CN113234942A - 一种浸出煤矸石中镓钒的方法 - Google Patents

一种浸出煤矸石中镓钒的方法 Download PDF

Info

Publication number
CN113234942A
CN113234942A CN202010998074.4A CN202010998074A CN113234942A CN 113234942 A CN113234942 A CN 113234942A CN 202010998074 A CN202010998074 A CN 202010998074A CN 113234942 A CN113234942 A CN 113234942A
Authority
CN
China
Prior art keywords
coal gangue
leaching
vanadium
gallium
digestion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010998074.4A
Other languages
English (en)
Other versions
CN113234942B (zh
Inventor
周春财
张伟伟
高飞月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202010998074.4A priority Critical patent/CN113234942B/zh
Publication of CN113234942A publication Critical patent/CN113234942A/zh
Application granted granted Critical
Publication of CN113234942B publication Critical patent/CN113234942B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B58/00Obtaining gallium or indium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种浸出煤矸石中镓钒的方法,包括以下步骤:a.将煤矸石与去离子水混合后,进行超声预处理;b.将预处理后的煤矸石过滤,用干燥箱进行烘干;c.将烘干的煤矸石与浸出液置于Teflon反应器中,用微波消解仪进行微波碱消解;d.消解完成后将消解液进行过滤,淋洗,通过等离子体质谱仪对混合液中镓钒进行测定,计算浸出率。本发明解决了现有稀有金属酸浸或碱浸过程中处理量大、浸出效率低、能耗大、时间长、环境污染压力大等问题。

Description

一种浸出煤矸石中镓钒的方法
技术领域
本发明涉及固体废弃物资源化利用技术,尤其涉及一种浸出煤矸石中镓钒的方法。
背景技术
煤矸石是煤炭掘进、开采和洗选加工过程中排出的低热值高灰分的固体废弃物,约占原煤产量的10~15%,是我国主要的工业固体废物。我国煤矸石大多就地堆放,造成了一系列自燃效应、占地效应、结构侵蚀效应、稳定效应和污染效应。研究发现,煤矸石中含有较高含量的镓、锗、钒、铀、锂等战略性关键金属,有些矿区的含量已经达到并超过工业品位。随着这些战略性关键金属需求的日益增加和传统矿产的日益紧缺,煤矸石已然成为这些稀有金属的重要来源。据统计我国2019年煤矸石产出量近5亿吨,从煤矸石中提取这些稀有金属可以有效的拓宽稀有金属的来源和深化固废的资源化利用途径。
现主要是采用酸浸或碱浸的工艺对粉煤灰中镓开展提取工艺,对煤矸石中镓钒提取的工艺较少。
专利CN109943709A公开了“一种综合回收煤矸石中钒、镓、铝和硅的方法”,该方法首先将煤矸石进行破碎预处理,再将处理后的煤矸石与钠钾盐混合均匀并焙烧,然后进行多步酸浸得到富钒、镓、铝和硅的溶液。
专利CN101255504B公开了“从粉煤灰和煤矸石中提取镓的生产工艺”,该方法采取中温煅烧、水浸、碳分、上柱吸附、洗脱等工艺,采用碳酸钠对粉煤灰和煤矸石中镓进行浸出。
专利CN102154565B公开了“一种由粉煤灰提取镓的方法”,该方法将粉煤灰湿法磁选除铁,利用盐酸对粉煤灰中镓进行浸出,采用大孔型阳离子树脂柱进行吸附。
专利CN108950223A公开了“一种预富集粉煤灰中铝锂镓的方法”,该方法采用粉煤灰悬浮液配置、磁选、筛分、浓缩、重选、干燥等过程对粉煤灰中铝锂镓进行预富集。
专利CN107760865A公开了“一种粉煤灰碱浸过程浸出液镓锂离子富集的方法”,该方法采用多步逆流连续循环碱浸溶出工艺,对粉煤灰中镓锂离子进行预富集。
专利CN109234527A公开了“一种煤矸石的超(亚)临界活化方法极其应用”,该方法通过向煤矸石中添加助剂碱并在亚临界或超临界水条件下进行活化反应,然后通过酸浸得到氧化铝、白炭黑、镓和锂等物质。
专利CN103074498B公开了“用微波加热从粉煤灰酸浸出镓的方法”,该方法采用了微波酸浸的方法对粉煤灰中镓开展浸出。
煤矸石中镓主要以类质同象取代铝而赋存在硅铝矿物或铝的氧化物中,同时也可少量赋存在硫化物和胶凝组分中,钒主要赋存在硅铝矿物中。在常规的酸浸或碱浸作用下,硅铝矿物分解的温度、压力和反应时间要求高,镓钒浸出的成本和能耗极大。超声清洗可有效的去除煤矸石中的可溶盐和减少铁基物质对镓钒的禁锢,在减少固体处理量的同时,提高镓钒的浸出潜力。微波是一种非电离的电磁辐射,具有内加热及吸收激化作用等优点,是一种快速、准确的元素消解技术。
微波是通过能量直接作用于被加热物质,由于大多数物质均含有极性分子,当该物质处于微波电磁场时,极性分子可在微波电磁场中快速转向及定向排列,产生撕裂和相互摩擦而不断加热,从而促进样品与消解液快速接触反应,具有节能、省时、污染少和防止挥发组分损失等优点。因此,利用消解有望在短时间内达到高效浸出镓钒的目的,为煤矸石的深度利用提供新的途径。
发明内容
本发明针对常规的煤矸石提取稀有金属工艺存在浸出时间长、浸出效率低、能耗大、设备要求高和环保问题突出等问题,提出一种浸出煤矸石中镓钒的方法,该方法将超声预处理与微波碱消解结合,提高了煤矸石中稀有金属的浸出率、减少浸出液的使用量、缩短浸出时间,同时也减少环境影响。
本发明一种浸出煤矸石中镓钒的方法包含如下步骤:
a.将5~10g煤矸石与去离子水混合后,用超声清洗机进行超声预处理;
b.将预处理后的煤矸石过滤,用干燥箱进行烘干;
c.将烘干的煤矸石与浸出液置于Teflon反应器中,用微波消解仪进行微波碱消解;
d.消解完成后将Teflon反应器中的消解液进行过滤,用3%稀硝酸对滤渣进行5次淋洗,并将清洗液与消解液混合,将混合液用3%稀硝酸定容至250mL,通过等离子体质谱仪对混合液中镓钒进行测定,计算浸出率。
进一步地,所述的煤矸石为内蒙古兴安盟矿区煤矸石,煤矸石中镓含量为47~147mg/kg,钒含量为54-194mg/kg。
进一步地,所述步骤a中,煤矸石直接破碎处理,煤矸石的粒径小于100um,不需要高温焙烧。
进一步地,所述步骤a中,去离子水与煤矸石混合的液固比为2:1~5:1。
进一步地,所述步骤a中,超声预处理温度为40~60℃,预处理时间为5~15min。
进一步地,所述步骤b中,烘干温度为60~80℃。
进一步地,所述浸出液为氢氧化钠溶液。
进一步地,所述氢氧化钠的浓度为6~10M,煤矸石和氢氧化钠溶液液固比为2:1~5:1。
进一步地,所述的微波消解的功率为600~1000W,消解温度为140~180℃,消解时间为10~20min。
进一步地,所述的超声清洗机、干燥箱和微波消解仪均为常规仪器。
本发明的优点和效果:
1)只需对煤矸石进行破碎,无需焙烧,降低能耗。
2)利用超声清洗去除煤矸石中的可溶盐和剥离铁矿物,减少消解固体量的同时提高镓钒的浸出效率。
3)浸出温度低,只需140~180℃;浸出时间短,仅需10~20min,大大减少浸出时间和降低能耗。
4)氢氧化钠浸出液的使用量少,液固比仅为2:1~5:1,减少试剂的使用和消耗。
5)浸出效率高,用超声预处理结合微波碱消解,镓的浸出率达到92.6%,钒的浸出率达到74.5%,远高于常规酸浸和碱浸的浸出率。
附图说明
图1为本发明浸出工艺图。
具体实施方式
下面结合实施例对本发明一种浸出煤矸石中镓钒的方法做进一步描述:
参考图1,本发明浸出煤矸石中镓钒的方法包含如下步骤:
a.将5~10g煤矸石与去离子水混合后,用超声清洗机进行超声预处理;
b.将预处理后的煤矸石过滤,用干燥箱进行烘干;
c.将烘干的煤矸石与浸出液置于Teflon反应器中,用微波消解仪进行微波碱消解;
d.消解完成后将Teflon反应器中的消解液进行过滤,用3%稀硝酸对滤渣进行5次淋洗,并将清洗液与消解液混合,将混合液用3%稀硝酸定容至250mL,通过等离子体质谱仪对混合液中镓钒进行测定,计算浸出率。
本发明的浸出方法,将超声清洗与微波碱消解结合,利用超声清洗去除煤矸石中的可溶盐和剥离铁矿物,只需对煤矸石进行破碎,无需焙烧,而且减少消解固体量的同时提高镓钒的浸出效率,同时结合微波碱消解,浸出温度低,只需140~180℃;浸出时间短,仅需10~20min,大大减少浸出时间和降低能耗。
而且浸出液的使用量少,浸出效率高。
实施例1
将5g煤矸石(镓和钒的含量分别为56mg/kg和97mg/kg)与10mL去离子水混合,置于超声清洗机于40℃超声预处理5min,在60℃的干燥箱中烘干,将烘干样品与10mL6M的氢氧化钠溶液混合于Teflon反应器中,在功率为400W、温度为140℃的微波消解仪中消解10min,镓的浸出率为82.2%,钒的浸出率为64.7%。
实施例2
将5g煤矸石(镓和钒的含量分别为62mg/kg和84mg/kg)与15mL去离子水混合,置于超声清洗机于50℃超声预处理10min,在70℃的干燥箱中烘干,将烘干样品与15mL8M的氢氧化钠溶液混合于Teflon反应器中,在功率为600W、温度为150℃的微波消解仪中消解15min,镓的浸出率为86.4%,钒的浸出率为69.3%。
实施例3
将5g煤矸石(镓和钒的含量分别为84mg/kg和66mg/kg)与20mL去离子水混合,置于超声清洗机于60℃超声预处理15min,在80℃的干燥箱中烘干,将烘干样品与20mL10M的氢氧化钠溶液混合于Teflon反应器中,在功率为800W、温度为160℃的微波消解仪中消解20min,镓的浸出率为92.6%,钒的浸出率为74.5%。
由此可见,本发明提供的浸出方法,镓的浸出率达到92.6%,钒的浸出率达到74.5%,远高于常规酸浸和碱浸的浸出率,且工艺简单,溶剂用量少。
本发明的方案利用超声清洗可以有效去除可溶盐和打断铁基结构对稀有金属的禁锢,提高稀有金属浸出潜力,无需高温焙烧;通过微波碱浸技术可在加快稀有金属浸出的同时,减少浸出时间和浸出溶剂的使用,极大节省浸出成本和保护环境。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种浸出煤矸石中镓钒的方法,其特征在于所述的方法包括如下步骤:
a.将5~10g煤矸石与去离子水混合后,用超声清洗机进行超声预处理;
b.将预处理后的煤矸石过滤,用干燥箱进行烘干;
c.将烘干的煤矸石与浸出液置于Teflon反应器中,用微波消解仪进行微波碱消解;
d.消解完成后将Teflon反应器中的消解液进行过滤,用3%稀硝酸对滤渣进行5次淋洗,并将清洗液与消解液混合,将混合液用3%稀硝酸定容至250mL,通过等离子体质谱仪对混合液中镓钒进行测定,计算浸出率。
2.根据权利要求1所述的浸出煤矸石中镓钒的方法,其特征在于:所述的煤矸石为内蒙古兴安盟矿区煤矸石,煤矸石中镓含量为47~147mg/kg,钒含量为54-194mg/kg。
3.根据权利要求1所述的浸出煤矸石中镓钒的方法,其特征在于:所述步骤a中,煤矸石直接破碎处理,煤矸石的粒径小于100μm,不需要高温焙烧。
4.根据权利要求1所述的浸出煤矸石中镓钒的方法,其特征在于:所述步骤a中,去离子水与煤矸石混合的液固比为2:1~5:1。
5.根据权利要求1所述的浸出煤矸石中镓钒的方法,其特征在于:所述步骤a中,超声预处理温度为40~60℃,预处理时间为5~15min。
6.根据权利要求1所述的浸出煤矸石中镓钒的方法,其特征在于:所述步骤b中,烘干温度为60~80℃。
7.根据权利要求1所述的浸出煤矸石中镓钒的方法,其特征在于:所述浸出液为氢氧化钠溶液。
8.根据权利要求7所述的浸出煤矸石中镓钒的方法,其特征在于:所述氢氧化钠的浓度为6~10M,煤矸石和氢氧化钠溶液液固比为2:1~5:1。
9.根据权利要求1所述的浸出煤矸石中镓钒的方法,其特征在于:所述的微波消解的功率为600~1000W,消解温度为140~180℃,消解时间为10~20min。
10.根据权利要求1所述的浸出煤矸石中镓钒的方法,其特征在于:所述的超声清洗机、干燥箱和微波消解仪均为常规仪器。
CN202010998074.4A 2020-09-21 2020-09-21 一种浸出煤矸石中镓钒的方法 Expired - Fee Related CN113234942B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010998074.4A CN113234942B (zh) 2020-09-21 2020-09-21 一种浸出煤矸石中镓钒的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010998074.4A CN113234942B (zh) 2020-09-21 2020-09-21 一种浸出煤矸石中镓钒的方法

Publications (2)

Publication Number Publication Date
CN113234942A true CN113234942A (zh) 2021-08-10
CN113234942B CN113234942B (zh) 2022-11-25

Family

ID=77129897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010998074.4A Expired - Fee Related CN113234942B (zh) 2020-09-21 2020-09-21 一种浸出煤矸石中镓钒的方法

Country Status (1)

Country Link
CN (1) CN113234942B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261604A (zh) * 2022-03-04 2022-11-01 中南大学 一种蛇纹石酸浸提镁的方法
CN116371363A (zh) * 2023-04-28 2023-07-04 合肥工业大学 一种CNT功能化UiO-66-NH2的制备及其在粉煤灰浸出液中镓的吸附应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094753A (en) * 1977-06-01 1978-06-13 Cominco Ltd. Recovery of gallium from gallium compounds
JP2012177178A (ja) * 2011-02-28 2012-09-13 Hokkaido Univ 金属回収方法及び金属回収装置
US20130081954A1 (en) * 2010-04-27 2013-04-04 China Shenhua Energy Company Limited Method for extracting gallium from fly ash
CN107473353A (zh) * 2017-09-29 2017-12-15 广州百兴网络科技有限公司 一种絮凝剂聚合氯化铝铁及其制备方法与应用
CN108913906A (zh) * 2018-07-24 2018-11-30 山西中谱能源科技有限公司 等离子体活化固废提取硅、铝和多种稀贵稀土金属的方法
CN109897960A (zh) * 2017-12-07 2019-06-18 中国科学院过程工程研究所 一种从含有镓、铟元素的废渣中回收镓、铟元素的方法
CN109943709A (zh) * 2019-05-09 2019-06-28 河南理工大学 一种综合回收煤矸石中钒、镓、铝和硅的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094753A (en) * 1977-06-01 1978-06-13 Cominco Ltd. Recovery of gallium from gallium compounds
US20130081954A1 (en) * 2010-04-27 2013-04-04 China Shenhua Energy Company Limited Method for extracting gallium from fly ash
JP2012177178A (ja) * 2011-02-28 2012-09-13 Hokkaido Univ 金属回収方法及び金属回収装置
CN107473353A (zh) * 2017-09-29 2017-12-15 广州百兴网络科技有限公司 一种絮凝剂聚合氯化铝铁及其制备方法与应用
CN109897960A (zh) * 2017-12-07 2019-06-18 中国科学院过程工程研究所 一种从含有镓、铟元素的废渣中回收镓、铟元素的方法
CN108913906A (zh) * 2018-07-24 2018-11-30 山西中谱能源科技有限公司 等离子体活化固废提取硅、铝和多种稀贵稀土金属的方法
CN109943709A (zh) * 2019-05-09 2019-06-28 河南理工大学 一种综合回收煤矸石中钒、镓、铝和硅的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261604A (zh) * 2022-03-04 2022-11-01 中南大学 一种蛇纹石酸浸提镁的方法
CN116371363A (zh) * 2023-04-28 2023-07-04 合肥工业大学 一种CNT功能化UiO-66-NH2的制备及其在粉煤灰浸出液中镓的吸附应用

Also Published As

Publication number Publication date
CN113234942B (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
Tripathy et al. Sodium fluoride assisted acid leaching of coal fly ash for the extraction of alumina
CN103131854B (zh) 利用钛白废酸浸出赤泥综合回收钪和钛的方法
Qing et al. Reductive leaching of manganese oxide ores using waste tea as reductant in sulfuric acid solution
CN113234942B (zh) 一种浸出煤矸石中镓钒的方法
Nie et al. Defluorination of spent pot lining from aluminum electrolysis using acidic iron-containing solution
CN110331289B (zh) 一种从拜耳法赤泥中回收钪和硫酸钠的方法
Li et al. Selective recovery of vanadium from red mud by leaching with using oxalic acid and sodium sulfite
CN109234527A (zh) 一种煤矸石的超(亚)临界活化方法及其应用
CN106222456B (zh) 一种从废旧镍氢电池中回收稀土并转型的方法
CN113562770B (zh) 一种梯级回收赤泥中铁钠资源及尾渣全量化利用的方法
CN103555942A (zh) 一种分解钨精矿的方法
Rosita et al. Recovery of rare earth elements and Yttrium from Indonesia coal fly ash using sulphuric acid leaching
Chen et al. Study on modes of occurrence and enhanced leaching of critical metals (lithium, niobium, and rare earth elements) in coal gangue
Guo et al. Enhanced lithium extraction from α-spodumene with fluorine-based chemical method: A stepwise heat treatment for fluorine removal
Li et al. Selective separation of aluminum, silicon, and titanium from red mud using oxalic acid leaching, iron precipitation and pH adjustments with calcium carbonate
CN116287722A (zh) 一种从铝锂电解质中回收锂的方法
Fan et al. Efficient and clean release of uranium and zirconium in hazardous uranium purification waste by combined alkali decomposition and acid leaching process
KR20210071054A (ko) 고체 탄소질 재료의 회분 제거 방법
CN106544502A (zh) 一种化学脱硅方法及在黑土型氧化铁锰矿选矿中的应用
Cun et al. Stepwise recovery of critical metals from spent NCM lithium-ion battery via calcium hydroxide assisted pyrolysis and leaching
Ju et al. An efficient and clean method for the selective extraction and recovery of manganese from pyrolusite using ammonium sulfate roasting-water leaching and carbonate precipitation
Paris et al. Preliminary investigation into lithium extraction by phosphoric acid leaching of spodumene
CN117509743A (zh) 一种回转窑法回收废旧磷酸铁锂黑粉的方法
CN102424769A (zh) 一种煤的化学脱硫方法
CN102153096A (zh) 铝土矿除铁工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221125