CN113278173B - 一种木质素基上浆剂在环氧丙烯酸酯复合材料中的应用 - Google Patents

一种木质素基上浆剂在环氧丙烯酸酯复合材料中的应用 Download PDF

Info

Publication number
CN113278173B
CN113278173B CN202110769728.0A CN202110769728A CN113278173B CN 113278173 B CN113278173 B CN 113278173B CN 202110769728 A CN202110769728 A CN 202110769728A CN 113278173 B CN113278173 B CN 113278173B
Authority
CN
China
Prior art keywords
lignin
carbon fiber
sizing agent
epoxy resin
epoxy acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110769728.0A
Other languages
English (en)
Other versions
CN113278173A (zh
Inventor
呼微
张晨晨
王艳淼
刘万利
徐义全
杨明
郑帅
刘佰军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Kinwa High Technology Co ltd
Original Assignee
Changchun Kinwa High Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Kinwa High Technology Co ltd filed Critical Changchun Kinwa High Technology Co ltd
Priority to CN202110769728.0A priority Critical patent/CN113278173B/zh
Publication of CN113278173A publication Critical patent/CN113278173A/zh
Application granted granted Critical
Publication of CN113278173B publication Critical patent/CN113278173B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本发明提供了一种木质素基上浆剂在环氧丙烯酸酯复合材料中的应用:将碳纤维浸渍在上浆剂中,烘干后置于真空辅助成型装置中,经成型定性,获得碳纤维增强环氧丙烯酸酯复合材料。其中上浆剂由如下方法步骤制备:先将环氧树脂和臭氧化的木质素溶于有机溶剂,经加热搅拌反应获得木质素基环氧树脂,再加入醇胺和羧酸加热搅拌反应后,加入硅烷偶联剂获得木质素基亲水型上浆剂;上浆剂有效解决了碳纤维与环氧丙烯酸酯之间粘结性差等缺陷,提高了复合材料的力学性能。本发明上浆剂以水为介质,避免了有机溶剂的使用,成本低,环境友好,稳定性好。以其对碳纤维进行预处理,使得碳纤维增强环氧丙烯酸酯复合材料的综合性能提高显著。

Description

一种木质素基上浆剂在环氧丙烯酸酯复合材料中的应用
技术领域
本发明涉及高分子材料领域,尤其涉及一种木质素基亲水型上浆剂在环氧丙烯酸酯复合材料中的应用。
背景技术
环氧丙烯酸酯化学性稳定,耐霉菌,工艺简单,无需施加过高的压力,具有良好的绝缘性,耐化学腐蚀,具有较好的耐溶剂性等优点,因此在复合材料中有广泛的应用。但环氧丙烯酸酯耐磨性能差、耐冲击损伤能力差、韧性差,使其在生活中的应用受到了限制。
碳纤维是一种高比模量、高比强度、密度低、耐高温、热膨胀系数小的优异材料,被广泛应用于航天航空、汽车等高端领域。通过结合环氧丙烯酸酯与碳纤维的优点,可制备出高强度、轻量化的复合材料。然而,碳纤维呈现表面化学惰性,表面能低且几乎无化学基团。碳纤维进行上浆处理及添加相容剂能很好改善其界面性能。通过结合环氧丙烯酸酯基体,基体的性能短板大大拉低了复合材料的整体性能,表现为材料脆、易老化、不耐温、易损伤。另外材料之间结合难度很高,对于工艺的把控要求严格,容易出现气孔、分层、夹杂等缺陷,在使用过程中局部冲击过大也容易出现开裂、脱层的问题,因此一个良好的上浆剂成为了必不可少的部分。
上浆剂具有以下功能:(1)减少静电作用,提高碳纤维的集束能力,便于后续进行编纺加工;(2)隔绝空气、水分和灰尘,保持碳纤维表面活性;(3)填补碳纤维表面缺陷,在一定程度上对碳纤维起到辅助增强作用;(4)使碳纤维表面光滑,避免了在后续加工中的摩擦损伤,减少毛刺产生,提高碳纤维寿命,对碳纤维起到保护作用。
上浆剂可以分为溶液型上浆剂、乳液型上浆剂和亲水型上浆剂。溶液型上浆剂因其需要使用大量有机溶剂,成本相对较高,而且大量溶剂的挥发对于人体健康和工作环境具有非常严重的危害,所以目前已较少使用。乳液型上浆剂由于需要使用大量的乳化剂,其本质也是一种表面活性剂,故使碳纤维表面容易吸附水分;并且,低分子量的表面活性剂也会影响纤维与树脂之间的粘结性。少加或者不加乳化剂是上浆剂发展的重要方向,亲水型上浆剂是传统乳液型上浆剂的改进,通过向树脂中引入亲水性基团或将官能团离子化使其具有自乳化能力,能在水中不需要外加乳化剂就可以自乳化分散成乳液,较好的溶于水中,从而避免乳化剂的使用,而且其具有粒径尺寸小、粒径尺寸均匀及稳定性较高等优点。因此,亲水型环保无污染的上浆剂的研究成为了未来上浆剂发展的重点。
基于以上,开发一种亲水型环保高粘附性能上浆剂对碳纤维进行处理,提高碳纤维与环氧丙烯酸酯相容性,减少相容剂的使用量,同时满足材料力学性能,已成为亟需解决的技术难题。
发明内容
为解决上述技术难题,本发明提供了一种木质素基上浆剂在环氧丙烯酸酯复合材料中的应用,它包括如下步骤:
(1)在室温,将碳纤维布浸渍在浓度为0.5-4.5wt%木质素基亲水型上浆剂水溶液中2-8min,然后将碳纤维布以1-5cm/min的速度从上浆剂水溶液中拉出,再在80-120℃烘干1-5小时后获得上浆预处理后的碳纤维布;
(2)采用真空辅助成型工艺,将步骤(1)上浆预处理后的碳纤维布置于真空辅助成型装置中,进行抽真空操作,利用负压将与光引发剂和热固化剂混合均匀的环氧丙烯酸酯注入真空辅助成型装置,抽注0.5-1.5小时,保证环氧丙烯酸酯充分浸润碳纤维布,保持真空置于紫外光照箱内1-10分钟,在真空干燥烘箱70-150℃0.25-5小时后取出,获得碳纤维增强环氧丙烯酸酯复合材料。
进一步地,步骤(2)所述的光引发剂为2,4,6-三甲基苯甲酰基-二苯基氧化膦、2,4,6-三甲基苯甲酰基苯基膦酸乙酯、苯甲酰甲酸甲酯或1-羟基环己基苯基甲酮中的一种或任意组合;所述的热固化剂为异辛酸钴或过氧化甲乙酮的一种或任意组合;所述光引发剂、热固化剂和环氧丙烯酸酯质量比为2.5-15:2-15:80-130。
本发明还提供了一种木质素基亲水型上浆剂,它是由如下方法步骤制备的:
(1)将4-16g木质素置于臭氧化装置中,在臭氧浓度9-20mg/L,混合气体流速240-400L/h条件下处理0.5-1.75h获得臭氧化改性的木质素;
(2)将步骤(1)获得的臭氧化改性的木质素和环氧树脂溶于有机溶剂后,在室温搅拌5-10分钟,然后再升温到75-95℃搅拌反应1-2小时获得木质素基环氧树脂;
(3)在步骤(2)获得的木质素基环氧树脂中加入有机溶剂,再加入醇胺,在75-95℃进行搅拌反应1-3h后,搅拌速度300-500rpm,获得接枝醇胺的木质素基环氧树脂;
(4)在步骤(3)获得的接枝醇胺的木质素基环氧树脂中加入羧酸溶液,在55-70℃搅拌反应0.5-1小时后,搅拌速度为300-500rpm,再加入硅烷偶联剂反应1-3h后,按照质量比计:所述硅烷偶联剂、步骤(2)中的环氧树脂、步骤(1)中的木质素、步骤(3)中的醇胺和羧酸质量比为0.2-1:5-10:0.5-2:1-3:1-3,再旋蒸除去溶剂,获得木质素基亲水型上浆剂。
进一步地,步骤(1)所述的木质素为酶解木质素、碱木质素、磨木木质素、磺酸盐木质素或有机溶剂木质素中的一种或两种。
进一步地,步骤(2)所述的环氧树脂为二氧化乙烯基环己烯环氧树脂、环氧化聚丁二烯环氧树脂、三聚氰酸环氧树脂、双酚A型环氧树脂、双酚F型环氧树脂、氢化双酚A型环氧树脂、羟甲基双酚A型环氧树脂、二氧化双环戊二烯环氧树脂或双酚S型环氧树脂中的任意一种;所述的有机溶剂为N,N二甲基甲酰胺。
进一步地,步骤(3)所述的有机溶剂为甲醇、乙醇、苯甲醇或乙二醇单丁醚中的一种或任意组合;所述的醇胺为乙醇胺、二乙醇胺、二甲基乙醇胺或三乙醇胺中的一种或任意组合。
进一步地,步骤(4)所述的羧酸为乙二酸、甲酸、乙酸或丙酸中的一种或任意组合;所述的硅烷偶联剂为乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基-三甲氧基硅烷、3-异氰酸丙基三乙氧基硅烷、氯甲基三乙氧基硅烷或γ-氨丙基三乙氧基硅烷中的一种或任意组合。
本发明提供的木质素基亲水型上浆剂,为木质素、硅烷偶联剂与环氧树脂、醇胺和羧酸的共聚物亲水型乳液。其具有很好的粘附性能,大幅度缩短浸渍时间,上浆操作简单,易于实施。且在碳纤维与环氧丙烯酸酯基体间起到良好的桥接作用,从而进一步提高复合材料的力学性能。采用上述上浆剂对碳纤维进行预处理,制备的碳纤维增强环氧丙烯酸酯复合材料具有优异的力学性能。
附图说明
图1为实施例1臭氧化处理前后的有机溶剂木质素红外光谱对比图;
图2为实施例1的木质素基亲水型上浆剂的红外光谱图;
图3为实施例4以及对比例2制备的碳纤维增强环氧丙烯酸酯复合材料力学性能对比图。
具体实施方式
以下实施例采用是将T700-12K的碳纤维布进行去浆处理后的碳纤维布,其中碳纤维为日本东丽有限公司生产的型号为T700-12K的碳纤维布,上浆前需进行去浆处理,去浆处理采用方法为:在超声条件下,将碳纤维布在丙酮、乙醇和水混合溶液中浸泡10-30min,再将浸泡后的碳纤维布放置于浓硝酸中24h后用去离子水对碳纤维布进行洗涤,再将碳纤维布在80-100℃进行烘干获得去浆处理的碳纤维布,并将其裁剪为8×10cm大小,冷却置于干燥器中备用。所述的丙酮、乙醇和水是按照体积比:1.5:1:1进行混合的。
实施例1
上浆剂的制备方法:
(1)臭氧化处理木质素:将6g有机溶剂木质素置于臭氧化装置中,在混合气体流速400L/h,臭氧浓度17mg/L条件下处理1.25h后获得臭氧化处理的有机溶剂木质素;
(2)将1.75g步骤(1)获得的臭氧化处理的有机溶剂木质素和8.5g双酚A型环氧树脂溶于N,N-二甲基甲酰胺(DMF)后,在室温搅拌8分钟,然后再升温到90℃搅拌2小时后获得木质素基环氧树脂;
(3)在步骤(2)获得的木质素基环氧树脂中加入无水乙醇,再加入3g二乙醇胺,在85℃进行搅拌2.5h后,搅拌速度300rpm,获得接枝二乙醇胺的木质素基环氧树脂;
(4)在步骤(3)获得的接枝二乙醇胺的木质素基环氧树脂中加入1.76g乙酸溶液,在55℃搅拌0.75小时后,搅拌速度为300rpm,再加入γ―氨丙基三乙氧基硅烷反应3h后,γ―氨丙基三乙氧基硅烷与步骤(1)中的双酚A型环氧树脂的质量比为1:9,再旋蒸除去溶剂,获得木质素基亲水型上浆剂。
实施例2
碳纤维增强环氧丙烯酸酯复合材料的制备方法(采用的上浆剂浓度为:1.5wt%):
(1)在室温,将碳纤维布浸渍在浓度为1.5wt%的实施例1获得的上浆剂水溶液中8min,然后将碳纤维布以5cm/min的速度从上浆剂水溶液中拉出,再在85℃烘干2.5小时后获得上浆预处理后的碳纤维布;
(2)采用真空辅助成型工艺,将步骤(1)上浆预处理后的碳纤维布置于真空辅助成型装置中,进行抽真空操作,利用负压将光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦、热固化剂异辛酸钴和环氧丙烯酸酯质量比为5:5:100的混合均匀注入真空辅助成型装置,抽注40分钟,保证环氧丙烯酸酯充分浸润碳纤维布,保持真空置于紫外光照箱内5分钟,真空置于真空干燥烘箱70℃1小时,120℃1.5小时后取出,获得碳纤维增强环氧丙烯酸酯复合材料。
实施例3
碳纤维增强环氧丙烯酸酯复合材料的制备方法(采用的上浆剂浓度为:2.0wt%):
(1)在室温,将碳纤维布浸渍在浓度为2.0wt%的实施例1获得的上浆剂水溶液中8min,然后将碳纤维布以5cm/min的速度从上浆剂水溶液中拉出,再在85℃烘干2.5小时后获得上浆预处理后的碳纤维布;
(2)采用真空辅助成型工艺,将步骤(1)上浆预处理后的碳纤维布置于真空辅助成型装置中,进行抽真空操作,利用负压将与光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦、热固化剂异辛酸钴和环氧丙烯酸酯质量比为5:5:100的混合均匀注入真空辅助成型装置,抽注40分钟,保证环氧丙烯酸酯充分浸润碳纤维布,保持真空置于紫外光照箱内5分钟,真空置于真空干燥烘箱70℃1小时,120℃1.5小时后取出,获得碳纤维增强环氧丙烯酸酯复合材料。
实施例4
碳纤维增强环氧丙烯酸酯复合材料的制备方法(采用的上浆剂浓度为:2.5wt%):
(1)在室温,将碳纤维布浸渍在浓度为2.5wt%的实施例1获得的上浆剂水溶液中8min,然后将碳纤维布以5cm/min的速度从上浆剂水溶液中拉出,再在85℃烘干2.5小时后获得上浆预处理后的碳纤维布;
(2)采用真空辅助成型工艺,将步骤(1)上浆预处理后的碳纤维布置于真空辅助成型装置中,进行抽真空操作,利用负压将与光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦、热固化剂异辛酸钴和环氧丙烯酸酯质量比为5:5:100的混合均匀注入真空辅助成型装置,抽注40分钟,保证环氧丙烯酸酯充分浸润碳纤维布,保持真空置于紫外光照箱内5分钟,真空置于真空干燥烘箱70℃1小时,120℃1.5小时后取出,获得碳纤维增强环氧丙烯酸酯复合材料。
实施例5
上浆剂的制备方法:
(1)臭氧化处理木质素:将6g酶解木质素置于臭氧化装置中,在混合气体流速400L/h,臭氧浓度17mg/L条件下处理1.25h后获得臭氧化处理的酶解木质素;
(2)将1.75g步骤(1)获得的臭氧化处理的酶解木质素和8.5g双酚A型环氧树脂溶于DMF后,在室温混合后搅拌8分钟,然后升温到90℃下搅拌2小时获得木质素基环氧树脂;
(3)在步骤(2)获得的木质素基环氧树脂中加入无水乙醇,再加入3g二乙醇胺,在75℃进行搅拌2.5h后,搅拌速度300rpm,获得接枝二乙醇胺的木质素基环氧树脂;
(4)在步骤(3)获得的接枝二乙醇胺的木质素基环氧树脂中加入1.76g乙酸溶液,在55℃搅拌0.75小时后,搅拌速度为300rpm,再加入γ―氨丙基三乙氧基硅烷反应3h后,γ―氨丙基三乙氧基硅烷与步骤(2)中的双酚A型环氧树脂的质量比为1:9,再旋蒸除去溶剂,获得木质素基亲水型上浆剂。
碳纤维增强环氧丙烯酸酯复合材料的制备方法(采用的上浆剂浓度为:2.5wt%):
(5)在室温,将碳纤维布浸渍在浓度为2.5wt%的步骤(4)获得的上浆剂水溶液中8min,然后将碳纤维布以5cm/min的速度从上浆剂水溶液中拉出,再在85℃烘干2.5小时后获得上浆预处理后的碳纤维布;
(6)采用真空辅助成型工艺,将步骤(5)上浆预处理后的碳纤维布置于真空辅助成型装置中,进行抽真空操作,利用负压将与光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦、热固化剂异辛酸钴和环氧丙烯酸酯质量比为6:6:100的混合均匀注入真空辅助成型装置,抽注60分钟,保证环氧丙烯酸酯充分浸润碳纤维布,保持真空置于紫外光照箱内5分钟,真空置于真空干燥烘箱70℃1小时,120℃1.5小时后取出,获得碳纤维增强环氧丙烯酸酯复合材料。
实施例6
上浆剂的制备方法:
(1)臭氧化处理木质素:将6g碱木质素置于臭氧化装置中,在混合气体流速400L/h,臭氧浓度17mg/L条件下处理1.25h后获得臭氧化处理的碱木质素;
(2)将1.75g步骤(1)获得的臭氧化处理的碱木质素和8.5g双酚A型环氧树脂溶于DMF后,在室温混合后搅拌8分钟,然后升温到90℃下搅拌2小时获得木质素基环氧树脂;
(3)在步骤(2)获得的木质素基环氧树脂中加入无水乙醇,再加入3g二乙醇胺,在75℃进行搅拌2.5h后,搅拌速度300rpm,获得接枝二乙醇胺的木质素基环氧树脂;
(4)在步骤(3)获得的接枝二乙醇胺的木质素基环氧树脂中加入1.76g乙酸溶液,在55℃搅拌0.75小时后,搅拌速度为300rpm,再加入γ―氨丙基三乙氧基硅烷反应3h后,γ―氨丙基三乙氧基硅烷与步骤(2)中的双酚A型环氧树脂的质量比为1:9,再旋蒸除去溶剂,获得木质素基亲水型上浆剂。
碳纤维增强环氧丙烯酸酯复合材料的制备方法(采用的上浆剂浓度为:2.5wt%):
(5)在室温,将碳纤维布浸渍在浓度为2.5wt%的步骤(4)获得的上浆剂水溶液中8min,然后将碳纤维布以5cm/min的速度从上浆剂水溶液中拉出,再在85℃烘干2.5小时后获得上浆预处理后的碳纤维布;
(6)采用真空辅助成型工艺,将步骤(5)上浆预处理后的碳纤维布置于真空辅助成型装置中,进行抽真空操作,利用负压将与光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦、热固化剂异辛酸钴和环氧丙烯酸酯质量比为6:6:100的混合均匀注入真空辅助成型装置,抽注60分钟,保证环氧丙烯酸酯充分浸润碳纤维布,保持真空置于紫外光照箱内5分钟,真空置于真空干燥烘箱70℃1小时,120℃1.5小时后取出,获得碳纤维增强环氧丙烯酸酯复合材料。
实施例7
上浆剂的制备方法:
(1)臭氧化处理木质素:将6g磨木木质素置于臭氧化装置中,在混合气体流速400L/h,臭氧浓度17mg/L条件下处理1.25h后获得臭氧化处理的磨木木质素;
(2)将1.75g步骤(1)获得的臭氧化处理的磨木木质素和8.5g双酚A型环氧树脂溶于DMF后,在室温混合后搅拌8分钟,然后升温到90℃下搅拌2小时获得木质素基环氧树脂;
(3)在步骤(2)获得的木质素基环氧树脂中加入无水乙醇,再加入3g二乙醇胺,在75℃进行搅拌2.5h后,搅拌速度300rpm,获得接枝二乙醇胺的木质素基环氧树脂;
(4)在步骤(3)获得的接枝二乙醇胺的木质素基环氧树脂中加入1.76g乙酸溶液,在55℃搅拌0.75小时后,搅拌速度为300rpm,再加入γ―氨丙基三乙氧基硅烷反应3h后,γ―氨丙基三乙氧基硅烷与步骤(2)中的双酚A型环氧树脂的质量比为1:9,再旋蒸除去溶剂,获得木质素基亲水型上浆剂。
碳纤维增强环氧丙烯酸酯复合材料的制备方法(采用的上浆剂浓度为:2.5wt%):
(5)在室温,将碳纤维布浸渍在浓度为2.5wt%的步骤(4)获得的上浆剂水溶液中8min,然后将碳纤维布以5cm/min的速度从上浆剂水溶液中拉出,再在85℃烘干2.5小时后获得上浆预处理后的碳纤维布;
(6)采用真空辅助成型工艺,将步骤(5)上浆预处理后的碳纤维布置于真空辅助成型装置中,进行抽真空操作,利用负压将与光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦、热固化剂异辛酸钴和环氧丙烯酸酯质量比为6:6:100的混合均匀注入真空辅助成型装置,抽注60分钟,保证环氧丙烯酸酯充分浸润碳纤维布,保持真空置于紫外光照箱内5分钟,真空置于真空干燥烘箱70℃1小时,120℃1.5小时后取出,获得碳纤维增强环氧丙烯酸酯复合材料。
实施例8
碳纤维增强环氧丙烯酸酯复合材料的制备方法(采用的上浆剂浓度为:2.5wt%):
(1)在室温,将碳纤维布浸渍在浓度为2.5wt%的实施例1获得的上浆剂水溶液中4min,然后将碳纤维布以4cm/min的速度从上浆剂水溶液中拉出,再在120℃烘干2小时后获得上浆预处理后的碳纤维布;
(2)采用真空辅助成型工艺,将步骤(1)上浆预处理后的碳纤维布置于真空辅助成型装置中,进行抽真空操作,利用负压将与光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦、热固化剂异辛酸钴和环氧丙烯酸酯质量比为4:4:100的混合均匀注入真空辅助成型装置,抽注60分钟,保证环氧丙烯酸酯充分浸润碳纤维布,保持真空置于紫外光照箱内7分钟,真空置于真空干燥烘箱70℃1小时,120℃1.5小时后取出,获得碳纤维增强环氧丙烯酸酯复合材料。
实施例9
碳纤维增强环氧丙烯酸酯复合材料的制备方法(采用的上浆剂浓度为:2.5wt%):
(1)在室温,将碳纤维布浸渍在浓度为2.5wt%的实施例1获得的上浆剂水溶液中8min,然后将碳纤维布以5cm/min的速度从上浆剂水溶液中拉出,再在85℃烘干2.5小时后获得上浆预处理后的碳纤维布;
(2)采用真空辅助成型工艺,将步骤(1)上浆预处理后的碳纤维布置于真空辅助成型装置中,进行抽真空操作,利用负压将与光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦、热固化剂异辛酸钴和环氧丙烯酸酯质量比为7:7:100的混合均匀注入真空辅助成型装置,抽注60分钟,保证环氧丙烯酸酯充分浸润碳纤维布,保持真空置于紫外光照箱内5分钟,真空置于真空干燥烘箱80℃1小时,110℃2小时后取出,获得碳纤维增强环氧丙烯酸酯复合材料。
实施例10
上浆剂的制备方法:
(1)臭氧化处理木质素:将6g有机溶剂木质素置于臭氧化装置中,在混合气体流速400L/h,臭氧浓度17mg/L条件下处理1.25h后获得臭氧化处理的有机溶剂木质素;
(2)将2g实施例1中步骤(1)制得的臭氧化有机溶剂木质素和9g双酚A型环氧树脂溶于DMF后,在室温混合后搅拌8分钟,然后升温到85℃下搅拌1.75小时获得木质素基环氧树脂;
(3)在步骤(2)获得的木质素基环氧树脂中加入无水乙醇,再加入2.75g二乙醇胺,在75℃进行搅拌2.5h后,搅拌速度300rpm,获得接枝二乙醇胺的木质素基环氧树脂;
(4)在步骤(3)获得的接枝二乙醇胺的木质素基环氧树脂中加入1.76g乙酸溶液,在55℃搅拌0.75小时后,搅拌速度为300rpm,再加入γ―氨丙基三乙氧基硅烷反应3h后,γ―氨丙基三乙氧基硅烷与步骤(2)中的双酚A型环氧树脂的质量比为1:9,再旋蒸除去溶剂,获得木质素基亲水型上浆剂。
碳纤维增强环氧丙烯酸酯复合材料的制备方法(采用的上浆剂浓度为:2.5wt%):
(5)在室温,将碳纤维布浸渍在浓度为2.5wt%的步骤(4)获得的上浆剂水溶液中8min,然后将碳纤维布以5cm/min的速度从上浆剂水溶液中拉出,再在85℃烘干2.5小时后获得上浆预处理后的碳纤维布;
(6)采用真空辅助成型工艺,将步骤(5)上浆预处理后的碳纤维布置于真空辅助成型装置中,进行抽真空操作,利用负压将与光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦、热固化剂异辛酸钴和环氧丙烯酸酯质量比为7:7:100的混合均匀注入真空辅助成型装置,抽注60分钟,保证环氧丙烯酸酯充分浸润碳纤维布,保持真空置于紫外光照箱内4分钟,真空置于真空干燥烘箱70℃1小时,120℃1.5小时后取出,获得碳纤维增强环氧丙烯酸酯复合材料。
实施例11
上浆剂的制备方法:
(1)臭氧化处理木质素:将6g有机溶剂木质素置于臭氧化装置中,在混合气体流速400L/h,臭氧浓度17mg/L条件下处理1.25h后获得臭氧化处理的有机溶剂木质素;
(2)将1.75g步骤(1)制得的臭氧化有机溶剂木质素和8.5g双酚A型环氧树脂溶于DMF后,在室温混合后搅拌8分钟,然后升温到90℃下搅拌2小时获得木质素基环氧树脂;
(3)在步骤(2)获得的木质素基环氧树脂中加入无水乙醇,再加入2.75g二乙醇胺,在75℃进行搅拌2.5h后,搅拌速度375rpm,获得接枝二乙醇胺的木质素基环氧树脂;
(4)在步骤(3)获得的接枝二乙醇胺的木质素基环氧树脂中加入1.6g乙酸溶液,在60℃搅拌0.6小时后,搅拌速度为375rpm,再加入γ―氨丙基三乙氧基硅烷反应2.75h后,γ―氨丙基三乙氧基硅烷与步骤(2)中的双酚A型环氧树脂的质量比为1:9,再旋蒸除去溶剂,获得木质素基亲水型上浆剂。
碳纤维增强环氧丙烯酸酯复合材料的制备方法(采用的上浆剂浓度为:2.5wt%):
(5)在室温,将碳纤维布浸渍在浓度为2.5wt%的步骤(4)获得的上浆剂水溶液中8min,然后将碳纤维布以5cm/min的速度从上浆剂水溶液中拉出,再在85℃烘干2.5小时后获得上浆预处理后的碳纤维布;
(6)采用真空辅助成型工艺,将步骤(5)上浆预处理后的碳纤维布置于真空辅助成型装置中,进行抽真空操作,利用负压将与光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦、热固化剂异辛酸钴和环氧丙烯酸酯质量比为7:7:100的混合均匀注入真空辅助成型装置,抽注60分钟,保证环氧丙烯酸酯充分浸润碳纤维布,保持真空置于紫外光照箱内5分钟,真空置于真空干燥烘箱70℃1小时,120℃1.5小时后取出,获得碳纤维增强环氧丙烯酸酯复合材料。
实施例12
上浆剂的制备方法:
(1)臭氧化处理木质素:将8g有机溶剂木质素置于臭氧化装置中,在混合气体流速300L/h,臭氧浓度20mg/L条件下处理1.5h后获得臭氧化处理的有机溶剂木质素;
(2)将1.75g步骤(1)获得的臭氧化处理的有机溶剂木质素和8.5g环氧化聚丁二烯环氧树脂溶于N,N-二甲基甲酰胺(DMF)后,在室温搅拌8分钟,然后再升温到90℃搅拌2小时后获得木质素基环氧树脂;
(3)在步骤(2)获得的木质素基环氧树脂中加入甲醇和乙二醇单丁醚,再加入3g二甲基乙醇胺,在75℃进行搅拌2.5h后,搅拌速度300rpm,获得接枝二甲基乙醇胺的木质素基环氧树脂;
(4)在步骤(3)获得的接枝二甲基乙醇胺的木质素基环氧树脂中加入1.76g乙酸溶液,在55℃搅拌0.75小时后,搅拌速度为300rpm,再加入氯甲基三乙氧基硅烷反应3h后,氯甲基三乙氧基硅烷与步骤(2)中的环氧化聚丁二烯环氧树脂的质量比为1:9,再旋蒸除去溶剂,获得木质素基亲水型上浆剂。
碳纤维增强环氧丙烯酸酯复合材料的制备方法(采用的上浆剂浓度为:2.5wt%):
(5)在室温,将碳纤维布浸渍在浓度为2.5wt%的步骤(4)获得的上浆剂水溶液中8min,然后将碳纤维布以5cm/min的速度从上浆剂水溶液中拉出,再在85℃烘干2.5小时后获得上浆预处理后的碳纤维布;
(6)采用真空辅助成型工艺,将步骤(5)上浆预处理后的碳纤维布置于真空辅助成型装置中,进行抽真空操作,利用负压将与光引发剂苯甲酰甲酸甲酯、热固化剂过氧化甲乙酮和环氧丙烯酸酯质量比为7:7:100的混合均匀注入真空辅助成型装置,抽注60分钟,保证环氧丙烯酸酯充分浸润碳纤维布,保持真空置于紫外光照箱内5分钟,真空置于真空干燥烘箱70℃1小时,120℃1.5小时后取出,获得碳纤维增强环氧丙烯酸酯复合材料。
实施例13
上浆剂的制备方法:
(1)臭氧化处理木质素:将4g有机溶剂木质素置于臭氧化装置中,在混合气体流速240L/h,臭氧浓度9mg/L条件下处理0.5h后获得臭氧化处理的有机溶剂木质素;
(2)将0.5g步骤(1)获得的臭氧化处理的有机溶剂木质素和5g双酚A型环氧树脂溶于N,N-二甲基甲酰胺(DMF)后,在室温搅拌5分钟,然后再升温到75℃搅拌1小时后获得木质素基环氧树脂;
(3)在步骤(2)获得的木质素基环氧树脂中加入无水乙醇,再加1g二乙醇胺,在75℃进行搅拌1h后,搅拌速度300rpm,获得接枝二乙醇胺的木质素基环氧树脂;
(4)在步骤(3)获得的接枝二乙醇胺的木质素基环氧树脂中加入1g乙酸溶液,在55℃搅拌0.5小时后,搅拌速度为300rpm,再加入γ―氨丙基三乙氧基硅烷反应1h后,γ―氨丙基三乙氧基硅烷与步骤(2)中的双酚A型环氧树脂的质量比为0.2:10,再旋蒸除去溶剂,获得木质素基亲水型上浆剂。
碳纤维增强环氧丙烯酸酯复合材料的制备方法:
(5)在室温,将碳纤维布浸渍在浓度为0.5wt%的步骤(4)获得的上浆剂水溶液中2min,然后将碳纤维布以1cm/min的速度从上浆剂水溶液中拉出,再在80℃烘干1小时后获得上浆预处理后的碳纤维布;
(6)采用真空辅助成型工艺,将步骤(5)上浆预处理后的碳纤维布置于真空辅助成型装置中,进行抽真空操作,利用负压将与光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦、热固化剂异辛酸钴和环氧丙烯酸酯质量比为2.5:2:130的混合均匀注入真空辅助成型装置,抽注30分钟,保证环氧丙烯酸酯充分浸润碳纤维布,保持真空置于紫外光照箱内1分钟,真空置于真空干燥烘箱70℃0.25小时后取出,获得碳纤维增强环氧丙烯酸酯复合材料。
实施例14
上浆剂的制备方法:
(1)臭氧化处理木质素:将16g有机溶剂木质素置于臭氧化装置中,在混合气体流速400L/h,臭氧浓度20mg/L条件下处理1.75h后获得臭氧化处理的有机溶剂木质素;
(2)将2g步骤(1)获得的臭氧化处理的有机溶剂木质素和10g双酚A型环氧树脂溶于N,N-二甲基甲酰胺(DMF)后,在室温搅拌10分钟,然后再升温到95℃搅拌2小时后获得木质素基环氧树脂;
(3)在步骤(2)获得的木质素基环氧树脂中加入无水乙醇,再加入3g二乙醇胺,在95℃进行搅拌3h后,搅拌速度500rpm,获得接枝二乙醇胺的木质素基环氧树脂;
(4)在步骤(3)获得的接枝二乙醇胺的木质素基环氧树脂中加入3g乙酸溶液,在55℃搅拌1小时后,搅拌速度为500rpm,再加入γ―氨丙基三乙氧基硅烷反应3h后,γ―氨丙基三乙氧基硅烷与步骤(2)中的双酚A型环氧树脂的质量比为1:5,再旋蒸除去溶剂,获得木质素基亲水型上浆剂。
碳纤维增强环氧丙烯酸酯复合材料的制备方法:
(5)在室温,将碳纤维布浸渍在浓度为4wt%的步骤(4)获得的上浆剂水溶液中8min,然后将碳纤维布以5cm/min的速度从上浆剂水溶液中拉出,再在120℃烘干5小时后获得上浆预处理后的碳纤维布;
(6)采用真空辅助成型工艺,将步骤(5)上浆预处理后的碳纤维布置于真空辅助成型装置中,进行抽真空操作,利用负压将与光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦、热固化剂异辛酸钴和环氧丙烯酸酯质量比为15:15:130的混合均匀注入真空辅助成型装置,抽注90分钟,保证环氧丙烯酸酯充分浸润碳纤维布,保持真空置于紫外光照箱内10分钟,真空置于真空干燥烘箱90℃1小时,150℃4小时后取出,获得碳纤维增强环氧丙烯酸酯复合材料。
对比例1
碳纤维增强环氧丙烯酸酯复合材料的制备方法:
(1)在室温,将T700-12K碳纤维布浸渍在去离子水中8min,然后将碳纤维布以5cm/min的速度从去离子水中拉出,再在85℃烘干2.5小时后获得预处理后的碳纤维布;
(2)采用真空辅助成型工艺,将步骤(1)上浆预处理后的碳纤维布置于真空辅助成型装置中,进行抽真空操作,利用负压将与光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦、热固化剂异辛酸钴和环氧丙烯酸酯质量比为5:5:100的混合均匀注入真空辅助成型装置,抽注40分钟,保证环氧丙烯酸酯充分浸润碳纤维布,保持真空置于紫外光照箱内5分钟,真空置于真空干燥烘箱70℃1小时,120℃1.5小时后取出,获得碳纤维增强环氧丙烯酸酯复合材料。
对比例2
碳纤维增强环氧丙烯酸酯复合材料的制备方法:
(1)在室温,将去浆处理的T700-12K碳纤维布浸渍在去离子水中8min,然后将碳纤维布以5cm/min的速度从去离子水中拉出,再在85℃烘干2.5小时后获得预处理后的碳纤维布;
(2)采用真空辅助成型工艺,将步骤(1)上浆预处理后的碳纤维布置于真空辅助成型装置中,进行抽真空操作,利用负压将与光引发剂2,4,6-三甲基苯甲酰基-二苯基氧化膦、热固化剂异辛酸钴和环氧丙烯酸酯质量比为5:5:100的混合均匀注入真空辅助成型装置,抽注40分钟,保证环氧丙烯酸酯充分浸润碳纤维布,保持真空置于紫外光照箱内5分钟,真空置于真空干燥烘箱70℃1小时,120℃1.5小时后取出,获得碳纤维增强环氧丙烯酸酯复合材料。
附图1为实施例1臭氧化改性前后有机溶剂木质素的红外光谱对比谱图,通过臭氧化,破坏了有机溶剂木质素中苯环的三维网状结构,使得羟基等活性基团等暴露出来。从附图1中可见,对于两条光谱图都出现的2990cm-1处的特征峰是木质素上存在的弱的游离酚羟基的振动吸收峰,经过臭氧化,羟基峰明显增强,说明了臭氧化成功地增加了有机溶剂木质素中羟基的含量。在1709cm-1处出现一个强振动峰,这归因于C=O的拉伸振动,在1600cm-1处对应芳香族苯骨架的峰有所下降,说明经过臭氧化,有机溶剂木质素上苯环断裂使更多的活性基团暴露出来。
附图2为实施例1获得的木质素基亲水型上浆剂红外光谱谱图,在1043cm-1,1118cm-1,1385cm-1处的峰是Si-O-CH2CH3之间的吸收特征峰,所有这些特征峰代表着上浆剂成功接枝上了硅烷偶联剂。
对上述实施例2-4不同浓度的上浆剂与文献表述的上浆剂进行上浆剂稳定性测试,结果见表1所示。
对上述实施例2-4以及文献表述的上浆预处理后碳纤维材料进行碳纤维毛丝量测试,结果见表2所示。
对上述实施例2-4以及对比例1-2制备的复合材料进行力学测试,结果见表3所示。
表1:上浆剂稳定性测试结果
对比情况 稳定性(天)
实施例2 240
实施例3 240
实施例4 240
PEG4000改性环氧树脂上浆剂 14
氧化石墨烯改性乳液型碳纤维上浆剂 30
表1中实施例2-4的不同浓度的上浆剂稳定性测试周期为240天,不排除在稳定周期之后还保持稳定的情况。
表1中PEG4000改性环氧树脂上浆剂来源于“聚乙二醇的改性及水性环氧树脂乳液性能研究[J].”(出处:化工新型材料,杨昆明,李鹏,程斌,杨小平2019,47(07):94-98.),氧化石墨烯改性乳液型碳纤维上浆剂来源于“一种增强聚丙烯的碳纤维上浆剂的配方及其制备方法[P].”(出处:王婷,马小龙,葛曷一,王翠翠,滕朝阳,李阳.山东:CN105176008A,2015-12-23.)。
由表1可以看出,本发明制备的亲水型上浆剂具有更好且优良的稳定性,由此说明本发明制备的木质素基亲水型上浆剂在生产、运输、使用等方面稳定效果显著。
表2为实施例2-4以及T700-12K碳纤维布、对T700-12K碳纤维布去浆处理后的碳纤维布和上浆处理后HS-12K碳纤维材料毛丝量对比情况。
碳纤维束在两个规格为长40mm×宽10mm×厚5mm的聚氨酯泡沫间以15m/min的速度匀速拖动,聚氨酯载重200g,50m后记录聚氨酯泡沫上的毛丝量。
表2:上浆预处理后碳纤维毛丝量测试结果
对比情况 碳纤维毛丝量(mg)
实施例2 3.2±0.1
实施例3 3.1±0.1
实施例4 3.0±0.1
T700-12K碳纤维布 5.0±0.1
对T700-12K碳纤维布去浆处理后的碳纤维布 25±0.2
上浆处理后HS-12K碳纤维材料 6.0±0.5
表2中同时列出了上浆处理后HS-12K碳纤维材料毛丝量。HS-12K碳纤维材料毛丝量来源于国产T800S级碳纤维表面结构和耐磨性研究[J].(固体火箭技术,惠雪梅,侯晓,崔红,张承双,赵晓冉.1-7).
由表2可以看出,在加入亲水型上浆剂后,上浆碳纤维的毛丝量有明显的下降。与对T700-12K碳纤维布去浆处理后的碳纤维布相比而言,实施例4加入上浆剂的碳纤维材料碳纤维毛丝量降低了88%。由此说明本发明制备的木质素基亲水型上浆剂在降低碳纤维毛丝量方面效果显著。说明使用本发明的上浆剂上浆后,碳纤维的耐磨性能得到了明显提高,利于碳纤维的后续加工。
表3:实施例2-4以及对比例1-2制备的碳纤维增强环氧丙烯酸酯复合材料力学性能对比情况
Figure BDA0003152179140000131
Figure BDA0003152179140000141
由上述对比可知,与对比例相比,本发明采用特定组分的上浆剂,对碳纤维进行预处理,制备的碳纤维增强环氧丙烯酸酯复合材料具有优异的力学性能。
本发明实施例2加入上浆剂的碳纤维增强环氧丙烯酸酯复合材料与对比例2和对比例1的碳纤维增强环氧丙烯酸酯复合材料相比,实施例2加入上浆剂的碳纤维增强环氧丙烯酸酯复合材料均高于对比例2和对比例1的力学性能,其中与对比例2相比,弯曲强度提高了66.1%,层间剪切强度提高了43.7%;与对比例1相比,弯曲强度提高了9.7%,层间剪切强度提高了23.5%。由此说明本发明制备的木质素基亲水型上浆剂在提升复合材料力学性能方面优于现有技术。
本发明的上浆剂合理利用了木质素,利用木质素上大量苯环与碳纤维基体上的碳六元环进行π-π共轭作用,增强上浆剂与碳纤维的界面结合力;本发明的上浆剂中含有环氧基团,可以与环氧丙烯酸酯的丙烯酸和环氧基团进行反应和共固化;另外,本发明的上浆剂中含有接枝的硅烷偶联剂,在保持亲水性的同时,通过硅烷偶联剂与环氧丙烯酸酯基体分子产生物理缠结作用,增强界面结合力,从而提高复合材料的综合力学性能。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (6)

1.一种木质素基上浆剂在环氧丙烯酸酯复合材料中的应用,其特征在于:它包括如下步骤:
(1)在室温,将碳纤维布浸渍在浓度为0.5-4.5 wt%木质素基亲水型上浆剂水溶液中2-8min,然后将碳纤维布以1-5cm/min的速度从上浆剂水溶液中拉出,再在80-120 ℃烘干1-5小时后获得上浆预处理后的碳纤维布;
(2)采用真空辅助成型工艺,将步骤(1)上浆预处理后的碳纤维布置于真空辅助成型装置中,进行抽真空操作,利用负压将与光引发剂和热固化剂混合均匀的环氧丙烯酸酯注入真空辅助成型装置,抽注0.5-1.5小时,保证环氧丙烯酸酯充分浸润碳纤维布,保持真空置于紫外光照箱内1-10分钟,在真空干燥烘箱70-150 ℃ 0.25-5小时后取出,获得碳纤维增强环氧丙烯酸酯复合材料;
步骤(1)所述的木质素基亲水型上浆剂,它是由如下方法步骤制备的:
1)将4-16g木质素置于臭氧化装置中,在臭氧浓度9-20mg/L,混合气体流速240-400L/h条件下处理0.5-1.75h获得臭氧化改性的木质素;
2)将步骤1)获得的臭氧化改性的木质素和环氧树脂溶于有机溶剂后,在室温搅拌5-10分钟,然后再升温到75-95 ℃搅拌反应1-2小时获得木质素基环氧树脂;
3)在步骤2)获得的木质素基环氧树脂中加入有机溶剂,再加入醇胺,在75-95 ℃进行搅拌反应1-3h后,搅拌速度300-500rpm,获得接枝醇胺的木质素基环氧树脂;
4)在步骤3)获得的接枝醇胺的木质素基环氧树脂中加入羧酸溶液,在55-70 ℃搅拌反应0 .5-1小时后,搅拌速度为300-500rpm,再加入硅烷偶联剂反应1-3h后,按照质量比计:所述硅烷偶联剂、步骤2)中的环氧树脂、步骤1)中的臭氧化改性的木质素、步骤3)中的醇胺和羧酸质量比为0.2-1:5-10:0.5-2:1-3:1-3,再旋蒸除去溶剂,获得木质素基亲水型上浆剂。
2.根据权利要求1所述的一种木质素基上浆剂在环氧丙烯酸酯复合材料中的应用,其特征在于:步骤(2)所述的光引发剂为2,4,6-三甲基苯甲酰基-二苯基氧化膦、2,4,6-三甲基苯甲酰基苯基膦酸乙酯、苯甲酰甲酸甲酯或1-羟基环己基苯基甲酮中的一种或任意组合;所述的热固化剂为异辛酸钴或过氧化甲乙酮的一种或任意组合;所述光引发剂、热固化剂和环氧丙烯酸酯质量比为2.5-15:2-15:80-130。
3.根据权利要求1所述的一种木质素基上浆剂在环氧丙烯酸酯复合材料中的应用,其特征在于:步骤1)所述的木质素为酶解木质素、碱木质素、磨木木质素、磺酸盐木质素或有机溶剂木质素中的一种或两种。
4.根据权利要求1所述的一种木质素基上浆剂在环氧丙烯酸酯复合材料中的应用,其特征在于:步骤2)所述的环氧树脂为二氧化乙烯基环己烯环氧树脂、环氧化聚丁二烯环氧树脂、三聚氰酸环氧树脂、双酚A型环氧树脂、双酚F型环氧树脂、氢化双酚A型环氧树脂、羟甲基双酚A型环氧树脂、二氧化双环戊二烯环氧树脂或双酚S型环氧树脂中的任意一种;所述的有机溶剂为N,N二甲基甲酰胺。
5.根据权利要求1所述的一种木质素基上浆剂在环氧丙烯酸酯复合材料中的应用,其特征在于:步骤3)所述的有机溶剂为甲醇、乙醇、苯甲醇或乙二醇单丁醚中的一种或任意组合;所述的醇胺为乙醇胺、二乙醇胺、二甲基乙醇胺或三乙醇胺中的一种或任意组合。
6.根据权利要求1所述的一种木质素基上浆剂在环氧丙烯酸酯复合材料中的应用,其特征在于:步骤4)所述的羧酸为乙二酸、甲酸、乙酸或丙酸中的一种或任意组合;所述的硅烷偶联剂为乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、3-异氰酸丙基三乙氧基硅烷、氯甲基三乙氧基硅烷或γ-氨丙基三乙氧基硅烷中的一种或任意组合。
CN202110769728.0A 2021-07-07 2021-07-07 一种木质素基上浆剂在环氧丙烯酸酯复合材料中的应用 Active CN113278173B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110769728.0A CN113278173B (zh) 2021-07-07 2021-07-07 一种木质素基上浆剂在环氧丙烯酸酯复合材料中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110769728.0A CN113278173B (zh) 2021-07-07 2021-07-07 一种木质素基上浆剂在环氧丙烯酸酯复合材料中的应用

Publications (2)

Publication Number Publication Date
CN113278173A CN113278173A (zh) 2021-08-20
CN113278173B true CN113278173B (zh) 2022-07-26

Family

ID=77286530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110769728.0A Active CN113278173B (zh) 2021-07-07 2021-07-07 一种木质素基上浆剂在环氧丙烯酸酯复合材料中的应用

Country Status (1)

Country Link
CN (1) CN113278173B (zh)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131128A (ja) * 2008-12-03 2010-06-17 Toyota Boshoku Corp 車両のシートバック構造
US20130196155A1 (en) * 2012-02-01 2013-08-01 Ut-Battelle, Llc Apparatus and process for the surface treatment of carbon fibers
CN104420204B (zh) * 2013-09-10 2016-08-10 济南大学 一种碳纤维水溶性环氧树脂上浆剂
US9617398B2 (en) * 2013-12-16 2017-04-11 Ut-Battelle, Llc Multifunctional curing agents and their use in improving strength of composites containing carbon fibers embedded in a polymeric matrix
US11512173B2 (en) * 2016-10-31 2022-11-29 University Of Tennessee Research Foundation Method of producing carbon fibers and carbon fiber composites from plant derived lignin and its blends
CN108559046A (zh) * 2018-01-09 2018-09-21 长春工业大学 一种臭氧化改性木质素聚氨酯及其制备方法
EP3549968A1 (en) * 2018-04-06 2019-10-09 RAMPF Holding GmbH & Co. KG Lignin-containing polyurethanes
CN108642882B (zh) * 2018-05-09 2020-02-11 东华大学 一种碳纤维表面改性的方法
CN108570223B (zh) * 2018-05-09 2019-11-29 东华大学 一种碳纤维增强聚酯复合材料及其制备方法
CN109385899B (zh) * 2018-09-07 2021-10-22 张家港康得新光电材料有限公司 水性碳纤维上浆剂及其制备方法
CN109369932B (zh) * 2018-10-22 2021-02-26 陕西科技大学 基于固化剂改性上浆剂提高碳纤维增强环氧树脂基复合材料界面粘结性能的方法
CN110172228B (zh) * 2019-05-23 2021-08-03 山西舜质新材料科技有限公司 一种木质素环氧树脂/碳纤维增强的抗老化复合材料

Also Published As

Publication number Publication date
CN113278173A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
CN111705509B (zh) 基于石墨烯的持久抗菌复合服装面料
CN110714332B (zh) 一种碳纤维用水性聚醚砜上浆剂及其制备方法
Goud et al. Effect of fibre content and alkali treatment on mechanical properties of Roystonea regia-reinforced epoxy partially biodegradable composites
CN104389176B (zh) 一种含有氧化石墨烯的乳液型碳纤维上浆剂及其制备方法
CN113429596B (zh) 一种上浆碳纤维布增强阻燃环氧树脂及其制备方法
CN109608822A (zh) 一种mof-5无损改性碳纤维增强树脂基湿式摩擦材料及其制备方法
CN110791237B (zh) 一种水性地毯背衬胶粘剂及其制备方法
CN113402742B (zh) 一种木质素基亲水型上浆剂的制备方法及其在环氧树脂复合材料中的应用
CN108298833A (zh) 一种改性玻璃纤维制备方法
CN112358634A (zh) 一种碳纤维/环氧树脂复合材料超低温界面性能的改性方法
CN107190513A (zh) 聚乙烯亚胺二次改性短切碳纤维的方法
CN113278173B (zh) 一种木质素基上浆剂在环氧丙烯酸酯复合材料中的应用
CN111979766A (zh) 一种增强芳纶纤维与环氧树脂界面粘结性能的方法
CN110863341A (zh) 一种pa66接枝碳纤维的制备方法
CN113717389B (zh) 一种木质素基亲水型上浆剂的制备方法及其在聚烯烃复合材料中的应用
CN113445323A (zh) 一种复合碳纳米管的木质素基上浆剂的制备方法及其在聚烯烃中的应用
CN115748231A (zh) 一种提高芳纶纤维与环氧树脂浸润性和粘接性的方法
CN113463393B (zh) 一种适用于碳纤维的水性改性氯化聚丙烯上浆剂及其制备方法和应用
CN114673008A (zh) 一种高强度户外帐篷面料及其制备方法
Nabinejad et al. Mechanical performance and moisture absorption of unidirectional bamboo fiber polyester composite
JP4924768B2 (ja) サイジング剤塗布炭素繊維の製造方法
CN114316438B (zh) 一种天然纤维增强的多孔复合材料
JP2007063709A (ja) 繊維構造物及びこれを用いてなる繊維強化樹脂組成物
Ramprasad et al. Development and comparison of cotton dust waste–jute and cotton dust waste–glass fiber reinforced epoxy based hybrid composites
CN114645465A (zh) 聚脲弹性体复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant