CN113231643A - 一种生物医用贵金属框架材料及其制备方法与应用 - Google Patents

一种生物医用贵金属框架材料及其制备方法与应用 Download PDF

Info

Publication number
CN113231643A
CN113231643A CN202110491404.5A CN202110491404A CN113231643A CN 113231643 A CN113231643 A CN 113231643A CN 202110491404 A CN202110491404 A CN 202110491404A CN 113231643 A CN113231643 A CN 113231643A
Authority
CN
China
Prior art keywords
gold
solution
biomedical
noble metal
framework material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110491404.5A
Other languages
English (en)
Other versions
CN113231643B (zh
Inventor
李明
单贝贝
李林虎
陆亚轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202110491404.5A priority Critical patent/CN113231643B/zh
Publication of CN113231643A publication Critical patent/CN113231643A/zh
Application granted granted Critical
Publication of CN113231643B publication Critical patent/CN113231643B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Inorganic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Materials Engineering (AREA)
  • Medical Informatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Acoustics & Sound (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明涉及纳米医药技术领域,具体涉及一种生物医用贵金属框架材料及其制备方法与应用。所述框架材料为空心或含金核的Au‑Ag纳米框架,金核可以为金纳米球、金纳米立方体、金纳米棒、金纳米星、金纳米双锥体和金纳米片等金材料。所述框架材料为长方体和立方体形状,其表面等离激元共振波长范围700‑1400nm,具有较小的尺寸、较好的生物兼容性和易于进行表面修饰等特性,可用于表面增强拉曼散射检测(surface‑enhanced Ramanspectroscopy,SERS)、光声(photoacoustic,PA)成像和光热治疗(photothermaltherapy,PTT)等活体癌症诊疗方面。

Description

一种生物医用贵金属框架材料及其制备方法与应用
技术领域
本发明涉及纳米医药技术领域,具体涉及一种生物医用贵金属框架材料及其制备方法与应用。
背景技术
近红外二区(1000-1700nm)表面等离激元技术在体内生物医用方面的应用引起了广泛的关注,其中包括疾病诊断、成像指导下的手术治疗、光控制下的药物递送等疾病诊疗。近红外二区表面等离激元材料与可见光(400-700nm)和近红外一区(700-900nm)的表面等离激元材料相比具有极大的优势:较高的组织穿透深度、较低的背景噪声、较小的光化学损伤和生物破坏性。近红外二区波长更长,与生物组织间相互作用较弱,能够有效降低生物组织对入射光的散射和吸收。在这些表面等离激元材料中,由于其优异的表面增强拉曼散射性质、制备简单、化学稳定性好、颗粒表面容易修饰等优势,金纳米材料在生物传感和生物成像方面得到广泛应用,例如表面增强拉曼光谱、表面增强荧光、表面等离激元生物传感、光声成像。到目前为止,大多数金纳米材料的表面等离激元性能主要在可见光和近红外一区范围内,包括金纳米球、金纳米棒、金纳米立方体、金纳米星、金纳米片等。一个影响金在体内生物医用方面应用的主要因素是其较窄的光谱范围,因此开发近红外二区金纳米材料显得尤为重要。不同大小和形状的金纳米胶体材料是金纳米材料在体内生物医学应用的主要形式,但是金纳米球的表面等离激元共振吸收峰调控范围比较窄,即使尺寸超过100nm,表面等离激元共振吸收峰也低于600nm。通过改变金纳米结构的形状,可以将表面等离激元共振吸收峰从可见光调控到近红外一区。但是到目前为止,可以将金纳米结构的表面等离激元共振吸收峰调到近红外二区的只有金纳米棒、金纳米壳、金纳米笼。但是,近红外二区表面等离子金纳米结构都是由于其尺寸太大而不能被细胞有效的吞噬。理想的用于体内生物医用的纳米材料要小于100nm,这样才能被细胞吞噬,实现肿瘤增强渗透滞留效应和长循坏时间。有很多工作者致力于合成空心和多孔的金纳米结构,其尺寸在几十纳米以内,在药物递送和SERS探测前景广阔。基于此,开发高光热转化效率和生物可代谢的肿瘤光热治疗纳米材料至关重要。
发明内容
针对现有技术存在的问题,本发明提出纳米框架结构,Au-Ag纳米框架结构或者以金纳米球为核的Au@Au-Ag纳米框架,表面等离激元共振吸收峰范围为700-1400nm,并且具有合适的尺寸用于生物医用方面,Au@Au-Ag纳米框架结构主要是通过边、面的恒电位置换和化学还原实现金银原子的共沉积;AuCl3-选择性的置换Au@Ag中Ag的{100}晶面,同时通过化学还原反应,在Au@Ag纳米立方体的边和角形成Au原子和Ag原子共沉积。通过改变Ag壳的厚度、AuCl3-的量和后期H2O2的刻蚀以获得不同尺寸大小的Au@Au-Ag纳米框架结构。
为实现上述发明目的,本发明提供了一种生物医用贵金属框架材料,所述框架材料通过Ag长方体或立方体的生成,Au、Ag共沉积和蚀刻反应制备获得,所述框架材料为空心或含金核的Au-Ag纳米框架;
所述金核为金纳米球、金纳米立方体、金纳米棒、金双锥体、金纳米星或金纳米盘,应该理解的是,所述金核可以为不同形状的纳米立体结构金材料。
进一步地,所述框架材料的表面等离激元共振吸收峰范围为700-1400nm。
基于同一发明构思,本发明还提供了一种生物医用贵金属框架材料的制备方法,具体包括以下步骤:
S1:将氯金酸与硼氢化钠在表面活性剂存在体系中发生氧化还原反应并静置获得金纳米球种子溶液;在氯金酸与抗坏血酸发生氧化还原反应后立即加入上述金纳米球种子溶液搅拌并静置获得更大尺寸金纳米球,经离心、去上清液,重新分散获得金纳米球溶液;
S2:将金纳米球溶液分散在表面活性剂体系中,先后加入硝酸银和抗坏血酸加热反应并离心清洗获得Au@Ag纳米立方体;将所述Au@Ag纳米立方体分散至表面活性剂体系中,获得Au@Ag纳米立方体溶液;
S3:将抗坏血酸和氢氧化钠加入至表面活性剂体系,并加入所述Au@Ag纳米立方体溶液,再加入氯金酸进行反应,经离心、清洗后并分散至去离子水中获得Au@Ag@Au纳米结构溶液;
S4:向所述Au@Ag@Au纳米结构溶液加入过氧化氢溶液,静置反应后经离心获得Au@Au-Ag纳米框架材料。
进一步地,所述表面活性剂体系为阳离子表面活性剂,具体为十六烷基三甲基氯化铵。
进一步地,所述步骤S2中加热反应的温度为60-65℃。
进一步地,所述步骤S2中金纳米球溶液与硝酸银溶液的摩尔浓度比为:2:(3.33-6.67)×106
进一步地,所述步骤S2中硝酸银溶液与步骤S3中氯金酸溶液的摩尔浓度比为(0.333-0.67):(0.063-0.17)。
进一步地,所述步骤S4中过氧化氢为体积分数为30%的过氧化氢溶液,静置反应的时间为4-10h。
基于同一发明构思,本发明还提供了上述生物医用贵金属框架材料在SERS检测技术中的应用。
基于同一发明构思,本发明还提供了上述生物医用贵金属框架材料在表面增强拉曼散射检测、光声成像造影剂、光热和药物治疗载体材料中的应用。
有益效果:
本发明提供了一种近红外二区纳米框架结构,通过改变Ag壳的厚度、AuCl3-的量和后期H2O2的刻蚀以获得不同尺寸大小的纳米框架,其表面等离激元共振波长范围700-1400nm,其具有较小的尺寸、较好的生物兼容性和易于进行表面修饰等特性,可用于表面增强拉曼散射检测(surface-enhanced Raman spectroscopy,SERS)、光声(photoacoustic,PA)成像和光热治疗(photothermal therapy,PTT)等活体癌症诊疗方面。
附图说明
图1为本发明实施例提供的Au@Au-Ag纳米框架材料制备过程中发生的反应示意图;
图2为本发明实施例提供的Au纳米球、Au@Ag纳米立方体、Au@Ag@Au纳米结构、Au@Au-Ag纳米框架材料的紫外可见吸收光谱图;
图3为本发明实施例提供的不同原料比下获得的Au@Au-Ag纳米框架材料材料的吸收光谱;
图4为本发明实施例提供的本发明实施例提供的Au纳米球、Au@Ag纳米立方体、Au@Ag@Au纳米结构、Au@Au-Ag纳米框架材料的透射电镜图;
图5为本发明实施例提供的体外不同浓度的Au@Au-Ag纳米框架材料和光声信号强度的关系图;
图6为本发明实施例提供的体内不同浓度的Au@Au-Ag纳米框架材料和光声信号强度的关系图;
图7为本发明实施例提供的Au@Au-Ag纳米框架材料的光热变化图;
图8为本发明实施例提供的Au@Au-Ag纳米框架材料的浓度和SERS信号强度的关系图;
图9为本发明实施例提供的不同琼脂糖厚度下的Au@Au-Ag纳米框架材料和SERS信号强度的关系图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例进行详细描述,但本发明的保护范围并不限于以下具体实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1
空心Au-Ag纳米框架材料制备过程:
将油浴加热到150℃,待油温稳定后,将装有5mL乙二醇和磁力搅拌子的玻璃反应瓶放入油浴锅中,20分钟后,加入0.06mL浓度为0.72mg/mL的Na2S乙二醇溶液,随后将0.5mL浓度为3mM的HCl乙二醇溶液注入反应溶液中,然后加入1.25mL浓度为20mg/mL的聚乙烯吡咯烷酮(PVP)乙二醇溶液;再将0.4mL浓度为282mM的CF3COOAg乙二醇溶液加入到反应瓶中。加入CF3COOAg后,可以通过将小瓶放在冰水中来终止反应。通过在不同时间淬灭反应来控制Ag纳米立方体的大小。该产品应用丙酮和超纯水清洗3次,并保存在超纯水中备用。
在剧烈磁力搅拌下,将1mL浓度为100mM的抗坏血酸水溶液和1mL浓度为200mM的NaOH水溶液加入4mL浓度为100mM的十六烷基三甲基氯化铵(CTAC)水溶液中,然后将0.3mL制备好的Ag纳米立方体水溶液加入到反应溶液中,之后快速注入不同量的浓度为1mM氯金酸(HAuCl4)水溶液。反应溶液持续搅拌至少10分钟后,将500μL H2O2(30%)缓慢加入上述溶液中,在室温下放置过夜,然后以7000rpm离心15分钟,然后将沉淀物重新分散在去离子水中,获得无核Au-Ag纳米框架材料。
实施例2
含金核的Au@Au-Ag纳米框架材料制备过程:
步骤S1:Au纳米球的制备:将0.12g十六烷基三甲基氯化铵(CTAC)、25μL 50mM的氯金酸(HAuCl4)溶于2.5mL去离子水中,然后加入0.3mL 10mM冰的硼氢化钠(NaBH4),剧烈搅拌2min,随后静止放置1h时后即得到金纳米球的种子溶液;将12.8mL 0.2M CTAC与0.64mL50mM HAuCl4溶于140mL的去离子水中,随后加入14.2mL 0.1M抗坏血酸(H2Asc)溶液并剧烈搅拌,溶液由黄色变成无色,加入金纳米球的种子溶液40μL,剧烈搅拌1min,室温下静置放置8h,即可得到金纳米球生长溶液;最后在7500rpm下离心,丢弃上清液,重新分散在去离子水中,得到吸收峰为523nm浓度为2nM的金纳米球溶液。
步骤S2:Au@Ag纳米立方体的制备:将0.2nM的金纳米球溶液加入20mM CTAC溶液瓶中,将反应瓶放置在65℃的油浴锅中,待温度稳定后,加入AgNO3溶液2mM,随后加入相对应量的H2Asc溶液2mM用以还原AgNO3,总反应体积控制在30mL搅拌均匀后,在恒温65℃条件下反应6h将反应溶液自然冷却至室温,采用6000rpm转速离心,丢弃上清液,并用去离子水清洗两遍,最后分散在20mL 20mM的CTAC溶液中备用。
步骤S3:Au@Ag@Au纳米结构的制备:1mL 0.1M的H2Asc溶液和1mL 0.2M的NaOH溶液加入到4mL 0.1M的CTAC溶液中,溶液的pH约为11.5;然后加入Au@Ag纳米立方体溶液,随后立即加入0.14mM HAuCl4溶液;反应完成后,采用5000rpm转速离心15min,并用去离子水清洗,最后分散在1mL的去离子水备用。
步骤S4:Au@Au-Ag纳米框架结构的制备:向上述制备Au@Ag@Au纳米结构溶液中加入20μL(30%V/V)的H2O2溶液,室温下静止放置8h,随后4000rpm离心10min,将CTAC表面修饰的Au@Au-Ag纳米框架结构分散在去离子水中。Au@Au-Ag纳米框架架构的合成过程如图1所示。
实施例3-9
实施例3-9中除步骤S2中硝酸银溶液、抗坏血酸溶液和步骤S3中氯金酸溶液加入浓度不同外,其他制备过程完全相同。
Figure BDA0003052334400000061
性能检测实验例
实验例1:
紫外可见吸收光谱:分别将实施例2各步骤中获得的Au纳米球、Au@Ag纳米立方体、Au@Ag@Au纳米结构、Au@Au-Ag纳米框架材料加入含有2mL水的比色皿中,进行紫外可见吸收光谱测试,其结果如图2所示;并将实施例3-9所获得的Au@Au-Ag纳米框架材料进行紫外可见吸收光谱测试,其结果如图3所示,其中实施例3-9分别对应图3曲线中的2-9。
从图2中可以看出:Ag在Au纳米球表面的包覆使金球的吸收峰从523nm蓝移到454nm,并出现银的两个特征峰348nm和388nm;而Au对Au@Ag纳米立方体的进一步包覆,使银的两个特征峰消失,Au@Ag@Au的吸收峰回到552nm;双氧水对Au@Ag@Au进一步刻蚀后形成的Au@Au-Ag纳米框架结构,其吸收峰红移至近红外二区1130nm,并出现相对应的Au纳米球的吸收峰533nm;从图3可以看出:同时通过调节Ag在Au纳米球表面的包覆厚度以及不同HAuCl4的量调节Au@Au-Ag纳米框架材料的吸收峰700-1400nm。
实验例2:
形态观测:将实施例2各步骤中获得的Au纳米球、Au@Ag纳米立方体、Au@Ag@Au纳米结构、Au@Au-Ag纳米框架材料分别滴加在覆盖碳膜的230目铜网上,置于干燥器中,待其自然干燥后置于透射电镜Tecnai G2 F20下观察,其结果如图4所示。本发明的Au@Au-Ag纳米框架材料,以Au纳米球为核,金银合金为框架的Au@Au-Ag纳米框架材料,形貌均一,粒径在48nm左右,壁厚为4nm左右。
实验例3
将实施例2获得的Au@Au-Ag纳米框架材料稀释成一定浓度梯度:0μg/mL、12.5μg/mL、25μg/mL、50μg/mL、75μg/mL、150μg/mL、200μg/mL、300μg/mL,放置在离心管中,进行体外光声性能测试,其结果如图5所示;将Au@Au-Ag纳米框架材料稀释在一定浓度梯度的PBS溶液:0μg/mL、25μg/mL、50μg/mL、100μg/mL、150μg/mL、200μg/mL,然后通过皮下注射Au@Au-Ag纳米框架材料,进行体内光声成像,其结果如图6所示。由图5可以看出随着Au@Au-Ag纳米框架材料浓度的增加,光声信号强度增加,并且浓度和信号强度成正比,从图6中可以看出体内光声信号强度随着Au@Au-Ag纳米框架材料浓度的增加而增加。
实验例4
光热性能检测:将实施例2获得的Au@Au-Ag纳米框架材料配置成浓度为150μg/mL的溶液放入小离心管中,采用1064nm激光照射,用热成像仪采集和分析数据,图7为光热变化图,从图7中可以看出;Au@Au-Ag纳米框架材料在激光照射下,随着激光照射时间的延长,温度升高至55℃,当继续随着时间的延长,温度不再变化保持稳定,说明材料的光热稳定性较好。
实验例5
SERS性能检测:
材料前处理:将实施例获得的Au@Au-Ag纳米框架材料离心,分散在NaPSS(聚(4-苯乙烯磺酸钠))溶液,室温下静置2h,采用8000rpm离心30min,去除上层清液,然后分散在0.15wt%的NaPSS溶液,重复上述离心再分散过程三次,获得PSS修饰的Au@Au-Ag框架结构;接着将PSS修饰的Au@Au-Ag框架结构分散在5mM的柠檬酸钠溶液中,室温下静置12h。最后离心,分散在10mg/mL PVP溶液中,获得PVP修饰的Au@Au-Ag框架结构材料。向20mL 30μg/mLPVP修饰的Au@Au-Ag框架结构溶液中加入IR-1061染料分子使其浓度为1μM,室温下搅拌12h,8000rpm离心15min,并用去离子水清洗,去除游离的IR-1061染料分子;向Au@Au-Ag-IR1061纳米框架溶液中加入SH-PEG-COOH(α-巯基-ω-羧基聚乙二醇)和mPEG-SH(甲氧基聚乙二醇巯基)使其浓度分别为50μg/m和1mg/mL mPEG-SH,反应15min;然后加入EDC(1-(3-二甲基丙基)-3-乙基碳化二亚胺盐酸盐)和sulfo-NHS(N-羟基琥珀酰亚胺),最后加入RGD(RGD多肽),4℃下反应一晚上,最后8000rpm离心,分散在PBS溶液中备用。将Au@Au-Ag-IR1061框架材料与琼脂糖混合成一定浓度梯度:2.9μg/mL、5.8μg/mL、11.6μg/mL、23.2μg/mL、46.3μg/mL、92.7μg/mL、185.4μg/mL,滴加在多孔板中,采用1064nm激光进行SERS性能测试。同时采用上述浓度为185.4μg/mL的Au@Au-Ag-IR1061框架材料,并且将不同厚度的琼脂糖(0.8mm、1.28mm、2.0mm、3.18mm、4.2mm、4.5mm、5.6mm)覆盖在多孔板上,采用1064nm激光进行SERS性能测试,其结果如图8、9所示,其中图8为Au@Au-Ag纳米框架材料的浓度和SERS信号强度的关系,图9为不同深度和SERS信号强度关系图。
从图8中可以看出,随着Au@Au-Ag-IR1061框架材料浓度的增加,SERS信号强度增加;从图9中可以看出,Au@Au-Ag-IR1061框架材料对于近红外二区SERS的探测深度高达4毫米。
以上所述实施例,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明的技术范围内,根据本发明的技术方案及其构思加以等同替换或改变,都应涵盖在本发明的保护范围内。

Claims (10)

1.一种生物医用贵金属框架材料,其特征在于,所述框架材料通过Ag长方体或立方体的生成,Au、Ag共沉积和蚀刻反应制备获得,所述框架材料为空心或含金核的Au-Ag长方体或正方体纳米框架;
所述金核为金纳米球、金纳米立方体、金纳米棒、金双锥体、金纳米星或金纳米盘。
2.根据权利要求1所述的生物医用贵金属框架材料,其特征在于,所述框架材料的表面等离激元共振吸收峰范围为700-1400nm。
3.一种生物医用贵金属框架材料的制备方法,其特征在于,具体包括以下步骤:
S1:将氯金酸与硼氢化钠在表面活性剂存在体系中发生氧化还原反应并静置获得金纳米球种子溶液;在氯金酸与抗坏血酸发生氧化还原反应后立即加入上述金纳米球种子溶液搅拌并静置获得更大尺寸金纳米球,经离心、去上清液,重新分散获得金纳米球溶液;
S2:将金纳米球溶液分散在表面活性剂体系中,先后加入硝酸银和抗坏血酸加热反应并离心清洗获得Au@Ag纳米立方体;将所述Au@Ag纳米立方体分散至表面活性剂体系中,获得Au@Ag纳米立方体溶液;
S3:将抗坏血酸和氢氧化钠加入至表面活性剂体系,并加入所述Au@Ag纳米立方体溶液,再加入氯金酸进行反应,经离心、清洗后并分散至去离子水中获得Au@Ag@Au纳米结构溶液;
S4:向所述Au@Ag@Au纳米结构溶液加入过氧化氢溶液,静置反应后经离心获得Au@Au-Ag纳米框架材料。
4.根据权利要求3所述的生物医用贵金属框架材料的制备方法,其特征在于,所述表面活性剂体系为阳离子表面活性剂,具体为十六烷基三甲基氯化铵。
5.根据权利要求3所述的生物医用贵金属框架材料的制备方法,其特征在于,所述步骤S2中加热反应的温度为60-65℃。
6.根据权利要求3所述的生物医用贵金属框架材料的制备方法,其特征在于,所述步骤S2中金纳米球溶液与硝酸银溶液的摩尔浓度比为2:(3.33-6.67)×106
7.根据权利要求3所述的生物医用贵金属框架材料的制备方法,其特征在于,所述步骤S2中硝酸银溶液与步骤S3中氯金酸溶液的加入摩尔浓度比为(0.333-0.67):(0.063-0.17)。
8.根据权利要求3所述的生物医用贵金属框架材料的制备方法,其特征在于,所述步骤S4中过氧化氢为体积分数为30%的过氧化氢溶液,静置反应的时间为4-10h。
9.一种权利要求1-2任意所述的生物医用贵金属框架材料或权利要求3-8任意所述制备方法获得的生物医用贵金属框架材料在SERS探测技术中的应用。
10.一种权利要求1-2任意所述的生物医用贵金属框架材料或权利要求3-8任意所述制备方法获得的生物医用贵金属框架材料在表面增强拉曼散射检测、光声成像造影剂、光热和药物治疗载体材料中的应用。
CN202110491404.5A 2021-05-06 2021-05-06 一种生物医用贵金属框架材料及其制备方法与应用 Active CN113231643B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110491404.5A CN113231643B (zh) 2021-05-06 2021-05-06 一种生物医用贵金属框架材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110491404.5A CN113231643B (zh) 2021-05-06 2021-05-06 一种生物医用贵金属框架材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN113231643A true CN113231643A (zh) 2021-08-10
CN113231643B CN113231643B (zh) 2022-09-13

Family

ID=77132096

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110491404.5A Active CN113231643B (zh) 2021-05-06 2021-05-06 一种生物医用贵金属框架材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN113231643B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113814397A (zh) * 2021-10-21 2021-12-21 上海应用技术大学 多孔Ag@Cu2O纳米巢室材料及其制备方法与应用
CN113984685A (zh) * 2021-09-30 2022-01-28 南京航空航天大学 一种银纳米结构生长机理的分析方法
CN116727678A (zh) * 2023-06-15 2023-09-12 东南大学 Yolk-Shell结构的金纳米粒子及其制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014088518A1 (en) * 2012-12-06 2014-06-12 Nanyang Technological University Method for forming a nanoframe
CN106141172A (zh) * 2015-04-27 2016-11-23 中国科学院宁波材料技术与工程研究所 三维“相框与相片”结构纳米金材料、其合成方法及应用
US20180050324A1 (en) * 2014-09-19 2018-02-22 Georgia Tech Research Corporation Silver nanowires, methods of making silver nanowires, core-shell nanostructures, methods of making core-shell nanostructures, core-frame nanostructures, methods of making core-frame nanostructures
CN107999782A (zh) * 2017-11-09 2018-05-08 中国科学院合肥物质科学研究院 一种金银合金空心多面体的制备方法
CN108044127A (zh) * 2017-12-14 2018-05-18 中国科学院合肥物质科学研究院 一种三维多孔金银铂三元合金纳米材料及其制备方法与应用
CN108110265A (zh) * 2017-12-18 2018-06-01 济南大学 一种用于醇类燃料电池的Au@Au/Pt核-壳结构纳米催化剂
KR20180069181A (ko) * 2016-12-14 2018-06-25 서울대학교산학협력단 큐브-인-큐브 형태의 금속 나노구조물, 이의 제조방법 및 이의 용도
CN108723385A (zh) * 2018-06-07 2018-11-02 大连民族大学 一种单晶银纳米球水相制备方法
CN108907174A (zh) * 2018-06-05 2018-11-30 武汉工程大学 一种银钯合金纳米材料及其制备方法和应用
CN109512797A (zh) * 2018-12-21 2019-03-26 上海纳米技术及应用国家工程研究中心有限公司 基于金属有机框架的纳米药物载体的制备方法及其产品
CN109570488A (zh) * 2018-12-18 2019-04-05 深圳先进技术研究院 纳米颗粒及其制备方法和应用、药剂
CN110202163A (zh) * 2019-05-21 2019-09-06 山东理工大学 一种Ag@Au@Pd纳米立方空壳结构的制备方法
CN111299570A (zh) * 2020-03-20 2020-06-19 中国科学院合肥物质科学研究院 一种lspr可调控的金@银核壳纳米星及其制备方法
CN111347059A (zh) * 2020-03-30 2020-06-30 江南大学 一种多孔型金@银@金纳米立方体的合成方法
CN111451520A (zh) * 2020-03-12 2020-07-28 武汉工程大学 一种纳米金的制备方法
KR20200141575A (ko) * 2019-06-10 2020-12-21 서울대학교산학협력단 Dna 혼성화에 의해 형성된 계층적 구조의 금속나노큐브 조립체를 이용하는 표면증강라만산란에 의한 표적 물질 검출방법

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014088518A1 (en) * 2012-12-06 2014-06-12 Nanyang Technological University Method for forming a nanoframe
US20180050324A1 (en) * 2014-09-19 2018-02-22 Georgia Tech Research Corporation Silver nanowires, methods of making silver nanowires, core-shell nanostructures, methods of making core-shell nanostructures, core-frame nanostructures, methods of making core-frame nanostructures
CN106141172A (zh) * 2015-04-27 2016-11-23 中国科学院宁波材料技术与工程研究所 三维“相框与相片”结构纳米金材料、其合成方法及应用
KR20180069181A (ko) * 2016-12-14 2018-06-25 서울대학교산학협력단 큐브-인-큐브 형태의 금속 나노구조물, 이의 제조방법 및 이의 용도
CN107999782A (zh) * 2017-11-09 2018-05-08 中国科学院合肥物质科学研究院 一种金银合金空心多面体的制备方法
CN108044127A (zh) * 2017-12-14 2018-05-18 中国科学院合肥物质科学研究院 一种三维多孔金银铂三元合金纳米材料及其制备方法与应用
CN108110265A (zh) * 2017-12-18 2018-06-01 济南大学 一种用于醇类燃料电池的Au@Au/Pt核-壳结构纳米催化剂
CN108907174A (zh) * 2018-06-05 2018-11-30 武汉工程大学 一种银钯合金纳米材料及其制备方法和应用
CN108723385A (zh) * 2018-06-07 2018-11-02 大连民族大学 一种单晶银纳米球水相制备方法
CN109570488A (zh) * 2018-12-18 2019-04-05 深圳先进技术研究院 纳米颗粒及其制备方法和应用、药剂
CN109512797A (zh) * 2018-12-21 2019-03-26 上海纳米技术及应用国家工程研究中心有限公司 基于金属有机框架的纳米药物载体的制备方法及其产品
CN110202163A (zh) * 2019-05-21 2019-09-06 山东理工大学 一种Ag@Au@Pd纳米立方空壳结构的制备方法
KR20200141575A (ko) * 2019-06-10 2020-12-21 서울대학교산학협력단 Dna 혼성화에 의해 형성된 계층적 구조의 금속나노큐브 조립체를 이용하는 표면증강라만산란에 의한 표적 물질 검출방법
CN111451520A (zh) * 2020-03-12 2020-07-28 武汉工程大学 一种纳米金的制备方法
CN111299570A (zh) * 2020-03-20 2020-06-19 中国科学院合肥物质科学研究院 一种lspr可调控的金@银核壳纳米星及其制备方法
CN111347059A (zh) * 2020-03-30 2020-06-30 江南大学 一种多孔型金@银@金纳米立方体的合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAEWAN AHN等: "Site-Selective Carving and Co-Deposition: Transformation of Ag Nanocubes into Concave Nanocrystals Encased by Au–Ag Alloy Frames", 《ACSNANO》 *
邵名望等: "《纳米材料专业实验》", 30 September 2017, 厦门大学出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113984685A (zh) * 2021-09-30 2022-01-28 南京航空航天大学 一种银纳米结构生长机理的分析方法
CN113984685B (zh) * 2021-09-30 2023-03-10 南京航空航天大学 一种银纳米结构生长机理的分析方法
CN113814397A (zh) * 2021-10-21 2021-12-21 上海应用技术大学 多孔Ag@Cu2O纳米巢室材料及其制备方法与应用
CN113814397B (zh) * 2021-10-21 2023-08-29 上海应用技术大学 多孔Ag@Cu2O纳米巢室材料及其制备方法与应用
CN116727678A (zh) * 2023-06-15 2023-09-12 东南大学 Yolk-Shell结构的金纳米粒子及其制备方法
CN116727678B (zh) * 2023-06-15 2024-03-12 东南大学 Yolk-Shell结构的金纳米粒子及其制备方法

Also Published As

Publication number Publication date
CN113231643B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
CN113231643B (zh) 一种生物医用贵金属框架材料及其制备方法与应用
Vankayala et al. Morphology dependent photosensitization and formation of singlet oxygen (1 Δ g) by gold and silver nanoparticles and its application in cancer treatment
Li et al. Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity
Zhu et al. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells
Hu et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications
Zhan et al. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging
Skrabalak et al. Gold nanocages for biomedical applications
Vongsavat et al. Ultrasmall hollow gold–silver nanoshells with extinctions strongly red-shifted to the near-infrared
Yi et al. One-step synthesis of dendritic gold nanoflowers with high surface-enhanced Raman scattering (SERS) properties
Liu et al. One-step shell polymerization of inorganic nanoparticles and their applications in SERS/nonlinear optical imaging, drug delivery and catalysis
Zhuo et al. Shielded silver nanorods for bioapplications
Xie et al. Synthesis and NIR optical properties of hollow gold nanospheres with LSPR greater than one micrometer
Zhao et al. Gold nanorod-enhanced two-photon excitation fluorescence of conjugated oligomers for two-photon imaging guided photodynamic therapy
KR20150048295A (ko) 크기 및 형태가 조절된 AuNPCs의 합성방법
EP2772271B1 (en) Nanostructure, applied device and preparation method thereof
Fu et al. High-yield preparation of robust gold nanoshells on silica nanorattles with good biocompatiblity
Geddes et al. Noble-metal surfaces for metal-enhanced fluorescence
US20100304173A1 (en) Plasmonic-Driven Synthesis of Nanoprisms from Isotropic and Anisotropic Gold Cores
Voliani Update on gold nanoparticles
Sarycheva et al. Microbead silica decorated with polyhedral silver nanoparticles as a versatile component of sacrificial gel films for SERS applications
KR102653556B1 (ko) 금 나노로드와 실리카로 구성된 코어-쉘 나노입자의 제조방법, 이를 함유하는 암 치료용 조성물
Bibikova et al. Plasmon-resonant gold nanoparticles with variable morphology as optical labels and drug carriers for cytological research
Smirnov et al. Silica Coated Plasmonic Nanobone-based Tags for Safe Bioimaging.
Pastoriza-Santos et al. Reliable methods for silica coating of au nanoparticles
CN113084191A (zh) 一种银包覆金纳米棒的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant