CN113261142A - 非水电解质二次电池的制造方法及电压检查方法 - Google Patents

非水电解质二次电池的制造方法及电压检查方法 Download PDF

Info

Publication number
CN113261142A
CN113261142A CN201980086471.XA CN201980086471A CN113261142A CN 113261142 A CN113261142 A CN 113261142A CN 201980086471 A CN201980086471 A CN 201980086471A CN 113261142 A CN113261142 A CN 113261142A
Authority
CN
China
Prior art keywords
secondary battery
charging
nonaqueous electrolyte
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980086471.XA
Other languages
English (en)
Inventor
三井翔平
向井夏彦
菅谷纯一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic New Energy Co ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of CN113261142A publication Critical patent/CN113261142A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/3865Arrangements for measuring battery or accumulator variables related to manufacture, e.g. testing after manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明的目的在于,在非水电解质二次电池的制造方法中,缩短制造时间。在本发明的一个方式的非水电解质二次电池的制造方法中,对于具备包含负极活性物质的负极、包含由通式LiaNixM(1‑x)O2(其中,0<a≤1.2,0.6≤x<1,M为选自Co、Mn、Al中的至少1种元素)表示的Li‑Ni系复合氧化物作为正极活性物质的正极、以及非水电解质的非水电解质二次电池,在首次充放电中,以充电后的开路状态下的锂基准的正极电位成为4.1~4.25V的方式实施充电。

Description

非水电解质二次电池的制造方法及电压检查方法
技术领域
本发明涉及非水电解质二次电池的制造方法及电压检查方法。
背景技术
在制造非水电解质二次电池的情况下,有时在组装后、出厂前进行首次充放电。通过在首次充放电后检查二次电池的电压,仅将电压变化判定为良好的二次电池出厂,能够防止出厂后的制品中的电压不良。专利文献1中记载了在首次充放电中的首次充电中,将充电电压设为(充满电时的开路电压(OCV)-2000mV)以上且(充满电时的开路电压-25mV)以下。
现有技术文献
专利文献
专利文献1:日本特开2014-17209号公报
发明内容
发明要解决的课题
期望缩短首次充放电中的充电时间来缩短二次电池的制造时间。然而,如果为了缩短充电时间而降低充电容量,则充电时的二次电池中的电极体的膨胀量变小,因此有可能在首次充放电中二次电池未被充分活化。
另外,在二次电池的首次充放电之后进行电压检查的情况下,为了可靠地排除不合格品而对二次电池暂时充满电,因此难以兼顾缩短电压检查所需要的时间和可靠地排除不合格品。
本发明的目的在于,在非水电解质二次电池的制造方法中,缩短制造时间。另外,本发明的目的在于,在非水电解质二次电池的电压检查方法中,在组装后,缩短电压检查所需要的时间,并且可靠地排除不合格品。
用于解决课题的手段
在本发明的非水电解质二次电池的制造方法中,对于具备包含负极活性物质的负极、包含由通式LiaNixM(1-x)O2(其中,0<a≤1.2,0.6≤x<1,M为选自Co、Mn、Al中的至少1种元素)表示的Li-Ni系复合氧化物作为正极活性物质的正极、以及非水电解质的非水电解质二次电池,在首次充放电中,以充电后的开路状态下的锂基准的正极电位成为4.1~4.25V的方式实施充电。
在本发明的非水电解质二次电池的电压检查方法中,所述非水电解质二次电池具备包含负极活性物质的负极、包含由通式LiaNixM(l-x)O2(其中,0<a≤1.2,0.6≤x<1,M为选自Co、Mn、Al中的至少1种元素)表示的Li-Ni系复合氧化物作为正极活性物质的正极、以及非水电解质,对于非水电解质二次电池,以充电后的开路状态下的锂基准的正极电位成为4.1~4.25V的方式实施充电后,测定非水电解质二次电池的电压。
发明的效果
根据本发明的非水电解质二次电池的制造方法,能够缩短制造时间。另外,根据本发明的非水电解质二次电池的电压检查方法,能够缩短电压检查所需要的时间,并且能够可靠地排除不合格品。
附图说明
图1是表示实施方式的一个例子的非水电解质二次电池的制造方法和电压检查方法的流程图。
图2是表示非水电解质二次电池的电极体中的活性物质的体积的变化比例与充电深度(SOC)的关系的图。
图3是表示实施例1~3和比较例1的非水电解质二次电池的充电时间的测定结果的图。
具体实施方式
本发明人发现,在包含上述Li-Ni系复合氧化物作为正极活性物质的非水电解质二次电池的充电时,在充满电前的规定的正极电位下电极体膨胀至最大,基于该发现解决了上述课题。
本发明中的“首次充放电”是指组装非水电解质二次电池后的伴随着首次放电的充放电,在该充放电之前,可以进行为了二次电池内的排气等而进行的部分充电、进行了部分充电的电池的陈化。即,首次充放电中的充电可以从二次电池通过首次充放电前的部分充电而具有规定的充电深度(SOC)的状态开始。
本发明中的“充电后的开路状态下的锂基准的正极电位”例如通过测定从充电结束起30分钟后的二次电池的开路电压(OCV)而算出。
以下,参照附图对本发明的实施方式进行详细说明。在以下的说明中,具体的材料、数值等是用于容易理解本发明的例示,可以与通过实施方式制造的二次电池的规格相匹配地适当变更。以下,对卷绕型的电极体收纳于圆筒形状的壳体的圆筒形电池进行说明,但电池并不限定于圆筒形,也可以是方形。另外,电极体也可以是多个正极与多个负极隔着间隔件交替层叠而成的层叠型。
[非水电解质二次电池]
非水电解质二次电池具备卷绕型的电极体、非水电解质以及收纳电极体和非水电解质的壳体。以下,非水电解质二次电池记载为二次电池。电极体具有正极、负极和间隔件,正极和负极隔着间隔件卷绕成螺旋状。非水电解质包含非水溶剂和溶解于非水溶剂中的电解质盐。
正极具有正极集电体和形成于正极集电体上的正极活性物质层。例如在正极集电体的两面形成正极活性物质层。在正极集电体中使用例如铝等金属的箔、在表层配置有该金属的膜等。优选的正极集电体是以铝或铝合金为主成分的金属的箔。正极集电体的厚度例如为10μm~30μm。正极活性物质层优选包含正极活性物质、导电剂和粘结剂。正极例如通过在正极集电体的两面涂布包含正极活性物质、导电剂、粘结剂以及N-甲基-2-吡咯烷酮(NMP)等溶剂的正极复合材料浆料后,进行干燥和压延来制作。
作为正极活性物质,使用由通式LiaNixM(1-x)O2(其中,0<a≤1.2,0.6≤x<1,M为选自Co、Mn、Al中的至少1种元素)表示的Li-Ni系复合氧化物。优选使用由通式LiaNixCoyAlzO2(其中,0<a≤1.2,0.8≤x<1,0<y<0.1,0<z<0.1,x+y+z=1)表示的Li-Ni系复合氧化物。对于上述通式中的表示Li量的“a”而言,由于在充放电中Li量发生变化,所以设为0<a≤1.2,但如果是刚制作正极活性物质后,则a优选满足0.95≤a≤1.2。
作为上述导电剂的例子,可举出炭黑(CB)、乙炔黑(AB)、科琴黑、石墨等碳材料等。作为上述粘结剂的例子,可举出聚四氟乙烯(PTFE)、聚偏二氟乙烯(PVdF)等氟系树脂、聚丙烯腈(PAN)、聚酰亚胺(PI)、丙烯酸系树脂、聚烯烃系树脂等。另外,也可以将这些树脂与羧甲基纤维素(CMC)或其盐、聚环氧乙烷(PEO)等并用。这些可以单独使用1种,也可以组合使用2种以上。
负极具有负极集电体和形成于负极集电体上的负极活性物质层。例如,在负极集电体的两面形成负极活性物质层。负极集电体例如包含铜等金属箔。负极集电体的厚度例如为5μm~30μm。负极活性物质层优选包含负极活性物质和粘结剂。负极例如通过将包含负极活性物质、粘结剂和水等的负极合剂浆料涂布于负极集电体的两面后,进行干燥和压延来制作。
作为负极活性物质,只要是能够可逆地吸藏、放出锂离子的物质就没有特别限定,例如可以使用天然石墨、人造石墨等碳材料、Si、Sn等与锂合金化的金属、或包含它们的合金、复合氧化物等。优选负极包含石墨与相对于负极活性物质的总质量为0~10质量%的含Si材料的混合物作为负极活性物质。负极活性物质层中所含的粘结剂中例如使用与正极的情况相同的树脂。在用水系溶剂制备负极合剂浆料时,可以使用苯乙烯-丁二烯橡胶(SBR)、CMC或其盐、聚丙烯酸或其盐、聚乙烯醇等。这些可以单独使用1种,也可以组合使用2种以上。
间隔件中可以使用具有离子透过性和绝缘性的多孔性片材。作为多孔性片材的具体例,可举出微多孔薄膜、织造布、无纺布等。作为间隔件的材质,优选聚乙烯、聚丙烯等烯烃树脂。间隔件的厚度例如为10μm~50μm。
[二次电池的制造方法和电压检查方法]
接下来,说明二次电池的制造方法和电压检查方法。图1是表示实施方式的一个例子的非水电解质二次电池的制造方法和电压检查方法的流程图。二次电池的制造方法包括电池组装工序(S10)和首次充放电工序(S12、S14)。二次电池的电压检查方法具有首次充放电工序(S12、S14)和检查二次电池的电压的电压测定工序(S16)。
在步骤S10中,组装二次电池。例如,在圆筒形电池的情况下,将在使正极与负极隔着间隔件对置的状态下卷绕而成的电极体插入到有底筒状的壳体主体中,然后,注入电解液并用封口体密封壳体主体的开口部,由此组装电池。
接下来,在步骤S12中,将电池连接到充电电路,进行首次充放电工序中的充电。这时,以充电后的开路状态下的锂基准的正极电位成为4.1~4.25V的方式实施充电。锂基准的正极电位的4.1~4.25V在二次电池中对应于75~95%的充电深度(SOC)。由此,在步骤S12中,能够以充电深度成为75~95%的方式对二次电池进行充电。更优选的是,在步骤S12中,以充电后的开路状态下的锂基准的正极电位成为4.208~4.218V的方式实施充电。4.208~4.218V的锂基准的正极电位在二次电池中对应于90~92%的充电深度(SOC)。需要说明的是,充电后的开路状态下的锂基准的正极电位可以基于二次电池的电压来控制。
在步骤S12中,可以仅进行恒流充电(CC充电),也可以进行恒流恒压充电(CCCV充电)。在步骤S12中,也可以进行阶段性地切换CC充电的电流值的多段CC充电。
在步骤S12中,如后所述,能够使二次电池的电极体膨胀至最大程度。由此,能够使组装后的二次电池充分活化。另外,由于不将二次电池充电至与充满电对应的锂基准的正极电位,所以能够缩短步骤S12的时间。由此,能够缩短二次电池的制造时间。
在步骤S12之后,在步骤S14中进行二次电池的放电。在步骤S14中,优选将放电终止电压设为2.5V以上且3.5V以下。在步骤S14之后,进行步骤S16的电压测定。电压测定例如优选在步骤S14之后将二次电池放置规定时间后进行测定。可以基于该测定值来检查二次电池的状态。另外,也可以测定紧接在步骤S14之后的二次电池的电压。通过经过步骤S12,电极体充分膨胀,因此能够在包括步骤S12至步骤S16的电压检查工序中可靠地排除电压降低大的不合格品。与将二次电池充满电的情况相比,步骤S12的充电时间被缩短。因此,上述电压检查工序能够兼顾缩短所需时间和可靠地排除不合格品。需要说明的是,在步骤S14与步骤S16之间可以进行二次电池的陈化等。
根据上述二次电池的制造方法,能够缩短制造时间。另外,根据上述二次电池的电压检查方法,能够兼顾缩短电压检查工序所需时间和可靠地排除不合格品。对成为发现这些制造方法和电压检查方法的基础的见解进行说明。图2是表示二次电池的电极体中的活性物质的体积的变化比例与充电深度(SOC)的关系的图。本发明人通过使用了X射线衍射装置(XRD)的X射线衍射法,在具有包含由通式LiaNixM(1-x)O2表示的Li-Ni系复合氧化物的正极活性物质的二次电池中,计算了伴随着SOC的变化的正极和负极的晶格常数的变化。然后,本发明人根据正极和负极的容积变化的估算,计算了电极体的正负极活性物质体积(正极和负极的活性物质体积之和)的变化比例。在图2中,横轴表示SOC,纵轴表示以SOC为0%时的正负极活性物质体积为基准,将最大膨胀时的正负极活性物质体积的膨胀量设为100%时的正负极活性物质体积的变化比例(膨胀比例)。
本发明人发现,如图2所示,正负极活性物质体积的变化比例在充电深度(SOC)为75~95%的范围内达到最大程度。其原因在于,如果二次电池的充电深度从0%增大,则负极活性物质体积由于Li的插入而大致直线状地增大,另一方面,正极活性物质体积由于Li的脱离而在充电深度增大的过程中逐渐减小,但在一定充电深度(SOC)以后急剧减少。基于该见解,本发明人发现了上述的制造方法和电压检查方法。
[实施例]
接下来,在利用实施方式的制造方法对二次电池进行充电的情况下,为了确认能够缩短充电时间,对实施例1~3和比较例1测定了各自的充电条件下的充电时间。在实施例1~3和比较例1中使用相同结构的二次电池,变更首次充放电的充电方法。
[实施例1]
作为二次电池,使用包含卷绕型的电极体的圆筒形非水电解质二次电池。二次电池的正极中,作为正极活性物质,使用由LiNi0.88Co0.075Al0.045O2表示的锂镍钴铝复合氧化物。负极使用Si氧化物与石墨的混合物作为负极活性物质。非水电解质使用非水电解液。
如表1所示,在实施例1中,在组装后的首次充电中,在25℃的环境下仅进行0.4C下的恒流充电(CC充电)。此时,1C=4000mA。充电以二次电池的充电深度(SOC)成为90%的方式进行。充电后的二次电池的开路电压为4.108V,此时的锂基准的正极电位为4.208V。在表1示出后述的实施例2、3和比较例1的测定结果以及实施例1的测定结果。
[表1]
Figure BDA0003132948650000071
[实施例2]
在实施例2中,在组装后的首次充电中进行了恒流恒压充电(CCCV充电)。在CC充电中,进行阶段性地减小电流值的多段CC充电。多段CC充电中的截止电压(终止电压)设为4.164V。然后,进行将截止电流(终止电流)设为0.2C的CV充电。充电后的二次电池的开路电压为4.106V,此时的锂基准正极电位为4.206V。二次电池的SOC为89%。
[实施例3]
在实施例3中,在组装后的首次充电中仅进行了与实施例2相同的多段CC充电。多段CC充电中的截止电压(终止电压)为4.2V。充电后的二次电池的开路电压为4.108V,此时的锂基准正极电位为4.208V。二次电池的SOC为90%。
[比较例1]
在比较例1中,在组装后的首次充电中进行了恒流恒压充电(CCCV充电)。在CC充电中,不进行多段CC充电,而仅进行0.4C的CC充电。CC充电中的截止电压(终止电压)设为4.2V。然后,进行将截止电流没为0.02C的CV充电。充电后的二次电池的开路电压为4.184,此时的锂基准正极电位为4.284V。二次电池的SOC为100%。
图3以图表表示实施例1~3和比较例1的充电时间的测定结果。在图3中,斜线部表示CC充电,砂点部表示CV充电。根据表1和图3所示的结果可知,在实施例1~3中,与比较例1相比,充电时间被大幅缩短。尤其可知:在像实施例2、3那样进行了多段CC充电的情况下,能够以相对于比较例1的充电方法中的充电时间为一半以下的充电时间进行充电,能够进一步缩短充电时间。

Claims (4)

1.一种非水电解质二次电池的制造方法,其中,对于具备包含负极活性物质的负极、包含由通式LiaNixM(1-x)O2表示的Li-Ni系复合氧化物作为正极活性物质的正极、以及非水电解质的非水电解质二次电池,在首次充放电中,以充电后的开路状态下的锂基准的正极电位成为4.1V~4.25V的方式实施充电,上述通式中,0<a≤1.2,0.6≤x<1,M为选自Co、Mn、Al中的至少1种元素。
2.根据权利要求1所述的非水电解质二次电池的制造方法,其中,
所述负极活性物质包含石墨和硅化合物,
相对于所述负极活性物质的总质量,所述硅化合物的含量超过0质量%且为20质量%以下。
3.根据权利要求1或2所述的非水电解质二次电池的制造方法,其中,
所述Li-Ni系复合氧化物由通式LiaNixCoyAlzO2表示,通式中,0<a≤1.2,0.8≤x<1,0<y<0.1,0<z<0.1,x+y+z=1。
4.一种非水电解质二次电池的电压检查方法,其中,所述非水电解质二次电池具备包含负极活性物质的负极、包含由通式LiaNixM(1-x)O2表示的Li-Ni系复合氧化物作为正极活性物质的正极、以及非水电解质,其中,0<a≤1.2,0.6≤x<1,M为选自Co、Mn、Al中的至少1种元素,
对于所述非水电解质二次电池,以充电后的开路状态下的锂基准的正极电位成为4.1V~4.25V的方式实施充电后,测定所述非水电解质二次电池的电压。
CN201980086471.XA 2018-12-28 2019-12-17 非水电解质二次电池的制造方法及电压检查方法 Pending CN113261142A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018-246743 2018-12-28
JP2018246743 2018-12-28
PCT/JP2019/049496 WO2020137717A1 (ja) 2018-12-28 2019-12-17 非水電解質二次電池の製造方法及び電圧検査方法

Publications (1)

Publication Number Publication Date
CN113261142A true CN113261142A (zh) 2021-08-13

Family

ID=71127966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980086471.XA Pending CN113261142A (zh) 2018-12-28 2019-12-17 非水电解质二次电池的制造方法及电压检查方法

Country Status (4)

Country Link
EP (1) EP3905415A4 (zh)
JP (1) JPWO2020137717A1 (zh)
CN (1) CN113261142A (zh)
WO (1) WO2020137717A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232002A (ja) * 1996-02-20 1997-09-05 Sony Corp 非水電解液二次電池
CN101901933A (zh) * 2009-05-28 2010-12-01 索尼公司 非水电解液、正极和非水电解质二次电池
CN103367808A (zh) * 2012-03-27 2013-10-23 Tdk株式会社 锂离子二次电池
US20150280208A1 (en) * 2014-03-26 2015-10-01 Hitachi, Ltd. Method and apparatus for manufacturing negative electrode for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2016151979A1 (ja) * 2015-03-24 2016-09-29 三洋電機株式会社 非水電解質二次電池用負極及び非水電解質二次電池
JP2017106867A (ja) * 2015-12-11 2017-06-15 トヨタ自動車株式会社 二次電池の製造方法
CN107078340A (zh) * 2014-12-26 2017-08-18 三洋电机株式会社 非水电解质二次电池
CN107408725A (zh) * 2015-02-27 2017-11-28 三洋电机株式会社 非水电解质二次电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014017209A (ja) 2012-07-11 2014-01-30 Mitsubishi Paper Mills Ltd リチウムイオン二次電池の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232002A (ja) * 1996-02-20 1997-09-05 Sony Corp 非水電解液二次電池
CN101901933A (zh) * 2009-05-28 2010-12-01 索尼公司 非水电解液、正极和非水电解质二次电池
CN103367808A (zh) * 2012-03-27 2013-10-23 Tdk株式会社 锂离子二次电池
US20150280208A1 (en) * 2014-03-26 2015-10-01 Hitachi, Ltd. Method and apparatus for manufacturing negative electrode for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
CN107078340A (zh) * 2014-12-26 2017-08-18 三洋电机株式会社 非水电解质二次电池
CN107408725A (zh) * 2015-02-27 2017-11-28 三洋电机株式会社 非水电解质二次电池
WO2016151979A1 (ja) * 2015-03-24 2016-09-29 三洋電機株式会社 非水電解質二次電池用負極及び非水電解質二次電池
JP2017106867A (ja) * 2015-12-11 2017-06-15 トヨタ自動車株式会社 二次電池の製造方法

Also Published As

Publication number Publication date
EP3905415A1 (en) 2021-11-03
US20220093982A1 (en) 2022-03-24
WO2020137717A1 (ja) 2020-07-02
EP3905415A4 (en) 2022-03-02
JPWO2020137717A1 (ja) 2021-11-11

Similar Documents

Publication Publication Date Title
US11245133B2 (en) High energy density, high power density, high capacity, and room temperature capable rechargeable batteries
US10637097B2 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly
KR101900146B1 (ko) 리튬 이온 이차 전지의 제조 방법
US20140170487A1 (en) Lithium-ion secondary battery
KR102267599B1 (ko) 전극 슬러리의 공정성 예측 및 전극 바인더 선정 방법
WO2010030894A1 (en) Split charge forming process for battery
CN114982035A (zh) 电池组、电池包、电学装置以及电池组的制造方法及制造设备
CN115842162A (zh) 锂金属二次电池及电解液
KR102268078B1 (ko) 리튬 이차전지용 전극의 설계 방법 및 이를 포함하는 리튬 이차전지용 전극의 제조방법
US11081700B2 (en) Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP6627621B2 (ja) リチウムイオン二次電池の出力評価方法
JP4026351B2 (ja) 負極集電体およびこの集電体を用いた負極板と非水電解液二次電池
JP2012252839A (ja) 非水電解質二次電池の製造方法
JP6573150B2 (ja) 蓄電素子
JP2017195059A (ja) 蓄電素子の出力の回復方法
EP4287313A1 (en) Charging method for non-aqueous electrolyte secondary battery, charging/discharging method, and charging system for non-aqueous electrolyte secondary battery
WO2017144117A1 (en) Lithium-ion battery formation process
CN107636882B (zh) 非水电解质二次电池
US20230378792A1 (en) Secondary battery charging method and charging system
CN113261142A (zh) 非水电解质二次电池的制造方法及电压检查方法
KR101977973B1 (ko) 급속 충전이 가능한 음극, 이를 포함한 이차전지 및 그 제조 방법
US12027677B2 (en) Method for manufacturing non-aqueous-electrolyte secondary cell, and voltage detection method
CN117203821A (zh) 二次电池制造方法
CN114902468A (zh) 激活二次电池的方法
CN108292752B (zh) 蓄电元件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20230718

Address after: Osaka, Japan

Applicant after: Panasonic New Energy Co.,Ltd.

Address before: Japan Osaka

Applicant before: Sanyo Electric Co.,Ltd.

TA01 Transfer of patent application right