度L1、斗杆长度L2、铲斗长度L3、侧倾长度L4和铲斗宽度L5。动臂长度L1为动臂轴AX1与斗杆轴AX2的距离。斗杆长度L2为斗杆轴AX2与铲斗轴AX3的距离。铲斗长度L3为铲斗轴AX3与铲斗8的刃尖9的距离。侧倾长度L4为铲斗轴AX3与侧倾轴AX4的距离。铲斗宽度L5为铲斗8的宽度方向的尺寸。作业机数据包括铲斗外形数据,其表示铲斗8的形状和尺寸。铲斗外形数据包括铲斗8的外表面数据,该外表面数据包括铲斗8外表面的轮廓。铲斗外形数据包括以铲斗8的规定部位为基准的铲斗8的多个外形点RP的坐标数据。
目标平移速度计算部551计算外形点RP的位置数据。目标平移速度计算部551计算车身坐标系中的回转体2的代表点O与多个外形点RP的每一个外形点RP的相对位置。目标平移速度计算部551根据包括动臂长度L1、斗杆长度L2、铲斗长度L3、侧倾长度L4、铲斗宽度L5和铲斗外形数据的作业机数据、以及包括动臂角度θ1、斗杆角度θ2、铲斗角度θ3、侧倾角度θ4和旋动角度θ5的作业机1的角度数据,能够计算车身坐标系中回转体2的代表点O与铲斗8的多个外形点RP的每一个外形点RP的相对位置。通过将外形点RP设定在刃尖9上,目标平移速度计算部551能够计算代表点O与刃尖9的相对位置。设计面是在车身坐标系中规定的。因此,目标平移速度计算部551能够计算车身坐标系中的刃尖9与设计面的距离。此外,目标平移速度计算部551计算全局坐标系中的多个外形点RP各自的位置。目标平移速度计算部551根据回转体2的代表点O的绝对位置、以及回转体2的代表点O与铲斗8的外形点RP的相对位置,能够计算全局坐标系中的铲斗8的外形点RP的位置。
限制速度计算部551B利用控制速度表,确定设计面的法线方向上的动臂6的限制速度,该控制速度表表示铲斗8和设计面的距离、与作业机1的限制速度之间的关系。
图7是表示本实施方式涉及的控制速度表的一个示例的图。如图7所示,控制速度表表示刃尖9和设计面的距离与作业机1的限制速度之间的关系。控制速度表中,刃尖9与设计面的距离为0则设计面法线方向上的作业机1的速度为0。在刃尖9相对于施工面配置在上方时,控制速度表中刃尖9与设计面的距离为正值。在刃尖9相对于施工面配置在下方时,刃尖9与施工面的距离为负值。控制速度表中,刃尖9向上方移动时的速度为正值。在刃尖9与施工面的距离为正值的作业机控制阈值th以下时,根据刃尖9与施工面的距离,规定出作业机1的限制速度。刃尖9与施工面的距离为作业机控制阈值th以上时,作业机1的限制速度的绝对值大于作业机1的目标速度的最大值。即,在刃尖9与施工面的距离为作业机控制阈值th以上时,作业机1的目标速度的绝对值总是小于限制速度的绝对值,因此动臂6总是以目标速度驱动。
图8是用于说明本实施方式涉及的目标转速计算部552的、铲斗8的目标转速ωtarget的计算方法的图。目标转速计算部552包括:当前姿势计算部552A,其根据作业机1的角度数据,计算铲斗8的当前姿势Rcur;目标姿势计算部552B,其根据操作装置40的操作数据和设计面数据,计算铲斗8的目标姿势Rtarget;转速计算部552C,其根据铲斗8的当前姿势Rcur和目标姿势Rtarget,计算旋转速度ω’target;以及P控制部552D,其对旋转速度ω’target进行P(比例)控制,来计算目标转速ωtarget
旋转速度ω’target可由式(7)至式(10)计算。
ω′target=Rcurω…(7)
ΔTtarget为与修正铲斗8的姿势所需的时间对应的参数。P控制部552D通过根据转速计算部552C所计算出的旋转速度ω’target进行P控制,来计算目标转速ωtarget
模型预测控制部56根据目标值生成部55所生成的作业机1的控制量目标值以及作业机1的预测模型,计算作业机1的控制量预测值。模型预测控制部56根据预测值,计算用于控制作业机1的驱动量。模型预测控制部56包括:预测模型存储部561,其存储作业机1的预测模型;以及预测部562,其根据作业机1的控制量目标值和预测模型,计算作业机1的控制量的预测值,并根据作业机1的控制量的预测值,计算用于控制作业机1的驱动量。
预测模型存储部561存储有具备作业机1的液压挖掘机100的预测模型。预测模型包括液压挖掘机100的动力学模型。预测模型包括:以回转轴RX为中心回转的回转体2的模型、以动臂轴AX1为中心旋转的动臂6的模型、以斗杆轴AX2为中心旋转的斗杆7的模型、以及以铲斗轴AX3、侧倾轴AX4和旋动轴AX5为中心旋转的铲斗8的模型。
预测模型是用离散的状态方程和输出方程来表示。式(11)表示以液压挖掘机100的控制的采样时间ΔT离散化的预测模型的状态方程。式(12)和式(13)表示状态方程的各矩阵。式(14)表示预测模型的输出方程。
M∈R5×5和Co∈R5分别为运动方程的惯性矩阵和科里奥利力(coriolis force)·重力向量。Ctay∈R2np为在规定的时刻t,将n·p在角度θ附近泰勒展开时的常数项。np表示要考虑的设计面的数量。预测模型的输出方程的输出为角度θ、角速度、目标平移速度vtarget、目标转速ωtarget、刃尖9与设计面的距离d以及液压油的流量Q。
预测部562根据预测模型进行最优化运算,来计算作业机1的控制量预测值。如上所述,在本实施方式中,作业机1的控制量包括铲斗8的移动速度和铲斗8的规定部位的位置中的一方或两方。铲斗8的规定部位包括刃尖9。此外,作业机1的控制量包括动臂6的角速度、斗杆7的角速度和铲斗8的角速度。铲斗8的角速度包括以铲斗轴AX3为中心的角速度、以侧倾轴AX4为中心的角速度、以及以旋动轴AX5为中心的角速度。
预测部562预测当前时间点之后的第几个阶段时的式(14)的左边的值。
预测部562根据铲斗8的移动速度的预测值、各轴的角速度的预测值、铲斗8的刃尖9的位置的预测值、以及液压油的流量的预测值的其中至少一个,计算用于控制作业机1的驱动量。预测部562以使控制量的预测值追踪目标值的方式计算驱动量。
在本实施方式中,预测部562根据铲斗8的移动速度的预测值、各轴的角速度的预测值、铲斗8的刃尖9的位置的预测值、液压油的流量的预测值、回转体2的回转速度的预测值以及设计面来计算驱动量,以使铲斗8以预设的姿势按照作为目标的设计面作业。即,预测部562计算驱动量以使铲斗8不挖入设计面而使刃尖9的位置与设计面的位置一致。
预测部562以使评价函数最小且满足各约束条件的方式,计算用于控制作业机1和回转体2的驱动量。
在模型预测控制中,通常使用如式(15)所示的评价函数。
E(t)=Ey(t)+Eu(t)+EΔu(t)+Ec(t)…(15)
Ey(t)为输出的目标值与预测值的差,Eu(t)为输入的目标值与预测值的差,EΔu(t)为输入的变化量的大小,Ec(t)为在未满足后述的约束条件时加入的罚函数。在本实施方式中,设Eu(t)=0,EΔu(t)=0,并将输出的相对于目标值的追踪误差用作评价函数。式(16)和式(17)表示评价函数。
Δri(t+i|t)=ri(t+i|t)-y(t+i|t)…(17)
r(t+i|t)为在时刻t下的时刻t+i的目标值、y(t+i|t)为在时刻t预测的时刻t+i时的装置输出、Hp为预测时域,其确定要预测到今后第几个阶段为止,W为对变量加重的对角矩阵。
约束条件计算部57计算约束条件。约束条件包括:涉及液压挖掘机100的性能的第一约束条件、以及涉及铲斗8的位置的第二约束条件。预测部562以满足约束条件计算部57所计算出的约束条件的方式,计算驱动量。
在作为控制对象的液压挖掘机100中,作业机1的角度θ、角速度、角加速度以及液压油流量都有限制。即,作业机1的作业部件存在功能发挥范围,其表示作业部件能够发挥功能的范围。作业部件的功能发挥范围包括作业部件的可动范围。例如,作业机1能够移动的角度θ存在极限值。同样,作业机1的角速度和角加速度存在极限值。
此外,从液压泵17排出的液压油的流量有限制。即,根据液压泵17的性能等,液压泵17可提供给液压缸10的液压油的流量存在极限值。还有,液压缸10中也存在表示液压缸10能够发挥功能的范围的功能发挥范围。液压缸10的功能发挥范围包括对于液压缸10规定的液压油供给范围。对于液压缸10,规定有表示从液压泵17经由阀装置18提供给液压缸10的液压油的流量的液压油供给流量Qwm的极限值,即最小值Qwm_min和最大值Qwm_max。对液压缸10的液压油供给流量Qwm包括:对动臂缸11的液压油供给流量Qbm、对斗杆缸12的液压油供给流量Qar、以及对铲斗缸13的液压油供给流量Qbk。侧倾缸和旋动缸也同样如此。对于动臂缸11规定有液压油供给流量Qbm的极限值、即最小值Qbm_min和最大值Qbm_max。对于斗杆缸12规定有液压油供给流量Qar的极限值、即最小值Qar_min和最大值Qar_max。对于铲斗缸13规定有液压油供给流量Qbk的极限值、即最小值Qbk_min和最大值Qbk_max。对于侧倾缸14和旋动缸15也同样如此。对于液压缸10规定的液压油供给范围为最小值Qwm_min与最大值Qwm_max之间的范围。
这样,液压挖掘机100存在硬件方面的限制。因此,在模型预测控制中,也需要考虑表示液压挖掘机100的硬件方面的限制的第一约束条件。约束条件计算部57计算包括作业机1的角度θ、角速度、角加速度以及液压油流量的第一约束条件。预测部562以满足第一约束条件的方式计算驱动量。
式(18)至式(21)表示分别对于角度θ、角速度和液压油流量的约束条件。
θnin≤θ(t≤θmax
式(22)表示对于角加速度的约束条件。
在本实施方式中,约束条件计算部57将角加速度的约束条件转换为转矩的约束条件。式(23)表示转换后的角加速度的约束条件。
在作业机1的控制中,必须避免铲斗8挖入设计面。即,对于铲斗8的位置,存在应避免挖入设计面这一限制。因此,在模型预测控制中,也需要考虑表示铲斗8的位置上的限制的第二约束条件。约束条件计算部57计算第二约束条件,其包括相对于设计面的铲斗8的位置。预测部562以满足第二约束条件的方式计算驱动量。
输出d(t)表示刃尖9与设计面的距离。第i设计面的方程能够用单位法线向量ni表示为ni·p+di=0。式(24)和式(25)表示:应避免刃尖9的右端和左端挖入设计面这一约束条件。
ni·pL(t)≥-di …(24)
ni·pR(t)≥-di …(25)
刃尖9的坐标相对于状态变量中的角度θ非线性。因此如式(26)和式(27)所示,进行线性近似。
预测部562以满足式(18)至式(27)所示的约束条件的方式,利用式(16)和式(17)所示的评价函数,进行模型预测控制中的最优化运算。式(28)表示本实施方式中的最优化问题。最优化运算例如使用QP(Quadratic Programming,二次规划法),也可以使用其他算法。
τ(t)为控制装置的控制输入转矩,即最优化运算的解。Hu为控制时域,用以确定在最优化问题中处理今后的第几个阶段为止的输入。
指令部58根据预测部562所计算出的驱动量,输出用于控制作业机1的控制指令。
在本实施方式中,预测部562根据作业机1的目标值和预测模型,计算作业部件或液压缸10的功能发挥范围中工作量的预测值。
即,预测部562计算作业部件的可动范围中作业部件的角度θ的预测值。预测部562计算动臂6的可动范围中动臂角度θ1的预测值。预测部562计算斗杆7的可动范围中斗杆角度θ2的预测值。预测部562计算铲斗8的可动范围中铲斗角度θ3的预测值。对于侧倾角度θ4和旋动角度θ5也同样如此。
此外,预测部562预测液压缸10的液压油供给范围中的液压油供给流量Qwm。如上所述,对于液压缸10规定的液压油供给范围为最小值Qwm_min与最大值Qwm_max之间的范围。预测部562预测动臂缸11的液压油供给范围中的液压油供给流量Qbm。预测部562预测斗杆缸12的液压油供给范围中的液压油供给流量Qar。预测部562预测铲斗缸13的液压油供给范围中的液压油供给流量Qbk。对于侧倾缸14和旋动缸15也同样如此。
判断部61对多个作业部件中的第一作业部件是否将要到达功能发挥范围的极限值进行判断。如上所述,作业部件的功能发挥范围包括作业部件的可动范围。作业部件的功能发挥范围的极限值包括作业部件的可动范围的端部(行程末端)。即,判断部61对第一作业部件是否接近了可动范围的端部进行判断。判断部61能够根据角度检测装置30的检测数据来判断作业部件是否接近了可动范围。作业部件接近了可动范围的端部即行程末端,是指:作业部件的实际角度(角度检测装置30所检测到的角度)与表示作业部件的行程末端的行程末端角度之件的差值成为预定的阈值以下的状态。
此外,判断部61对多个液压缸10中的第一液压缸10是否将要到达功能发挥范围的极限值进行判断。如上所述,液压缸10的功能发挥范围包括对于液压缸10规定的液压油供给范围。液压缸10的功能发挥范围的极限值包括液压油供给范围的最小值Qwm_min和最大值Qwm_max。即,判断部61判断对第一液压缸10的液压油供给流量Qwm是否将要到达液压油供给范围的最小值Qwm_min或最大值Qwm_max。对液压缸10的液压油供给流量将要到达液压油供给范围的极限值,是指:对液压缸10的液压油供给流量的实测值(通过未图示的流量传感器检测出的液压油供给流量)与极限值之间的差值成为预定的阈值以下的状态。
在判断为第一作业部件将要到达功能发挥范围的极限值时,预测部562计算用于控制第二作业部件工作量的驱动量,以避免第一作业部件逼近功能发挥范围的极限值。
避免第一作业部件逼近功能发挥范围的极限值,是指:在判断部61判断为作业部件的实际角度与表示作业部件的行程末端的行程末端角度之间的差值Δθ成为阈值以下时,避免在判断部61做出判断时的差值Δθ变得更小。
在判断为第一作业部件接近了可动范围的端部时,预测部562计算用于控制第二作业部件的角度的驱动量,以避免第一作业部件逼近可动范围的端部。作为一个示例,在判断为第一作业部件将要到达功能发挥范围的极限值时,预测部562计算用于控制第二作业部件的工作量的驱动量,以使第一作业部件变为功能发挥范围的中值。即,在判断为作业部件接近了可动范围的端部时,预测部562计算用于控制第二作业部件的角度的驱动量,以避免第一作业部件逼近可动范围的端部。
在判断为第一液压缸10将要到达功能发挥范围的极限值时,预测部562计算用于控制第二液压缸10的工作量的驱动量,以避免第一液压缸10逼近功能发挥范围的极限值。
避免第一液压缸10逼近功能发挥范围的极限值,是指:在判断部61判断为,对液压缸10的液压油供给流量的实测值与极限值的差值ΔQ成为阈值以下时,避免在判断部61做出判断时的差值ΔQ变得更小。
在判断为第一液压缸10将要到达功能发挥范围的极限值时,预测部562计算用于控制第二液压缸10的工作量的驱动量,以避免第一液压缸10逼近功能发挥范围的极限值。作为一个示例,在判断为第一液压缸10将要到达功能发挥范围的极限值时,预测部562计算用于控制第二液压缸10的工作量的驱动量,以使第一液压缸10变为功能发挥范围的中值。即,在判断为对第一液压缸10的液压油供给流量Qwm1将要到达液压油供给范围的最小值Qwm_min或最大值Qwm_max时,预测部562计算用于控制对第二液压缸10的液压油供给流量Qwm_wm2的驱动量,以使对第一液压缸10的液压油供给流量Qwm1变为液压油供给范围的中值Qwm_mid
图9是表示本实施方式涉及的液压挖掘机100的动作的一个示例的图。参照图9说明,在判断为第一作业部件接近了可动范围的端部时,以避免第一作业部件逼近可动范围的端部的方式控制第二作业部件的角度的示例。以下说明中,设第一作业部件为铲斗8,第二作业部件为动臂6和斗杆7中的一方或两方。
液压挖掘机100具备支承作业机1的回转体2。驾驶员对操作装置40进行操作,以使铲斗8从设计面IS上的第一位置P1移动至第二位置P2,第二位置P2比第一位置P1靠近回转体2。模型预测控制部56根据作业机1的刃尖9的位置的目标值和预测模型,计算刃尖9的位置的预测值,并根据预测值计算用于控制作业机1的驱动量,以使刃尖9按照设计面IS作业。指令部58根据模型预测控制部56所计算出的驱动量,控制作业机1。以使铲斗8从设计面IS的第一位置P1移动至第二位置P2的方式对操作装置40进行操作,则如图9所示,铲斗8逐渐接近铲斗8的可动范围的端部(行程末端)。
在操作作业机1的操作装置40使铲斗8从第一位置P1向第二位置P2移动的状态下,如果判断部61判断为铲斗8接近了可动范围的端部,则预测部562计算用于控制动臂6和斗杆7中的一方或两方的角度的驱动量,以避免铲斗8逼近可动范围的端部。指令部58根据模型预测控制部56所计算出的驱动量,控制动臂6和斗杆7中的一方或两方的角度。在本实施方式中,在铲斗8接近了可动范围的端部时,指令部58使动臂6进行抬起动作,以避免铲斗8逼近可动范围的端部。另外,在铲斗8接近了可动范围的端部时,指令部58也可以使斗杆7进行伸出动作,以避免铲斗8逼近可动范围的端部。由此,要使铲斗8从第一位置P1移动至第二位置P2时,能够防止铲斗8中途到达行程末端。因此铲斗8能够从第一位置P1移动到第二位置P2。由此,铲斗8移动一次就能够完成第一位置P1与第二位置P2之间的施工对象的整地。
以上,参照图9说明了在判断为第一作业部件接近了可动范围的端部时,以避免第一作业部件逼近可动范围的端部的方式,控制第二作业部件的角度的示例。下面说明,在判断为对第一液压缸10的液压油供给流量Qwm1将要到达液压油供给范围的极限值(最小值Qwm_min或最大值Qwm_max)时,以使对第一液压缸的液压油供给流量Qwm1变为液压油供给范围的中值Qwm_mid方式,控制对第二液压缸10的液压油供给流量Qwm2的示例。在以下说明中,为了便于说明,对液压泵17排出的液压油的流量为Q,液压泵17排出的液压油被分配到动臂缸11、斗杆缸12和铲斗缸13的示例进行说明。因此,流量Q为对动臂缸11的液压油供给流量Qbm、对斗杆缸12的液压油供给流量Qar与对铲斗缸13液压油供给流量Qbk的总和(Q=Qbm+Qar+Qbk)。
例如,在判断为对铲斗缸13的液压油供给流量Qbk将要到达最大值Qbk_max时,预测部562计算用于控制对动臂缸11的液压油供给流量Qbm和对斗杆缸12的液压油供给流量Qar的其中一方或双方的驱动量,以使对铲斗缸13的液压油供给流量Qbk变为液压油供给范围的中值(以使液压油供给流量Qbk减少)。指令部58根据预测部562所计算出的驱动量,向阀装置18输出控制指令,以使对动臂缸11的液压油供给流量Qbm和对斗杆缸12的液压油供给流量Qar的其中一方或两方增多。
由此,能够从只有铲斗8以较高的工作速度工作的状态,转移到铲斗8的工作速度降低而动臂6和斗杆7中的一方或两方以较高的工作速度工作的状态。
控制方法
图10是表示本实施方式涉及的液压挖掘机100的控制方法的流程图。在本实施方式中,对参照图9已作出说明的在执行使铲斗8从第一位置P1移动至第二位置P2的作业时的控制方法进行说明。
设计面获取部54获取设计面数据(步骤S1)。
位置数据获取部51从位置运算装置20获取回转体2的位置数据作为当前值。此外,角度数据获取部52从角度检测装置30获取作业机1的角度数据和角速度数据作为当前值(步骤S2)。
驾驶员对操作装置40进行操作。操作数据获取部53从操作装置40获取操作数据。目标值生成部55至少根据操作装置40的操作数据,生成作业机1的控制量的目标值(步骤S3)。
作业机1的控制量的目标值包括铲斗8的移动速度的目标值。铲斗8的移动速度的目标值包括参照图6已作出说明的铲斗8的目标平移速度vtarget,以及参照图8已作出说明的铲斗8的目标转速ωtarget。目标值生成部55根据操作装置40的操作数据、操作装置40被操作时产生变化的、表示作业机1的角度θ的角度数据及表示每单位时间的角度θ的变化量的角速度数据、以及设计面数据,计算包括铲斗8的目标平移速度vtarget和目标转速ωtarget的目标值。
约束条件计算部57根据操作装置40的操作数据、操作装置40被操作时产生变化的、表示作业机1的角度θ的角度数据及表示每单位时间的角度θ的变化量的角速度数据、以及设计面数据,计算约束条件,该约束条件包括:涉及液压挖掘机100的性能的第一约束条件、以及涉及铲斗8的位置的第二约束条件(步骤S4)。
预测部562根据作业机1的控制量的目标值以及存储于预测模型存储部561的预测模型,以满足步骤S4中计算出的约束条件的方式,计算用于控制作业机1的驱动量(步骤S5)。
预测部562计算当前时间点之后例如第10阶段为止的作业机1的驱动量。
预测部562根据在步骤S5中计算出的驱动量以及在步骤S3中获取到的当前值,计算作业机1的控制量的预测值(步骤S6)。
预测部562计算当前时间点之后例如第10阶段为止的作业机1的移动速度的预测值、以及刃尖9的位置的预测值。
预测部562判断:为了使铲斗8的刃尖9按照设计面IS作业而根据用于操作作业机1的操作装置40的操作数据计算出的铲斗速度的预测值,是否超过了最高速度(步骤S7)。
在步骤S7中判断为铲斗速度的预测值未超过最高速度时(步骤S7:否),预测部562以使控制量的预测值追踪目标值的方式,再计算驱动量(步骤S5)。
预测部562以使由控制量的目标值以及预测值规定的评价函数最小的方式,再计算驱动量。预测部562以满足第一约束条件和第二约束条件的方式,再计算驱动量。
在步骤S7中判断为铲斗速度的预测值超过了最高速度时(步骤S7:是),判断部61根据角度数据获取部52所获取到的铲斗8的角度数据,判断铲斗8是否接近了可动范围的端部即行程末端(步骤S8)。
在步骤S8中判断为铲斗8未接近行程末端时(步骤S8:否),根据操作装置40的操作驱动动臂6和斗杆7。
在步骤S8中判断为铲斗8未接近行程末端时(步骤S8:否),预测部562再计算使动臂6进行抬起动作的驱动量,以避免铲斗8逼近可动范围的端部(步骤S5)。
在步骤S8中判断为铲斗8接近了行程末端时(步骤S8:是),预测部562判断评价函数是否为最小(步骤S9)。
铲斗8的速度可以是作业机1或回转体2的各轴的角速度或者角加速度。最高速度可以是上限值。也就是说,在步骤S7中,预测部562可以对各轴的角加速度的预测值是否超过了上限角加速度进行判断。
在步骤S9中判断为评价函数不是最小时(步骤S9:否),预测部562以使控制量的预测值追踪目标值的方式,再计算驱动量(步骤S5)。
预测部562反复进行步骤S5、步骤S6、步骤S7、步骤S8和步骤S9的处理,直到评价函数成为最小为止。
在步骤S9中判断为评价函数是最小时(步骤S9:是),指令部58根据在步骤S5中计算出的用于控制作业机1的驱动量,输出用于控制作业机1的控制指令(步骤S10)。
如上所述,计算当前时间点之后例如第10阶段为止的驱动量。指令部58将计算出的第10阶段为止的驱动量中,将紧接在后的第1阶段的驱动量作为控制指令而输出。
由此,如参照图9作出了说明,能够防止从第一位置P1向第二位置P2移动的铲斗8在途中到达行程末端的情况。所以铲斗8能够从第一位置P1移动到第二位置P2。由此,铲斗8移动一次,就能够完成第一位置P1与第二位置P2之间的施工对象的整地。
效果
如以上的说明,根据本实施方式,由于对作业机1进行模型预测控制,所以即使施工现场的条件产生多样变化,控制装置50也无论在何种施工现场条件下,都能够控制作业机1以使铲斗8按照设计面作业。
例如,如上所述,在对施工对象进行整地的情况下使铲斗8从第一位置P1移动至第二位置P2时,会出现在铲斗8到达第二位置P2之前,先到达行程末端的情形。其结果,有可能铲斗8无法仅通过一次动作就完成整地。再说,如果使铲斗8强行移动到第二位置P2,则存在铲斗8挖入设计面的风险。
在本实施方式中,即使在施工现场设定有多种形状的设计面时,或需要在施工现场进行多种内容的作业时,由于对作业机1进行模型预测控制,所以能够使作业机1按照设计面作业。因此,能够在抑制作业效率下降的同时,将施工对象施工成所期望的形状。
图11是表示通过本实施方式涉及的控制方法控制作业机1的情况与通过对比例涉及的控制方法控制作业机1的情况的比较结果的图。在图11所示的曲线图中,横轴表示时间,纵轴表示刃尖与设计面的距离。图11表示的是,如参照图9作出了说明的、使铲斗8从第一位置P1移动至第二位置P2的情况下的刃尖与设计面的距离。
在图11中,线La表示通过本实施方式涉及的控制方法控制作业机1时的控制结果,线Lb表示通过对比例涉及的控制方法控制作业机1时的控制结果。对比例涉及的控制方法为,不执行模型预测控制而仅根据作业机1的角度数据执行反馈控制这样的控制方法。
如图11所示,在本实施方式涉及的控制方法下,铲斗8不挖入设计面,能够从第一位置P1按照设计面移动到第二位置P2。
另一方面,在对比例涉及的控制方法下,铲斗8在接近第二位置P2时到达行程末端,无法再按照设计面IS作业,其结果,铲斗8挖入设计面IS,不能将施工对象施工成所期望的形状。
综上所述,根据本实施方式,由于对作业机1进行模型预测控制,因此控制装置50以使铲斗8按照设计面移动的方式,能够精确地控制作业机1。
计算机系统
图12是表示本实施方式涉及的计算机系统1000的一个示例的框图。上述的控制装置50包括计算机系统1000。计算机系统1000包括:处理器1001,例如CPU(CentralProcessing Unit,中央处理单元);主内存1002,其包括ROM(Read Only Memory,只读存储器)这类非易失性内存及RAM(Random Access Memory,随机存取存储器)这类易失性内存;存储装置1003;以及包括输入输出电路的接口1004。上述控制装置50的功能以程序的形式存储于存储装置1003。处理器1001从存储装置1003读取程序并在主内存1002中加载,按照程序实施上述处理。另外,也可以将程序通过网络传输至计算机系统1000。
计算机系统1000按照上述实施方式能够执行:根据作业机1的控制量的目标值和作业机1的预测模型,计算作业机1的控制量的预测值;根据预测值,计算用于控制作业机1的驱动量;以及根据驱动量,输出用于控制作业机1的控制指令。
其它实施方式
在上述实施方式中,目标值生成部55生成铲斗8的速度(平移速度和旋转角速度)的目标值,作为模型预测控制部56的目标值。目标值生成部55也可以生成铲斗8的位置和姿势的目标值,作为模型预测控制部56的目标值。
另外,在上述实施方式中,控制装置50的部分或全部功能也可以设于液压挖掘机100的外部计算机系统。例如,也可以是,目标值生成部55和模型预测控制部56均设于外部计算机系统,并在外部计算机系统中计算出的驱动量经由无线通信系统被发送到液压挖掘机100。
另外,在上述实施方式中,工程机械100为液压挖掘机。在上述实施方式中说明的结构要素也可以应用于除液压挖掘机以外的、具有作业机的工程机械。
另外,在上述实施方式中,使回转体2回转的回转马达16可以不是液压马达。回转马达16也可以是被提供电力而驱动的电动马达。此外,作业机1也可以不是通过液压缸10工作,而是通过例如电动机等电动致动器所发生的动力工作。
符号说明
1…作业机、2…回转体、3…行走体、3C…履带、4…驾驶室、4S…座椅、5…发动机、6…动臂、7…斗杆、8…铲斗、9…刃尖、10…液压缸、11…动臂缸、12…斗杆缸、13…铲斗缸、14…侧倾缸、15…旋动缸、16…回转马达、17…液压泵、18…阀装置、20…位置运算装置、21…位置运算器、22…姿势运算器、23…方位运算器、30…角度检测装置、31…动臂角度检测器、32…斗杆角度检测器、33…铲斗角度检测器、34…侧倾角度检测器、35…旋动角度检测器、40…操作装置、41…右操作杆、42…左操作杆、43…侧倾操作杆、50…控制装置、51…位置数据获取部、52…角度数据获取部、53…操作数据获取部、54…设计面获取部、55…目标值生成部、56…模型预测控制部、57…约束条件计算部、58…指令部、60…存储部、61…判断部、70…设计面数据提供装置、100…工程机械、200…控制系统、551…目标平移速度计算部、551A…平移速度计算部、551B…限制速度计算部、551C…PI控制部、551D…减速处理部、552…目标转速计算部、552A…当前姿势计算部、552B…目标姿势计算部、552C…转速计算部、552D…P控制部、561…预测模型存储部、562…预测部、AX1…动臂轴、AX2…斗杆轴、AX3…铲斗轴、AX4…侧倾轴、AX5…旋动轴。

Claims (15)

1.一种工程机械的控制系统,该工程机械具备作业机,该系统的特征在于,包括:
目标值生成部,其生成所述作业机的控制量的目标值;
预测部,其根据所述目标值和所述作业机的预测模型,计算所述作业机的控制量的预测值,并根据所述预测值,计算用于控制所述作业机的驱动量;以及
指令部,其根据所述驱动量,输出用于控制所述作业机的控制指令,
所述工程机械具有发挥相同或类似功能的、能够相对移动的多个作业部件,
所述预测部根据所述目标值和所述预测模型,计算所述作业部件的功能发挥范围中所述作业部件的工作量的预测值,
所述工程机械的控制系统包括判断部,其判断第一所述作业部件是否将要到达功能发挥范围的极限值,
在判断为第一所述作业部件将要到达功能发挥范围的极限值时,所述预测部计算用于控制第二所述作业部件的工作量的驱动量,以避免第一所述作业部件逼近功能发挥范围的所述极限值,
第一所述作业部件包括铲斗,
第二所述作业部件包括动臂和斗杆中的一方或两方。
2.根据权利要求1所述的工程机械的控制系统,其特征在于,
所述功能发挥范围包括所述作业部件的可动范围。
3.根据权利要求1所述的工程机械的控制系统,其特征在于,
所述工程机械具备多个液压致动器,
所述多个液压致动器具有能够使多个所述作业部件分别工作的功能,
所述功能发挥范围包括对于所述液压致动器规定的液压油供给范围。
4.根据权利要求2所述的工程机械的控制系统,其特征在于,
所述工程机械具备多个液压致动器,
所述多个液压致动器具有能够使多个所述作业部件分别工作的功能,
所述功能发挥范围包括对于所述液压致动器规定的液压油供给范围。
5.根据权利要求1所述的工程机械的控制系统,其特征在于,
所述预测部根据所述目标值和所述预测模型,计算所述作业部件的可动范围中所述作业部件的角度的预测值,
所述工程机械的控制系统还包括判断部,其判断第一所述作业部件是否接近了可动范围的端部,
在判断为第一所述作业部件接近了可动范围的端部时,所述预测部计算用于控制第二所述作业部件的角度的驱动量,以避免第一所述作业部件逼近可动范围的端部。
6.根据权利要求5所述的工程机械的控制系统,其特征在于,
所述工程机械具备支承所述作业机的回转体,
在通过对所述作业机进行操作的操作装置使所述铲斗从第一位置移动至比所述第一位置更靠近所述回转体的第二位置的状态下,在判断为所述铲斗接近了可动范围的端部时,所述预测部计算用于控制所述动臂和所述斗杆中的一方或两方的角度的驱动量,以避免所述铲斗逼近可动范围的端部。
7.根据权利要求5或6所述的工程机械的控制系统,其特征在于,
所述工程机械具备用于使多个所述作业部件分别工作的多个液压致动器,
所述预测部根据所述目标值和所述预测模型,计算对于所述液压致动器规定的液压油供给范围中对所述液压致动器的液压油供给流量的预测值,
所述工程机械的控制系统还包括判断部,其判断对第一所述液压致动器的液压油供给流量是否将要到达所述液压油供给范围的极限值,
在判断为对第一所述液压致动器的液压油供给流量将要到达所述液压油供给范围的极限值时,所述预测部计算用于控制对第二所述液压致动器的液压油供给流量的驱动量,以避免对第一所述液压致动器的液压油供给流量逼近所述液压油供给范围的极限值。
8.根据权利要求1至6中任一项所述的工程机械的控制系统,其特征在于,包括:
操作数据获取部,其获取用于操作所述作业机的操作装置的操作数据,
所述目标值生成部根据所述操作数据,生成所述目标值。
9.根据权利要求1至6中任一项所述的工程机械的控制系统,其特征在于,包括:
设计面获取部,其获取设计面,该设计面表示施工对象的目标形状,
所述控制量包括所述作业机的规定部位的位置,
所述预测部根据所述预测值和所述设计面计算所述驱动量,以维持所述作业机的规定部位与所述设计面的距离。
10.根据权利要求1至6中任一项所述的工程机械的控制系统,其特征在于,
所述控制量包括所述作业机的移动速度。
11.根据权利要求1至6中任一项所述的工程机械的控制系统,其特征在于,
所述预测部以使所述控制量的预测值追踪目标值的方式,计算所述驱动量。
12.根据权利要求1至6中任一项所述的工程机械的控制系统,其特征在于,
所述预测部以使由所述控制量的目标值及预测值规定的评价函数最小的方式,计算所述驱动量。
13.根据权利要求12所述的工程机械的控制系统,其特征在于,包括:
约束条件计算部,其计算涉及所述工程机械的性能的第一约束条件、以及涉及所述作业机的位置的第二约束条件,
所述预测部以满足所述第一约束条件和所述第二约束条件的方式,计算所述驱动量。
14.一种工程机械,其特征在于,包括:
支承所述作业机的回转体;以及
权利要求1至13中任一项所述的工程机械的控制系统。
15.一种工程机械的控制方法,该工程机械具备作业机,该控制方法的特征在于,包括:
根据所述作业机的控制量的目标值和所述作业机的预测模型,计算所述作业机的控制量的预测值;
根据所述预测值,计算用于控制所述作业机的驱动量;以及
根据所述驱动量,输出用于控制所述作业机的控制指令,所述工程机械具有发挥相同或类似功能的、能够相对移动的多个作业部件,
根据所述目标值和所述预测模型,计算所述作业部件的功能发挥范围中所述作业部件的工作量的预测值,
判断第一所述作业部件是否将要到达功能发挥范围的极限值,
在判断为第一所述作业部件将要到达功能发挥范围的极限值时,计算用于控制第二所述作业部件的工作量的驱动量,以避免第一所述作业部件逼近功能发挥范围的所述极限值,
第一所述作业部件包括铲斗,
第二所述作业部件包括动臂和斗杆中的一方或两方。
CN201980088072.7A 2019-02-01 2019-12-19 工程机械的控制系统、工程机械及工程机械的控制方法 Active CN113302359B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019017390A JP7283910B2 (ja) 2019-02-01 2019-02-01 建設機械の制御システム、建設機械、及び建設機械の制御方法
JP2019-017390 2019-02-01
PCT/JP2019/049873 WO2020158234A1 (ja) 2019-02-01 2019-12-19 建設機械の制御システム、建設機械、及び建設機械の制御方法

Publications (2)

Publication Number Publication Date
CN113302359A CN113302359A (zh) 2021-08-24
CN113302359B true CN113302359B (zh) 2023-07-28

Family

ID=71839965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980088072.7A Active CN113302359B (zh) 2019-02-01 2019-12-19 工程机械的控制系统、工程机械及工程机械的控制方法

Country Status (6)

Country Link
US (1) US12000108B2 (zh)
JP (1) JP7283910B2 (zh)
KR (1) KR102582987B1 (zh)
CN (1) CN113302359B (zh)
DE (1) DE112019006225T5 (zh)
WO (1) WO2020158234A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023051363A (ja) * 2021-09-30 2023-04-11 株式会社小松製作所 作業機械を制御するためのシステムおよび方法
JP2023050846A (ja) * 2021-09-30 2023-04-11 株式会社小松製作所 作業機械を制御するためのシステム、方法およびプログラム
CN114688004B (zh) * 2022-03-16 2023-10-27 三一重机有限公司 流量分配方法、装置及作业机械

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143778A (en) * 1977-06-03 1979-03-13 Harnischfeger Corporation Shovel attachment means for hydraulic excavator
JP3609164B2 (ja) * 1995-08-14 2005-01-12 日立建機株式会社 建設機械の領域制限掘削制御の掘削領域設定装置
US5975833A (en) * 1996-01-30 1999-11-02 Hitachi Construction Machinery Co., Ltd. Swing type hydraulic excavator
US6025686A (en) * 1997-07-23 2000-02-15 Harnischfeger Corporation Method and system for controlling movement of a digging dipper
JP2004150304A (ja) * 2002-10-29 2004-05-27 Komatsu Ltd エンジンの制御装置
US7908928B2 (en) * 2006-10-31 2011-03-22 Caterpillar Inc. Monitoring system
JP5665874B2 (ja) * 2010-10-06 2015-02-04 住友重機械工業株式会社 ハイブリッド型作業機械及びその制御方法
JP2012082644A (ja) * 2010-10-14 2012-04-26 Hitachi Constr Mach Co Ltd 建設機械
JP5356436B2 (ja) * 2011-03-01 2013-12-04 日立建機株式会社 建設機械の制御装置
JP5341134B2 (ja) * 2011-05-25 2013-11-13 日立建機株式会社 油圧作業機械
JP5597222B2 (ja) * 2012-04-11 2014-10-01 株式会社小松製作所 油圧ショベルの掘削制御システム
CN103890273B (zh) 2013-04-12 2017-01-25 株式会社小松制作所 建筑机械的控制系统及控制方法
EP2889433B1 (en) * 2013-12-20 2019-05-01 Doosan Infracore Co., Ltd. System and method of controlling vehicle of construction equipment
US9540793B2 (en) * 2014-05-30 2017-01-10 Komatsu Ltd. Work machine control system, work machine, and work machine control method
JPWO2016017674A1 (ja) * 2014-07-30 2017-05-18 住友重機械工業株式会社 ショベル
JP6314105B2 (ja) * 2015-03-05 2018-04-18 株式会社日立製作所 軌道生成装置および作業機械
JP6298797B2 (ja) * 2015-06-18 2018-03-20 日立建機株式会社 建設機械の交換品管理システム
KR101855970B1 (ko) * 2015-11-19 2018-05-09 가부시키가이샤 고마쓰 세이사쿠쇼 작업 기계 및 작업 기계의 제어 방법
JP6545609B2 (ja) * 2015-12-04 2019-07-17 日立建機株式会社 油圧建設機械の制御装置
JP6495857B2 (ja) * 2016-03-31 2019-04-03 日立建機株式会社 建設機械
JP6506205B2 (ja) 2016-03-31 2019-04-24 日立建機株式会社 建設機械
JP6046320B1 (ja) * 2016-05-31 2016-12-14 株式会社小松製作所 建設機械の制御システム、建設機械、及び建設機械の制御方法
JP6633464B2 (ja) * 2016-07-06 2020-01-22 日立建機株式会社 作業機械
JP7129907B2 (ja) * 2016-08-12 2022-09-02 株式会社小松製作所 建設機械の制御システム、建設機械、及び建設機械の制御方法
JP6550358B2 (ja) * 2016-09-16 2019-07-24 日立建機株式会社 建設機械の施工時間予測システム
CN108055855B (zh) * 2016-09-16 2020-11-10 日立建机株式会社 作业机械
DE112016000256B4 (de) * 2016-11-29 2022-07-07 Komatsu Ltd. Arbeitsausrüstungs-Steuerung und Arbeitsmaschine
DE112016000254B4 (de) * 2016-11-29 2022-03-17 Komatsu Ltd. Arbeitsausrüstungs-Steuerungsvorrichtung und Arbeitsmaschine
JP6951069B2 (ja) * 2016-11-30 2021-10-20 株式会社小松製作所 作業機制御装置および作業機械
JP6718399B2 (ja) * 2017-02-21 2020-07-08 日立建機株式会社 作業機械
JP6878226B2 (ja) * 2017-09-19 2021-05-26 日立建機株式会社 作業機械
JP6807293B2 (ja) * 2017-09-26 2021-01-06 日立建機株式会社 作業機械
US11149404B2 (en) * 2018-03-28 2021-10-19 Hitachi Construction Machinery Co., Ltd. Work machine
US10831213B2 (en) * 2018-03-30 2020-11-10 Deere & Company Targeted loading assistance system
JP7336853B2 (ja) * 2019-02-01 2023-09-01 株式会社小松製作所 建設機械の制御システム、建設機械、及び建設機械の制御方法
JP7197392B2 (ja) * 2019-02-01 2022-12-27 株式会社小松製作所 建設機械の制御システム、建設機械、及び建設機械の制御方法
JP2020125595A (ja) * 2019-02-01 2020-08-20 株式会社小松製作所 建設機械の制御システム、建設機械、及び建設機械の制御方法

Also Published As

Publication number Publication date
KR20210095681A (ko) 2021-08-02
WO2020158234A1 (ja) 2020-08-06
US12000108B2 (en) 2024-06-04
JP2020125598A (ja) 2020-08-20
US20220074165A1 (en) 2022-03-10
DE112019006225T5 (de) 2021-09-02
JP7283910B2 (ja) 2023-05-30
KR102582987B1 (ko) 2023-09-25
CN113302359A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
CN113383130B (zh) 工程机械的控制系统、工程机械及工程机械的控制方法
KR101737389B1 (ko) 작업 기계의 제어 장치, 작업 기계, 및 작업 기계의 제어 방법
KR101859263B1 (ko) 작업 기계의 제어 시스템 및 작업 기계의 제어 방법
CN113302359B (zh) 工程机械的控制系统、工程机械及工程机械的控制方法
KR101746324B1 (ko) 건설 기계의 제어 시스템, 건설 기계, 및 건설 기계의 제어 방법
KR101839467B1 (ko) 건설 기계의 제어 시스템, 건설 기계, 및 건설 기계의 제어 방법
CN113316671B (zh) 工程机械的控制系统、工程机械及工程机械的控制方法
JP2023083576A (ja) 建設機械の制御システム、建設機械、及び建設機械の制御方法
KR20180135939A (ko) 건설 기계의 제어 시스템, 건설 기계, 및 건설 기계의 제어 방법
JP7342205B2 (ja) 積込機械の制御装置および制御方法
KR20190002592A (ko) 작업기 제어 장치 및 작업 기계
JP2023524450A (ja) 静水圧旋回動作作動、監視、および制御システム
CN112639212B (zh) 作业机械
CN117836489A (zh) 用于控制作业机械的系统以及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant