CN113255076A - 一种球头铣刀垂直加工时刀-工切触区域的识别方法 - Google Patents

一种球头铣刀垂直加工时刀-工切触区域的识别方法 Download PDF

Info

Publication number
CN113255076A
CN113255076A CN202110579755.1A CN202110579755A CN113255076A CN 113255076 A CN113255076 A CN 113255076A CN 202110579755 A CN202110579755 A CN 202110579755A CN 113255076 A CN113255076 A CN 113255076A
Authority
CN
China
Prior art keywords
cutter
cutting
angle
point
tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110579755.1A
Other languages
English (en)
Other versions
CN113255076B (zh
Inventor
董永亨
李淑娟
张倩
李鹏阳
李旗
李言
张晋宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN202110579755.1A priority Critical patent/CN113255076B/zh
Publication of CN113255076A publication Critical patent/CN113255076A/zh
Application granted granted Critical
Publication of CN113255076B publication Critical patent/CN113255076B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • Operations Research (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Numerical Control (AREA)
  • Milling Processes (AREA)

Abstract

本发明公开了一种球头铣刀垂直加工时刀‑工切触区域的识别方法,包括:分别建立刀齿j的局部坐标系、球头铣刀坐标系、主轴随动坐标系、刀具瞬时进给坐标系、工件坐标系,基于齐次坐标变换原理得到球头铣刀加工过程中刀齿上任意点在工件坐标系下的轨迹方程;根据球头铣刀加工过程中刀齿上任意点在工件坐标系下的轨迹方程,确定参与切削的刀齿轴向位置区间及其径向位置区间,即可得到球头铣刀的刀‑工切触区域。采用解析的方法求解出刀齿切削点的切入位置,并分三种情况解析求解出刀齿切削点的切出位置,进而求解出切入角和切出角,有效克服了球面假设法在球头铣刀垂直铣削刀‑工切触区域识别中的原理性误差。

Description

一种球头铣刀垂直加工时刀-工切触区域的识别方法
技术领域
本发明属于机械加工方法技术领域,涉及一种球头铣刀垂直加工时刀-工切触区域的识别方法。
背景技术
球头铣刀广泛应用于模具、汽车和航空航天等行业中相关零件的复杂表面铣削中,为了深入地研究球头铣刀的铣削机理,其切削力/动力学方面的建模引起了研究者的广泛关注,而刀具和工件接触区域(简称刀-工切触区域)的识别是切削力/动力学方面的建模的基础和关键,然而,由于刀具刃形复杂,加之姿态调整和跳动误差等因素的影响,球头铣刀铣削中的刀-工切触区域识别的难度较大,刀-工切触区域识别的准确程度和计算效率直接影响着切削力/动力预测的精度和效率。目前,刀具接触区模型可大致分为实体法、Z-MAP离散法和(半)解析法三类。有学者用基于边界表示法(B-rep)的实体布尔运算提取了球头铣刀加工曲面的刀-工切触区域,用基于UG软件的实体造型技术表示了工件、刀具扫描体以及被切除材料实体等,用分段三次NURBS曲线表示刀具切削刃,通过NURBS曲线和被切除材料实体之间的求交运算,确定了刀-工切触区域。然而,实体法需要计算刀具扫描体和工件的求交,计算效率低,使用刀具扫描体的扫掠包络面简化刀具的真实扫掠体,忽略刀齿上切削点的余摆线运动,具有一定的误差。有学者基于Z-MAP法识别了球头铣刀加工时刀-工瞬时切触状态,考虑了不同铣削方式所对应的刀具姿态调整。然而,Z-MAP离散法存在精度和效率平衡的问题,在一定程度上影响了识别效果。有学者用半解析法研究了球头铣刀铣削刀-工切触区域,并考虑到刀具的跳动,兼顾了效率和精度,然而,在计算三轴铣削情况下不同刀齿点切削轨迹的交点的进给方向的坐标时,实际并没有考虑到偏心的影响,而在五轴铣削的情况中,将扫掠面始终等效为以刀具球头半径为半径的球面,也没有考虑到偏心的影响,从而导致了一定的误差。
发明内容
本发明的目的是提供一种球头铣刀垂直加工时刀-工切触区域的识别方法,解决了现有技术中存在的现有识别方法存在误差的问题。
本发明所采用的技术方案是,一种球头铣刀垂直加工时刀-工切触区域的识别方法,包括以下步骤:
步骤1、分别建立刀齿j的局部坐标系、球头铣刀坐标系、主轴随动坐标系、刀具瞬时进给坐标系、工件坐标系,基于齐次坐标变换原理得到球头铣刀加工过程中刀齿上任意点在工件坐标系下的轨迹方程;
步骤2、根据球头铣刀加工过程中刀齿上任意点在工件坐标系下的轨迹方程,确定参与切削的刀齿轴向位置区间及其径向位置区间,即可得到球头铣刀的刀-工切触区域;刀齿轴向位置区间根据{j}下最小轴向位置角θmin、最大轴向位置角θmax确定,刀齿径向位置区间根据切入、切出时的径向位置角确定,即切入角φst和切出角φex
本发明的特点还在于:
步骤2具体包括以下步骤:
步骤2.1、计算刀齿轴向位置区间根据{j}下最小轴向位置角θmin、最大轴向位置角θmax
步骤2.2、计算相邻两个刀齿上的离散点i之间的容屑角;
步骤2.3、计算切削过程中t时刻刀齿上的切削点P在{A}中的坐标值及其在t时刻的径向位置角φP
步骤2.4、结合相邻两个刀齿上的离散点i之间的容屑角、t时刻刀齿上的切削点P在t时刻的径向位置角、刀齿j上离散点i的切入位置,计算刀齿j上离散点i的{A}中
Figure BDA0003085610700000031
Figure BDA0003085610700000032
方向的切入角;
步骤2.5、根据刀齿切削点的回转直径预相邻两齿之间的实际进给量、行距之间的关系,结合切削过程中t时刻刀齿上的切削点P在{A}中的坐标值,计算刀齿上不同轴向位置切削点P的切出角。
步骤1具体包括以下步骤:
步骤1具体包括以下步骤:
步骤1.1、以球头铣刀的球头中心为坐标原点Oj,建立刀齿j的局部坐标系Oj-XjYjZj,简称{j};
球头铣刀的任意刀齿j上任意点P在局部坐标系{j}中的坐标为:
Figure BDA0003085610700000033
式中,θ为点P的轴向位置角,R为刀具半径,ψ为点P对应的螺旋滞后角,ψ=180tanγ0(1-cosθ)/π,其中γ0为圆柱面上刀齿刃口曲线的螺旋角;
步骤1.2、以球头铣刀的球头中心为坐标原点OC,建立球头铣刀坐标系OC-XCYCZC,简称{C};
刀齿j与基准刀齿的夹角φj=360(j-1)/nt,其中,nt为刀齿总数,则局部坐标系{j}相对于球头铣刀坐标系{C}的齐次坐标变换矩阵为:
Figure BDA0003085610700000041
步骤1.3、以主轴中心为坐标原点OA,在机床主轴上建立主轴随动坐标系OA-XAYAZA,简称{A},坐标轴
Figure BDA0003085610700000042
与主轴轴线重合;
假设坐标原点OC和坐标原点OA之间的偏心距离为ρ,矢量
Figure BDA0003085610700000043
相对于坐标轴
Figure BDA0003085610700000044
的夹角为μ,且规定绕坐标轴
Figure BDA0003085610700000045
顺时针旋转方向为正,主轴顺时针方向旋转,t时刻旋转过的角度φC=180ωt/π,则球头铣刀坐标系{C}相对于主轴随动坐标系{A}的齐次坐标变换矩阵为:
Figure BDA0003085610700000046
式中,μ=μ0C,其中,μ0为初始状态下
Figure BDA0003085610700000047
Figure BDA0003085610700000048
的初始夹角;
步骤1.4、建立刀具瞬时进给坐标系OCL-XCLYCLZCL为,简称{CL},坐标轴矢量
Figure BDA0003085610700000049
与进给速度方向平行且同向,
Figure BDA00030856107000000410
为理想的被加工表面的法线方向,指向实体外,
Figure BDA00030856107000000411
Figure BDA00030856107000000412
Figure BDA00030856107000000413
的叉乘;
先使{A}绕
Figure BDA00030856107000000414
旋转角度β',使β'=arctan(tanβcosα),再使{A}绕
Figure BDA00030856107000000415
旋转角度α,且定义绕各自参考方向的正方向逆时针旋转为正,则刀具侧倾和前倾的齐次坐标变换矩阵分别为
Figure BDA00030856107000000416
Figure BDA0003085610700000054
则主轴随动坐标系{A}相对于刀具瞬时进给坐标系{CL}的齐次坐标变换矩阵为:
Figure BDA0003085610700000051
步骤1.5、在工件上建立全局坐标系OW-XWYWZW,简称{W},假定进给时OCL在{W}的坐标为(xCL,yCL,zCL),将单向直线进给铣削平面作为研究对象,则{CL}相对于{W}的齐次坐标变换矩阵为:
Figure BDA0003085610700000052
式中,(x0,y0)为首次进给时OCL在{W}中的起始位置,q为刀具进给次数(q=1,2,3…),t为刀具从第1次走刀开始至当前位置所用时间,fz为每齿进给量,fp为进给行距,L为单次走刀长度,R为刀具半径,wh为毛坯高度,ap为吃刀深度;
结合公式(1)-(6)及(8),通过齐次坐标矩阵变换可得到球头铣刀加工过程中刀齿j上任意点P在{W}下的轨迹方程为:
Figure BDA0003085610700000053
步骤2.1具体包括以下步骤:
步骤2.1中,当球头铣刀垂直加工时,侧倾角α和前倾角β均为0°,刀齿作用的最小轴向位置角为0°,而最大轴向位置角为:
Figure BDA0003085610700000061
步骤2.2具体包括以下过程:
设刀齿上任意点P对应的离散点的序号为i,则刀齿j上的点P在{A}中的齐次坐标为:
Figure BDA0003085610700000062
式中,
Figure BDA0003085610700000069
为不考虑主轴旋转仅考虑刀具偏心情况下的{C}相对于{A}的变换矩阵,
Figure BDA0003085610700000063
为刀齿j上的离散点i在{j}中的坐标;
刀齿j上的离散点i相对于坐标轴
Figure BDA0003085610700000064
的回转半径为其实际切削半径
Figure BDA0003085610700000065
在μ0=0的情况下,由式(10)可得:
Figure BDA0003085610700000066
则基准刀齿上离散点i的实际螺旋滞后角为:
Figure BDA0003085610700000067
式中,ψi、θi为理想的刀齿离散点i的螺旋滞后角、轴向位置角;
刀齿j上离散点i的实际切削半径矢量
Figure BDA0003085610700000068
则相邻刀齿j-1、j上的离散点i之间的容屑角为:
Figure BDA0003085610700000071
其中,当j=1时,j-1=0,此时,用nt代替j-1,即,
Figure BDA0003085610700000072
步骤2.3具体包括以下过程:
规定顺时针方向为正,将公式(9)的计算结果带入公式(16),求出切削过程中t时刻刀齿上的切削点P在{A}中的坐标值,再通过公式(17)求出切削点P在t时刻的径向位置角φP
Figure BDA0003085610700000073
Figure BDA0003085610700000074
式中,
Figure BDA0003085610700000075
Figure BDA0003085610700000076
的反正切函数,其主值域为(-180°,180°)。
步骤2.4具体包括以下过程:
根据不同刀齿上具有相同实际轴向位置角的离散点的切削运动轨迹,计算刀齿j上离散点i的切入位置距其径向位置角为0的位置在进给方向的距离Δxj,i为:
Figure BDA0003085610700000077
假定在进给起始位置处{C}的坐标轴
Figure BDA0003085610700000078
与{A}的坐标轴
Figure BDA0003085610700000079
重合,则刀齿j上离散点i的切入位置在{W}中
Figure BDA00030856107000000710
方向的坐标为:
Figure BDA00030856107000000711
式中,k为从每行进给起始位置开始到当前位置主轴旋转圈数的整数部分,k=0,1,2…;
考虑实际加工中每个刀齿切削点的运动具有周期性,令k=0,结合式(9)和式(19)得:
Figure BDA0003085610700000081
通过式(20)可求出切削时刻t,并将其带入式(16)求出刀齿j上离散点i的切入位置
Figure BDA0003085610700000082
在坐标系{A}中
Figure BDA0003085610700000083
Figure BDA0003085610700000084
方向的坐标
Figure BDA0003085610700000085
带入公式(17)得到刀齿j上离散点i的切入角:
Figure BDA0003085610700000086
步骤2.5具体包括以下过程:
由于刀齿上不同轴向位置切出工件的情况不同,刀齿上的切削点P的切出角不同,包括以下三种情况:
A、刀齿切削点的回转直径大于行距,即
Figure BDA0003085610700000087
将刀齿上第i离散点扫掠面用其包络面代替,该包络面为柱状面,其轴线平行于进给方向,刀齿上第i离散点扫掠面的半径为与该离散点所对应轴向位置相等所有刀齿中最大工作半径,如公式(22)所示:
Figure BDA0003085610700000088
则刀齿j上离散点i的切出角为:
Figure BDA0003085610700000089
B、刀齿切削点的回转直径介于相邻两齿之间的实际进给量和行距之间,即
Figure BDA0003085610700000091
相对于切入位置附近的径向位置角为0处,刀齿切削点切出之前经过径向位置角为180°处,并且距该位置的距离也为Δxj,i,于是得下式
Figure BDA0003085610700000092
同样,通过求解上式可求出切削时刻t,带入公式(16)可得
Figure BDA0003085610700000093
此时刀齿j上离散点i的切出角为:
Figure BDA0003085610700000094
C、刀齿切削点的回转直径小于等于相邻两齿之间的实际进给量,即
Figure BDA0003085610700000095
刀齿切削点从其轨迹自交点位置切出,该自交点相对于径向位置角为0的位置在进给方向的距离为ntfz/2,可得下式
Figure BDA0003085610700000096
同样,通过求解上式可求出切削时刻t,带入(16)可得
Figure BDA0003085610700000097
考虑到其径向位置角大于270°,此时刀齿j上离散点i的切出角为:
Figure BDA0003085610700000098
本发明的有益效果是:
本发明一种球头铣刀垂直加工时刀-工切触区域的识别方法,考虑刀具偏心的作用,计算刀具旋转时相邻两齿间的容屑角,减小了识别误差;充分考虑到垂直加工情况中靠近刀头位置刀齿扫掠表面与球面相差甚远的客观情况,采用解析的方法求解出刀齿切削点的切入位置,并分三种情况解析求解出刀齿切削点的切出位置,进而求解出切入角和切出角,有效克服了球面假设法在球头铣刀垂直铣削刀-工切触区域识别中的原理性误差;基于用齐次坐标变换原理建立球头铣刀加工过程中刀齿运动学模型的基础上,采用正逆变换相结合的方法求解出相应的刀齿切入、切出点坐标,进而求解出切入、切出角,相比现有方面,具有逻辑清楚、通用性强等优点。
附图说明
图1是本发明一种球头铣刀垂直加工时刀-工切触区域的识别方法的球头铣刀铣削运动的参考坐标系图;
图2a是本发明一种球头铣刀垂直加工时刀-工切触区域的识别方法的螺旋刃球头铣刀的铣削轨迹轴测图;
图2b是本发明一种球头铣刀垂直加工时刀-工切触区域的识别方法的铣削轨迹俯视图;
图3a是本发明一种球头铣刀垂直加工时刀-工切触区域的识别方法的考虑刀具跳动的坐标系的轴测图;
图3b是本发明一种球头铣刀垂直加工时刀-工切触区域的识别方法的考虑刀具跳动的坐标系的俯视图;
图4是本发明一种球头铣刀垂直加工时刀-工切触区域的识别方法的刀具的姿态调整及走刀轨迹图;
图5a是本发明一种球头铣刀垂直加工时刀-工切触区域的识别方法中切削状态图;
图5b是本发明一种球头铣刀垂直加工时刀-工切触区域的识别方法中刀齿离散点的轨迹图;
图6a是本发明一种球头铣刀垂直加工时刀-工切触区域的识别方法中切削区域划分图;
图6b是本发明一种球头铣刀垂直加工时刀-工切触区域的识别方法中第一种情况的刀齿轨迹;
图6c是本发明一种球头铣刀垂直加工时刀-工切触区域的识别方法中第二种情况的刀齿轨迹;
图6d是本发明一种球头铣刀垂直加工时刀-工切触区域的识别方法中第三种情况的刀齿轨迹。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
一种球头铣刀垂直加工时刀-工切触区域的识别方法,包括以下步骤:
步骤1、如图1所示,分别建立刀齿j的局部坐标系、球头铣刀坐标系、主轴随动坐标系、刀具瞬时进给坐标系、工件坐标系,基于齐次坐标变换原理得到球头铣刀加工过程中刀齿j上任意点在工件坐标系下的轨迹方程;
步骤1.1、以球头铣刀的球头中心为坐标原点Oj,建立刀齿j的局部坐标系Oj-XjYjZj,简称{j},坐标轴
Figure BDA0003085610700000111
与刀齿j的刃线在坐标平面
Figure BDA0003085610700000112
上投影线起点的切线方向重合;
如图2所示,以实际生产中广泛应用的定导程螺旋刃球头铣刀的铣削为研究对象,球头铣刀的任意刀齿j上任意点P在局部坐标系{j}中的坐标为:
Figure BDA0003085610700000113
式中,θ为点P的轴向位置角,R为刀具半径,ψ为点P对应的螺旋滞后角,ψ=180tanγ0(1-cosθ)/π,其中γ0为圆柱面上刀齿刃口曲线的螺旋角;
步骤1.2、以球头铣刀的球头中心为坐标原点OC,建立球头铣刀坐标系OC-XCYCZC,简称{C},且坐标轴
Figure BDA0003085610700000121
Figure BDA0003085610700000122
完全一致,
Figure BDA0003085610700000123
与刀具的理论轴线重合,且与
Figure BDA0003085610700000124
始终保持平行,
Figure BDA0003085610700000125
与基准刀齿(第一个刀齿)刃线在坐标平面OCXCYC上投影线起点的切线方向重合;
刀齿j与基准刀齿的夹角φj=360(j-1)/nt,其中,nt为刀齿总数,则局部坐标系{j}相对于球头铣刀坐标系{C}的齐次坐标变换矩阵为:
Figure BDA0003085610700000126
步骤1.3、以主轴中心为坐标原点OA,在机床主轴上建立主轴随动坐标系OA-XAYAZA,简称{A},坐标轴
Figure BDA0003085610700000127
与主轴轴线重合,坐标轴
Figure BDA0003085610700000128
Figure BDA0003085610700000129
之间的夹角为μ0C0为主轴未开始旋转的初始状态下两者之间的夹角,φC为t时刻主轴旋转过的角度,φC=ωt);
由于制造和装夹误差等因素的影响,刀具的中心轴线与主轴的中心轴线之间总存在偏心,如图3所示。假设坐标原点OC和坐标原点OA之间的偏心距离为ρ,矢量
Figure BDA00030856107000001210
相对于坐标轴
Figure BDA00030856107000001211
的夹角为μ,且规定绕坐标轴
Figure BDA00030856107000001212
顺时针旋转方向为正,主轴顺时针方向旋转,其转速为N,则角速度ω=πN/30,t时刻旋转过的角度φC=180ωt/π,则球头铣刀坐标系{C}相对于主轴随动坐标系{A}的齐次坐标变换矩阵为:
Figure BDA00030856107000001213
式中,μ=μ0C,其中,μ0为初始状态下
Figure BDA00030856107000001214
Figure BDA00030856107000001215
的初始夹角;本实施例中设定μ0=0;
步骤1.4、建立刀具瞬时进给坐标系OCL-XCLYCLZCL为,简称{CL},坐标轴矢量
Figure BDA0003085610700000131
与进给速度方向平行且同向,
Figure BDA0003085610700000132
为理想的被加工表面的法线方向,指向实体外,
Figure BDA0003085610700000133
Figure BDA0003085610700000134
Figure BDA0003085610700000135
的叉乘;当
Figure BDA0003085610700000136
Figure BDA0003085610700000137
完全重合时,该坐标系的另外两个坐标轴及其方向与{CL}的完全重合,但是,实际工况当刀具姿态调整时,
Figure BDA0003085610700000138
Figure BDA0003085610700000139
之间存在夹角,体现为刀具相对于工件被加工表面的侧倾和前倾。如图4所示,所以通过使{A}通过相对于
Figure BDA00030856107000001310
Figure BDA00030856107000001311
的旋转实现主轴姿态的调整,进而实现刀具姿态的调整,从而获得不同的铣削方式,具体如下:
坐标轴矢量
Figure BDA00030856107000001312
方向为刀具进给方向,
Figure BDA00030856107000001313
为刀具间歇进给方向,主轴随动坐标系{A}分别绕这两个坐标轴矢量旋转实现主轴姿态的调整。主轴姿态调整后坐标系{A}的坐标轴矢量
Figure BDA00030856107000001314
在坐标平面YCLOCLZCL上的投影线与坐标轴矢量
Figure BDA00030856107000001315
间的夹角,称为侧倾角,用α表示;坐标轴矢量
Figure BDA00030856107000001316
在坐标平面XCLOCLZCL上的投影与坐标轴矢量
Figure BDA00030856107000001317
之间的夹角,称为前倾角,用β表示。先使{A}绕
Figure BDA00030856107000001318
旋转角度β',使β'=arctan(tanβcosα),再使{A}绕
Figure BDA00030856107000001319
旋转角度α,且定义绕各自参考方向的正方向逆时针旋转为正,则刀具侧倾和前倾的齐次坐标变换矩阵分别为
Figure BDA00030856107000001320
Figure BDA00030856107000001321
则主轴随动坐标系{A}相对于刀具瞬时进给坐标系{CL}的齐次坐标变换矩阵为:
Figure BDA0003085610700000141
步骤1.5、在工件上建立全局坐标系OW-XWYWZW,简称{W},假定进给时OCL在{W}的坐标为(xCL,yCL,zCL),则{CL}相对于{W}的齐次坐标变换矩阵为:
Figure BDA0003085610700000142
式中,
Figure BDA0003085610700000143
Figure BDA0003085610700000144
分别表示坐标轴
Figure BDA0003085610700000145
Figure BDA0003085610700000146
上的单位矢量,下标x、y和z表示各矢量在
Figure BDA0003085610700000147
Figure BDA0003085610700000148
上的投影矢量;
本实施例将单向直线进给铣削平面作为研究对象,则{CL}相对于{W}的齐次坐标变换矩阵为:
Figure BDA0003085610700000149
式中,(x0,y0)为首次进给时OCL在{W}中的起始位置,q为刀具进给次数(q=1,2,3…),t为刀具从第1次走刀开始至当前位置所用时间,fz为每齿进给量,fp为进给行距,L为单次走刀长度,R为刀具半径,wh为毛坯高度,ap为吃刀深度;
结合公式(1)-(6)及(8),通过齐次坐标矩阵变换可得到球头铣刀加工过程中刀齿j上任意点P在{W}下的轨迹方程为:
Figure BDA0003085610700000151
步骤2、确定参与切削的刀齿轴向位置区间及其径向位置区间,即可得到球头铣刀的刀-工切触区域;刀齿轴向位置区间根据{j}下最小轴向位置角θmin、最大轴向位置角θmax确定,刀齿径向位置区间根据切入、切出时的径向位置角确定,即切入角φst和切出角φex
步骤2.1、计算刀齿轴向位置区间根据{j}下最小轴向位置角θmin、最大轴向位置角θmax
当球头铣刀垂直加工时,侧倾角α和前倾角β均为0°,刀齿作用的最小轴向位置角为0°,而最大轴向位置角为:
Figure BDA0003085610700000152
步骤2.2、计算相邻两个刀齿上的离散点i之间的容屑角;
生产实际中由于刀具偏心的作用,当刀具绕坐标轴
Figure BDA0003085610700000153
以角速度ω旋转时,不同刀齿上具有相同轴向位置角的切削点的回转半径是不同的,相邻两齿间的容屑角(如图3所示的ηP)也随着刀齿轴向位置角的变化而变化。设刀齿上任意点P对应的离散点的序号为i,则刀齿j上的点P在{A}中的齐次坐标为:
Figure BDA0003085610700000154
式中,
Figure BDA0003085610700000156
为不考虑主轴旋转仅考虑刀具偏心情况下的{C}相对于{A}的变换矩阵,
Figure BDA0003085610700000155
为刀齿j上的离散点i在{j}中的坐标;
刀齿j上的离散点i相对于坐标轴
Figure BDA0003085610700000161
的回转半径为其实际切削半径
Figure BDA0003085610700000162
在μ0=0的情况下,由式(10)可得:
Figure BDA0003085610700000163
则基准刀齿1上离散点i的实际螺旋滞后角为:
Figure BDA0003085610700000164
式中,ψi、θi为理想的刀齿离散点i的螺旋滞后角、轴向位置角;
刀齿j上离散点i的实际切削半径矢量
Figure BDA0003085610700000165
则相邻刀齿j-1、j上的离散点i之间的容屑角为:
Figure BDA0003085610700000166
其中,当j=1时,j-1=0,此时,用nt代替j-1,即,
Figure BDA0003085610700000167
步骤2.3、计算切削过程中t时刻刀齿上的切削点P在{A}中的坐标值及其在t时刻的径向位置角φP,径向位置角φP为在{A}下刀齿上切削点P与OA的连线与坐标轴
Figure BDA0003085610700000168
之间的夹角;
规定顺时针方向为正,如图3所示,
Figure BDA0003085610700000169
为某时刻刀齿点P2的径向位置角。将公式(9)的计算结果带入公式(16),求出切削过程中t时刻刀齿上的切削点P在{A}中的坐标值,再通过公式(17)求出切削点P在t时刻的径向位置角φP
Figure BDA0003085610700000171
Figure BDA0003085610700000172
式中,
Figure BDA0003085610700000173
Figure BDA0003085610700000174
的反正切函数,其主值域为(-180°,180°);
步骤2.4、根据相邻两个刀齿上的离散点i之间的容屑角、刀齿j上离散点i的切入位置,计算刀齿j上离散点i的{A}中
Figure BDA0003085610700000175
Figure BDA0003085610700000176
方向的切入角;
如图5a-b所示,根据不同刀齿上具有相同实际轴向位置角的离散点的切削运动轨迹,计算刀齿j上离散点i的切入位置距其径向位置角为0的位置在进给方向的距离Δxj,i为:
Figure BDA0003085610700000177
为了简化研究,假定在进给起始位置处{C}的坐标轴
Figure BDA0003085610700000178
与{A}的坐标轴
Figure BDA0003085610700000179
重合,即基准刀齿刀尖点处的径向位置角为90°,则刀齿j上离散点i的切入位置在{W}中
Figure BDA00030856107000001710
方向的坐标为:
Figure BDA00030856107000001711
式中,k为从每行进给起始位置开始到当前位置主轴旋转圈数的整数部分,k=0,1,2…;
考虑实际加工中每个刀齿切削点的运动具有周期性,令k=0,结合式(9)和式(19)得:
Figure BDA0003085610700000181
通过式(20)可求出切削时刻t,并将其带入式(16)求出刀齿j上离散点i的切入位置
Figure BDA0003085610700000182
在坐标系{A}中
Figure BDA0003085610700000183
Figure BDA0003085610700000184
方向的坐标
Figure BDA0003085610700000185
带入公式(17)得到刀齿j上离散点i的切入角:
Figure BDA0003085610700000186
计算刀齿j上离散点i的切出位置;
由于刀齿上不同轴向位置切出工件的情况不同,当前刀齿上离散点扫掠线和上次进给刀齿扫掠面的交点和刀具回转中心的连线与坐标轴
Figure BDA0003085610700000187
方向的夹角不同,即切出角不同,如图6a所示,包括以下三种情况:
A、刀齿切削点的回转直径大于行距,即
Figure BDA0003085610700000188
如图6b所示,将刀齿上第i离散点扫掠面用其包络面代替,该包络面为柱状面,其轴线平行于进给方向,刀齿上第i离散点扫掠面的半径为与该离散点所对应轴向位置相等所有刀齿中最大工作半径,如公式(22)所示:
Figure BDA0003085610700000189
则刀齿j上离散点i的切出角为:
Figure BDA00030856107000001810
B、刀齿切削点的回转直径介于相邻两齿之间的实际进给量和行距之间,即
Figure BDA00030856107000001811
如图6c所示,相对于切入位置附近的径向位置角为0处,刀齿切削点切出之前经过径向位置角为180°处,并且距该位置的距离也为Δxj,i,于是得下式
Figure BDA0003085610700000191
同样,通过求解上式可求出切削时刻t,带入公式(16)可得
Figure BDA0003085610700000192
此时刀齿j上离散点i的切出角为:
Figure BDA0003085610700000193
C、刀齿切削点的回转直径小于等于相邻两齿之间的实际进给量,即
Figure BDA0003085610700000194
如图6d所示,刀齿切削点从其轨迹自交点位置切出,该自交点相对于径向位置角为0的位置在进给方向的距离为ntfz/2,可得下式
Figure BDA0003085610700000195
同样,通过求解上式可求出切削时刻t,带入(16)可得
Figure BDA0003085610700000196
考虑到其径向位置角大于270°,此时刀齿j上离散点i的切出角为:
Figure BDA0003085610700000197
通过以上方式,本发明一种球头铣刀垂直加工时刀-工切触区域的识别方法,考虑刀具偏心的作用,计算刀具旋转时相邻两齿间的容屑角,减小了识别误差;充分考虑到垂直加工情况中靠近刀头位置刀齿扫掠表面与球面相差甚远的客观情况,本发明采用解析的方法求解出刀齿切削点的切入位置,并分三种情况解析求解出刀齿切削点的切出位置,进而求解出切入角和切出角,有效克服了球面假设法在球头铣刀垂直铣削刀-工切触区域识别中的原理性误差;本发明提出的刀-工切触区域识别方法是基于用齐次坐标变换原理建立球头铣刀加工过程中刀齿运动学模型的基础上,采用正逆变换相结合的方法求解出相应的刀齿切入、切出点坐标,进而求解出切入、切出角,相比现有方面,具有逻辑清楚、通用性强等优点。

Claims (8)

1.一种球头铣刀垂直加工时刀-工切触区域的识别方法,其特征在于,包括以下步骤:
步骤1、分别建立刀齿j的局部坐标系、球头铣刀坐标系、主轴随动坐标系、刀具瞬时进给坐标系、工件坐标系,基于齐次坐标变换原理得到球头铣刀加工过程中刀齿上任意点在工件坐标系下的轨迹方程;
步骤2、根据球头铣刀加工过程中刀齿上任意点在工件坐标系下的轨迹方程,确定参与切削的刀齿轴向位置区间及其径向位置区间,即可得到球头铣刀的刀-工切触区域;所述刀齿轴向位置区间根据{j}下最小轴向位置角θmin、最大轴向位置角θmax确定,所述刀齿径向位置区间根据切入、切出时的径向位置角确定,即切入角φst和切出角φex
2.根据权利要求1所述的一种球头铣刀垂直加工时刀-工切触区域的识别方法,其特征在于,步骤2具体包括以下步骤:
步骤2.1、计算刀齿轴向位置区间根据{j}下最小轴向位置角θmin、最大轴向位置角θmax
步骤2.2、计算相邻两个刀齿上的离散点i之间的容屑角;
步骤2.3、计算切削过程中t时刻刀齿上的切削点P在{A}中的坐标值及其在t时刻的径向位置角φP
步骤2.4、结合相邻两个刀齿上的离散点i之间的容屑角、t时刻刀齿上的切削点P在t时刻的径向位置角、刀齿j上离散点i的切入位置,计算刀齿j上离散点i的{A}中
Figure FDA0003085610690000011
Figure FDA0003085610690000012
方向的切入角;
步骤2.5、根据刀齿切削点的回转直径预相邻两齿之间的实际进给量、行距之间的关系,结合切削过程中t时刻刀齿上的切削点P在{A}中的坐标值,计算刀齿上不同轴向位置切削点P的切出角。
3.根据权利要求1所述的一种球头铣刀垂直加工时刀-工切触区域的识别方法,其特征在于,步骤1具体包括以下步骤:
步骤1具体包括以下步骤:
步骤1.1、以球头铣刀的球头中心为坐标原点Oj,建立刀齿j的局部坐标系Oj-XjYjZj,简称{j};
球头铣刀的任意刀齿j上任意点P在局部坐标系{j}中的坐标为:
Figure FDA0003085610690000021
式中,θ为点P的轴向位置角,R为刀具半径,ψ为点P对应的螺旋滞后角,ψ=180tanγ0(1-cosθ)/π,其中γ0为圆柱面上刀齿刃口曲线的螺旋角;
步骤1.2、以球头铣刀的球头中心为坐标原点OC,建立球头铣刀坐标系OC-XCYCZC,简称{C};
所述刀齿j与基准刀齿的夹角φj=360(j-1)/nt,其中,nt为刀齿总数,则局部坐标系{j}相对于球头铣刀坐标系{C}的齐次坐标变换矩阵为:
Figure FDA0003085610690000022
步骤1.3、以主轴中心为坐标原点OA,在机床主轴上建立主轴随动坐标系OA-XAYAZA,简称{A},坐标轴
Figure FDA0003085610690000023
与主轴轴线重合;
假设坐标原点OC和坐标原点OA之间的偏心距离为ρ,矢量
Figure FDA0003085610690000024
相对于坐标轴
Figure FDA0003085610690000025
的夹角为μ,且规定绕坐标轴
Figure FDA0003085610690000026
顺时针旋转方向为正,主轴顺时针方向旋转,t时刻旋转过的角度φC=180ωt/π,则球头铣刀坐标系{C}相对于主轴随动坐标系{A}的齐次坐标变换矩阵为:
Figure FDA0003085610690000031
式中,μ=μ0C,其中,μ0为初始状态下
Figure FDA0003085610690000032
Figure FDA0003085610690000033
的初始夹角;
步骤1.4、建立刀具瞬时进给坐标系OCL-XCLYCLZCL为,简称{CL},坐标轴矢量
Figure FDA0003085610690000034
与进给速度方向平行且同向,
Figure FDA0003085610690000035
为理想的被加工表面的法线方向,指向实体外,
Figure FDA0003085610690000036
Figure FDA0003085610690000037
Figure FDA0003085610690000038
的叉乘;
先使{A}绕
Figure FDA0003085610690000039
旋转角度β',使β'=arctan(tanβcosα),再使{A}绕
Figure FDA00030856106900000310
旋转角度α,且定义绕各自参考方向的正方向逆时针旋转为正,则刀具侧倾和前倾的齐次坐标变换矩阵分别为
Figure FDA00030856106900000311
Figure FDA00030856106900000312
则主轴随动坐标系{A}相对于刀具瞬时进给坐标系{CL}的齐次坐标变换矩阵为:
Figure FDA00030856106900000313
步骤1.5、在工件上建立全局坐标系OW-XWYWZW,简称{W},假定进给时OCL在{W}的坐标为(xCL,yCL,zCL),将单向直线进给铣削平面作为研究对象,则{CL}相对于{W}的齐次坐标变换矩阵为:
Figure FDA0003085610690000041
式中,(x0,y0)为首次进给时OCL在{W}中的起始位置,q为刀具进给次数(q=1,2,3…),t为刀具从第1次走刀开始至当前位置所用时间,fz为每齿进给量,fp为进给行距,L为单次走刀长度,R为刀具半径,wh为毛坯高度,ap为吃刀深度;
结合公式(1)-(6)及(8),通过齐次坐标矩阵变换可得到球头铣刀加工过程中刀齿j上任意点P在{W}下的轨迹方程为:
Figure FDA0003085610690000042
4.根据权利要求2所述的一种球头铣刀垂直加工时刀-工切触区域的识别方法,其特征在于,步骤2.1具体包括以下步骤:
步骤2.1中,当球头铣刀垂直加工时,侧倾角α和前倾角β均为0°,刀齿作用的最小轴向位置角为0°,而最大轴向位置角为:
Figure FDA0003085610690000043
5.根据权利要求2所述的一种球头铣刀垂直加工时刀-工切触区域的识别方法,其特征在于,步骤2.2具体包括以下过程:
设刀齿上任意点P对应的离散点的序号为i,则刀齿j上的点P在{A}中的齐次坐标为:
Figure FDA0003085610690000051
式中,
Figure FDA0003085610690000052
为不考虑主轴旋转仅考虑刀具偏心情况下的{C}相对于{A}的变换矩阵,
Figure FDA0003085610690000053
为刀齿j上的离散点i在{j}中的坐标;
刀齿j上的离散点i相对于坐标轴
Figure FDA0003085610690000054
的回转半径为其实际切削半径
Figure FDA0003085610690000055
在μ0=0的情况下,由式(10)可得:
Figure FDA0003085610690000056
则基准刀齿上离散点i的实际螺旋滞后角为:
Figure FDA0003085610690000057
式中,ψi、θi为理想的刀齿离散点i的螺旋滞后角、轴向位置角;
刀齿j上离散点i的实际切削半径矢量
Figure FDA0003085610690000058
则相邻刀齿j-1、j上的离散点i之间的容屑角为:
Figure FDA0003085610690000059
其中,当j=1时,j-1=0,此时,用nt代替j-1,即,
Figure FDA00030856106900000510
6.根据权利要求5所述的一种球头铣刀垂直加工时刀-工切触区域的识别方法,其特征在于,步骤2.3具体包括以下过程:
规定顺时针方向为正,将公式(9)的计算结果带入公式(16),求出切削过程中t时刻刀齿上的切削点P在{A}中的坐标值,再通过公式(17)求出切削点P在t时刻的径向位置角φP
Figure FDA0003085610690000061
Figure FDA0003085610690000062
式中,
Figure FDA0003085610690000063
Figure FDA0003085610690000064
的反正切函数,其主值域为(-180°,180°)。
7.根据权利要求6所述的一种球头铣刀垂直加工时刀-工切触区域的识别方法,其特征在于,步骤2.4具体包括以下过程:
根据不同刀齿上具有相同实际轴向位置角的离散点的切削运动轨迹,计算刀齿j上离散点i的切入位置距其径向位置角为0的位置在进给方向的距离Δxj,i为:
Figure FDA0003085610690000065
假定在进给起始位置处{C}的坐标轴
Figure FDA0003085610690000066
与{A}的坐标轴
Figure FDA0003085610690000067
重合,则刀齿j上离散点i的切入位置在{W}中
Figure FDA0003085610690000068
方向的坐标为:
Figure FDA0003085610690000069
式中,k为从每行进给起始位置开始到当前位置主轴旋转圈数的整数部分,k=0,1,2…;
考虑实际加工中每个刀齿切削点的运动具有周期性,令k=0,结合式(9)和式(19)得:
Figure FDA0003085610690000071
通过式(20)可求出切削时刻t,并将其带入式(16)求出刀齿j上离散点i的切入位置
Figure FDA0003085610690000072
在坐标系{A}中
Figure FDA0003085610690000073
Figure FDA0003085610690000074
方向的坐标
Figure FDA0003085610690000075
带入公式(17)得到刀齿j上离散点i的切入角:
Figure FDA0003085610690000076
8.根据权利要求7所述的一种球头铣刀垂直加工时刀-工切触区域的识别方法,其特征在于,步骤2.5具体包括以下过程:
由于刀齿上不同轴向位置切出工件的情况不同,刀齿上的切削点P的切出角不同,包括以下三种情况:
A、刀齿切削点的回转直径大于行距,即
Figure FDA0003085610690000077
将刀齿上第i离散点扫掠面用其包络面代替,该包络面为柱状面,其轴线平行于进给方向,刀齿上第i离散点扫掠面的半径为与该离散点所对应轴向位置相等所有刀齿中最大工作半径,如公式(22)所示:
Figure FDA0003085610690000078
则刀齿j上离散点i的切出角为:
Figure FDA0003085610690000079
B、刀齿切削点的回转直径介于相邻两齿之间的实际进给量和行距之间,即
Figure FDA00030856106900000710
相对于切入位置附近的径向位置角为0处,刀齿切削点切出之前经过径向位置角为180°处,并且距该位置的距离也为Δxj,i,于是得下式
Figure FDA0003085610690000081
同样,通过求解上式可求出切削时刻t,带入公式(16)可得
Figure FDA0003085610690000082
此时刀齿j上离散点i的切出角为:
Figure FDA0003085610690000083
C、刀齿切削点的回转直径小于等于相邻两齿之间的实际进给量,即
Figure FDA0003085610690000084
刀齿切削点从其轨迹自交点位置切出,该自交点相对于径向位置角为0的位置在进给方向的距离为ntfz/2,可得下式
Figure FDA0003085610690000085
同样,通过求解上式可求出切削时刻t,带入(16)可得
Figure FDA0003085610690000086
考虑到其径向位置角大于270°,此时刀齿j上离散点i的切出角为:
Figure FDA0003085610690000087
CN202110579755.1A 2021-05-26 2021-05-26 一种球头铣刀垂直加工时刀-工切触区域的识别方法 Active CN113255076B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110579755.1A CN113255076B (zh) 2021-05-26 2021-05-26 一种球头铣刀垂直加工时刀-工切触区域的识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110579755.1A CN113255076B (zh) 2021-05-26 2021-05-26 一种球头铣刀垂直加工时刀-工切触区域的识别方法

Publications (2)

Publication Number Publication Date
CN113255076A true CN113255076A (zh) 2021-08-13
CN113255076B CN113255076B (zh) 2023-06-02

Family

ID=77184621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110579755.1A Active CN113255076B (zh) 2021-05-26 2021-05-26 一种球头铣刀垂直加工时刀-工切触区域的识别方法

Country Status (1)

Country Link
CN (1) CN113255076B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070179661A1 (en) * 2006-01-27 2007-08-02 Hideaki Onozuka Method and program for calculating maximum depth of cut without self-excited vibration of cutting tool
CN105373664A (zh) * 2015-09-16 2016-03-02 大连理工大学 一种特种传动曲面五轴铣削力建模方法
CN106599389A (zh) * 2016-11-11 2017-04-26 大连理工大学 一种平头立铣刀宽行加工的刀刃接触判别方法
CN106934170A (zh) * 2017-03-22 2017-07-07 大连理工大学 基于球头铣刀与工件接触区域的颤振稳定域叶瓣图建模方法
CN107239603A (zh) * 2017-05-23 2017-10-10 大连理工大学 五轴数控机床加工中基于精细积分的球头铣刀颤振稳定域叶瓣图建模方法
CN107944176A (zh) * 2017-12-06 2018-04-20 上海复合材料科技有限公司 一种球头铣刀多轴铣削钛合金铣削力预测方法
CN108515217A (zh) * 2018-04-09 2018-09-11 吉林大学 一种球头铣削自由曲面表面形貌仿真方法
CN108920876A (zh) * 2018-08-01 2018-11-30 中南大学 一种涡轮盘榫槽拉刀几何结构的优化方法
CN110348086A (zh) * 2019-06-27 2019-10-18 西安理工大学 一种球头铣刀立铣表面粗糙度快速建模方法
CN111459097A (zh) * 2020-04-07 2020-07-28 西南交通大学 一种球头铣刀曲面加工接触区域的计算方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070179661A1 (en) * 2006-01-27 2007-08-02 Hideaki Onozuka Method and program for calculating maximum depth of cut without self-excited vibration of cutting tool
CN105373664A (zh) * 2015-09-16 2016-03-02 大连理工大学 一种特种传动曲面五轴铣削力建模方法
CN106599389A (zh) * 2016-11-11 2017-04-26 大连理工大学 一种平头立铣刀宽行加工的刀刃接触判别方法
CN106934170A (zh) * 2017-03-22 2017-07-07 大连理工大学 基于球头铣刀与工件接触区域的颤振稳定域叶瓣图建模方法
CN107239603A (zh) * 2017-05-23 2017-10-10 大连理工大学 五轴数控机床加工中基于精细积分的球头铣刀颤振稳定域叶瓣图建模方法
CN107944176A (zh) * 2017-12-06 2018-04-20 上海复合材料科技有限公司 一种球头铣刀多轴铣削钛合金铣削力预测方法
CN108515217A (zh) * 2018-04-09 2018-09-11 吉林大学 一种球头铣削自由曲面表面形貌仿真方法
CN108920876A (zh) * 2018-08-01 2018-11-30 中南大学 一种涡轮盘榫槽拉刀几何结构的优化方法
CN110348086A (zh) * 2019-06-27 2019-10-18 西安理工大学 一种球头铣刀立铣表面粗糙度快速建模方法
CN111459097A (zh) * 2020-04-07 2020-07-28 西南交通大学 一种球头铣刀曲面加工接触区域的计算方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
MENG-JU LIN等: "Imaging of Micro Half Conical Lens Fabricated by Using Ball End Milling Machining", 《2019 4TH INTERNATIONAL CONFERENCE ON ELECTROMECHANICAL CONTROL TECHNOLOGY AND TRANSPORTATION (ICECTT)》 *
MENG-JU LIN等: "Imaging of Micro Half Conical Lens Fabricated by Using Ball End Milling Machining", 《2019 4TH INTERNATIONAL CONFERENCE ON ELECTROMECHANICAL CONTROL TECHNOLOGY AND TRANSPORTATION (ICECTT)》, 31 July 2019 (2019-07-31), pages 1 - 4 *
董永亨等: "基于改进Z-MAP算法的球头铣刀加工表面形貌仿真与试验研究", 《机械工程学报》 *
董永亨等: "基于改进Z-MAP算法的球头铣刀加工表面形貌仿真与试验研究", 《机械工程学报》, no. 23, 5 December 2017 (2017-12-05), pages 197 - 208 *
董永亨等: "球头铣刀余摆线加工表面形貌的建模与仿真研究", 《机械工程学报》 *
董永亨等: "球头铣刀余摆线加工表面形貌的建模与仿真研究", 《机械工程学报》, no. 19, 21 August 2018 (2018-08-21), pages 212 - 223 *

Also Published As

Publication number Publication date
CN113255076B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
US9696707B2 (en) Method of controlling tool orientation and step-over distance in face milling of curvilinear surfaces
Mali et al. A comprehensive review of free-form surface milling–Advances over a decade
CN113297696B (zh) 一种基于半解析法的球头铣刀静态铣削力的建模方法
CN109396955B (zh) 一种面向旋风包络铣削工艺的切削力预测方法及系统
CN110262397B (zh) 车铣加工空间螺旋次摆线运动轨迹及瞬时切削力建模方法
CN103056625A (zh) 基于ug nx系统平台整体叶轮的五轴加工方法
CN101590587A (zh) 一种整体叶轮加工方法
CN111008441A (zh) 整体平头立铣刀端齿直纹型后刀面的磨削轨迹求解方法
CN1186157C (zh) 鼓锥形刀具及用鼓锥形刀具侧铣复杂曲面离心叶轮的方法
JP3000219B2 (ja) 曲面加工用情報処理装置
CN104462775B (zh) 一种五轴加工中心铣削力计算方法
CN111644909A (zh) 一种木工成型铣刀的后刀面的磨削轨迹求解方法
CN113518690A (zh) 切削装置以及接触位置确定程序
CN109656192A (zh) 一种基于球头铣刀铣削力的加工优化方法
CN113547156A (zh) 三维异形变径涡轮轴锥面体车铣复合精密镜面加工方法
CN103752924A (zh) 一种一轴步进三轴联动的空间曲面铣削加工方法
Chen et al. A novel CNC grinding method for the rake face of a taper ball-end mill with a CBN spherical grinding wheel
CN113204852B (zh) 一种球头铣刀铣削加工表面形貌预测方法及系统
CN107728576B (zh) 基于刀具受力变形的多轴数控加工刀轴矢量优化方法
CN111002112A (zh) 一种立铣刀端齿分屑槽的磨削轨迹求解方法
CN111745306B (zh) 一种激光切割五轴联动运行控制方法
CN112799299A (zh) 一种机器人多轴铣削稳定性模型及其构建方法
CN113255076A (zh) 一种球头铣刀垂直加工时刀-工切触区域的识别方法
Chen et al. Design and fabrication of double-circular-arc torus milling cutter
JP2014151396A (ja) 旋削による非円形加工方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant