CN113226528A - 聚偏二氟乙烯树脂制多孔膜及其制造方法 - Google Patents

聚偏二氟乙烯树脂制多孔膜及其制造方法 Download PDF

Info

Publication number
CN113226528A
CN113226528A CN201980085483.0A CN201980085483A CN113226528A CN 113226528 A CN113226528 A CN 113226528A CN 201980085483 A CN201980085483 A CN 201980085483A CN 113226528 A CN113226528 A CN 113226528A
Authority
CN
China
Prior art keywords
vinyl ether
porous film
polyvinylidene fluoride
copolymer
fluoride resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201980085483.0A
Other languages
English (en)
Inventor
西谷允一
长谷川泰彦
松山秀人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruzen Petrochemical Co Ltd
Kobe University NUC
Original Assignee
Maruzen Petrochemical Co Ltd
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Petrochemical Co Ltd, Kobe University NUC filed Critical Maruzen Petrochemical Co Ltd
Publication of CN113226528A publication Critical patent/CN113226528A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/382Polyvinylethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • B01D2323/22Specific non-solvents or non-solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/28Degradation or stability over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/48Antimicrobial properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/054Precipitating the polymer by adding a non-solvent or a different solvent
    • C08J2201/0542Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition
    • C08J2201/0544Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition the non-solvent being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2435/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2435/08Copolymers with vinyl ethers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明的技术问题是通过使用少量的乙烯基醚系共聚物,从而提供亲水性、透水性和抗结垢性优异、并且抑制了乙烯基醚系共聚物溶出的聚偏二氟乙烯树脂制多孔膜。作为解决手段,根据本发明的多孔膜含有作为基材的聚偏二氟乙烯树脂、和乙烯基醚系共聚物,所述乙烯基醚系共聚物是含有氧乙烯基的乙烯基醚单体与含有烃基的乙烯基醚单体的共聚物。

Description

聚偏二氟乙烯树脂制多孔膜及其制造方法
技术领域
本发明涉及聚偏二氟乙烯树脂制多孔膜。另外,本发明涉及聚偏二氟乙烯树脂制多孔膜的制造方法。
背景技术
作为水处理领域(主要是微滤或超滤)中的应用,使用了聚偏二氟乙烯树脂的高分子多孔膜是已知的。采用这样的多孔膜对各种液体进行过滤时,例如液体中含有的有机物的一部分等会在膜内、膜表面附着/堆积,形成滤饼(cake)层。该现象被称为所谓的结垢(fouling),已知其导致多孔膜的过滤性能降低。
聚偏二氟乙烯树脂的耐久性、耐热性和耐化学试剂性优异,因此作为多孔膜而被广泛使用。另一方面,聚偏二氟乙烯树脂是疏水性材料,因此存在容易发生结垢的问题。为解决该问题,已在尝试通过各种方法提高多孔膜与水的亲和性,改善透水性和抗结垢性。
作为其一例,已知有下述这样的聚合物状态超滤膜或者微滤膜的制造方法:为了使聚偏二氟乙烯树脂疏水性膜的疏水度降低,通过基于将疏水性膜浸泡于亲水性的聚乙烯基甲基醚(PVME)溶液中的后处理,或者通过向用于形成疏水性膜的掺杂溶液(dopesolution)中混入PVME,从而使得PVME引入(专利文献1)。
与此相对,作为降低聚偏二氟乙烯树脂疏水性膜的疏水度的其它方法,已知下述这样的方法:合成具有与聚偏二氟乙烯树脂具有高相容性的疏水性单元(甲基丙烯酸甲酯)和亲水性单元(聚(乙二醇)甲基醚甲基丙烯酸酯)的亲水性聚合物(共聚物),将该亲水性聚合物与聚偏二氟乙烯树脂混合,从而将亲水性聚合物固定化于聚偏二氟乙烯树脂中(专利文献2)。
现有技术文献
专利文献
专利文献1:日本专利第4908208号
专利文献2:日本专利申请特开2017-170319号
发明内容
本发明所解决的技术问题
像专利文献1中记载的方法那样在聚偏二氟乙烯树脂的疏水性膜表面上将亲水性均聚物通过后处理而涂覆的情况下,存在涂覆的亲水性均聚物使膜的孔堵塞、渗透流速降低的问题,以及存在涂覆层在过滤中向二次侧剥离的问题。
本申请的发明人尝试通过向掺杂溶液中混合与PVME同为亲水性均聚物的聚-2-甲氧基乙基乙烯基醚(P-MOVE)来使得多孔膜的疏水度降低,结果发现了下述新的课题:由于P-MOVE与作为疏水性膜的聚偏二氟乙烯树脂的相容性低,因此P-MOVE难以留在多孔膜中,在过滤中或者进行化学品清洗时会从多孔膜中溶出(参见后文中的比较例1-1)。
另外,专利文献2中,聚偏二氟乙烯树脂与亲水性聚合物的质量比为10/1~2/1,因此需要大量混合亲水性聚合物。在这种情况下,由于大量地使用亲水性聚合物,存在成本高昂的问题。另外,亲水性聚合物中的疏水性单元与亲水性单元的摩尔比为95/5~85/15,疏水性单元的比率高这点也导致在向聚偏二氟乙烯树脂制多孔膜赋予亲水性时需要大量地混合亲水性聚合物。
因此,期待在为了降低聚偏二氟乙烯树脂制多孔膜的疏水度而混合包含疏水性单元和亲水性单元的亲水性聚合物、使得亲水性聚合物固定化于聚偏二氟乙烯树脂中的方法中,即使相对于聚偏二氟乙烯树脂仅混合少量的亲水性聚合物,也能够向多孔膜赋予亲水性,并且多孔膜的透水性和抗结垢性优异,且能够防止亲水性聚合物的溶出。
本发明是鉴于上述情况做出的,本发明的技术问题是提供亲水性、透水性和抗结垢性优异、并且抑制了乙烯基醚系共聚物溶出的聚偏二氟乙烯树脂制多孔膜及其制造方法。
用于解决技术问题的技术手段
为了解决上述问题,本申请的发明人针对聚偏二氟乙烯树脂制多孔膜及其制造方法进行了深入的研究,结果发现,通过在作为基材的聚偏二氟乙烯树脂中混合使含有氧乙烯基的乙烯基醚单体和含有烃基的乙烯基醚单体共聚而成的乙烯基醚系共聚物,能够制得亲水性、透水性和抗结垢性优异、并且抑制了乙烯基醚系共聚物溶出的聚偏二氟乙烯树脂制多孔膜,从而完成了本发明。
即,本发明提供以下的(1)~(8)。
(1)多孔膜,其含有作为基材的聚偏二氟乙烯树脂、和乙烯基醚系共聚物;
所述乙烯基醚系共聚物是含有氧乙烯基的乙烯基醚单体与含有烃基的乙烯基醚单体的共聚物。
(2)(1)的多孔膜,其中,所述含有氧乙烯基的乙烯基醚单体如下式(1)所示,
Figure BDA0003127216100000031
式(1)中,n以平均值计表示1~3,R1表示碳原子数为1~2的烷基。
(3)(1)或(2)的多孔膜,其中,所述含有烃基的乙烯基醚单体如下式(2)所示,
Figure BDA0003127216100000032
式(2)中,R2表示碳原子数为1~6的烃基。
(4)(1)~(3)中任一项的多孔膜,其中,所述聚偏二氟乙烯树脂与所述乙烯基醚系共聚物的质量比为90:10~99.5:0.5。
(5)(1)至(4)的多孔膜,其中,所述含有氧乙烯基的乙烯基醚单体与所述含有烃基的乙烯基醚单体的摩尔比为10:90~90:10。
(6)(1)~(5)中任一项的多孔膜,其中,所述乙烯基醚系共聚物的数均分子量(Mn)为3,000~30,000。
(7)(1)~(6)中任一项的多孔膜的制造方法,
其中,使用非溶剂致相分离法、热致相分离法、或者该二者的组合。
(8)(7)的制造方法,所述制造方法使用非溶剂致相分离法,
其中,作为良溶剂使用选自N-甲基-2-吡咯烷酮和N,N-二甲基乙酰胺中的一种以上,以及作为非溶剂使用选自水和甲醇中的一种以上。
发明的效果
根据本发明,通过在用于形成聚偏二氟乙烯树脂制多孔膜的掺杂溶液中混合使含有氧乙烯基的乙烯基醚单体与含有烃基的乙烯基醚单体共聚而成的乙烯基醚系共聚物,可以制得亲水性、透水性和抗结垢性优异、并且抑制了乙烯基醚系共聚物的溶出的聚偏二氟乙烯树脂制多孔膜。
具体实施方式
<定义>
本说明书中,数均分子量(Mn)和重均分子量(Mw)表示通过凝胶渗透色谱(GPC)测得的数值,具体表示通过后文实施例中记载的方法测得的数值。
<多孔膜>
本发明的多孔膜具有下述特征:其含有作为基材的聚偏二氟乙烯树脂、和乙烯基醚系共聚物,所述乙烯基醚系共聚物是含有氧乙烯基的乙烯基醚单体与含有烃基的乙烯基醚单体的共聚物。
所述聚偏二氟乙烯树脂成膜性优异并且耐久性优异,因此适合作为本发明的多孔膜的材料。作为可用于本发明中的聚偏二氟乙烯树脂,可以使用偏二氟乙烯的均聚物或者具有偏二氟乙烯单元的共聚物。作为具有偏二氟乙烯单元的共聚物,可举出偏二氟乙烯-六氟丙烯共聚物、偏二氟乙烯-四氟乙烯共聚物等。
关于所述聚偏二氟乙烯树脂与所述乙烯基醚系共聚物的质量比,优选为90.0:10.0~99.5:0.5,更优选为90.0:10.0~99.0:1.0,进一步优选为90.0:10.0~98.0:2.0。
所述乙烯基醚系共聚物为含有氧乙烯基的乙烯基醚单体与含有烃基的乙烯基醚单体的共聚物,其可为嵌段共聚物,也可为无规共聚物。含有氧乙烯基的乙烯基醚单体与含有烃基的乙烯基醚单体的摩尔比优选为10:90~90:10,更优选为80:20,特别优选为60:40。
含有氧乙烯基的乙烯基醚单体的含有比率为10摩尔%以上时,能够容易地保持亲水性,获得充分的透水性和抗结垢性。此外,含有氧乙烯基的乙烯基醚单体的含有比率为90摩尔%以下时,乙烯基醚系共聚物容易保留于多孔膜中,并且能够抑制过滤中或者进行化学品清洗时从多孔膜中溶出。
所述含有氧乙烯基的乙烯基醚单体为在侧链上具有氧乙烯基的单体,如下式(1)所示。
Figure BDA0003127216100000051
式(1)中,R1表示的烷基的碳原子数为1~2,优选为甲基、乙基。N以平均值计表示1~3。该平均值可通过NMR测定。
作为所述含有氧乙烯基的乙烯基醚单体,具体而言,优选为选自甲氧基乙基乙烯基醚、乙氧基乙基乙烯基醚、甲氧基乙氧基乙基乙烯基醚、乙氧基乙氧基乙基乙烯基醚、甲氧基乙氧基乙氧基乙基乙烯基醚、乙氧基乙氧基乙氧基乙基乙烯基醚等所示的组中的至少1种,从与偏氟乙烯和溶剂等的相容性的观点考虑,更优选甲氧基乙基乙烯基醚、乙氧基乙基乙烯基醚、乙氧基乙氧基乙基乙烯基醚、甲氧基乙氧基乙氧基乙基乙烯基醚,特别优选甲氧基乙基乙烯基醚。
上述含有烃基的乙烯基醚单体如下式(2)所示。
Figure BDA0003127216100000061
式(2)中,作为R2所示的烃基,可举出烷基、环烷基、桥环烃基、芳基等。其中优选烷基、环烷基,特别优选烷基。R2所示的烷基的碳原子数优选为1~6,更优选为2~6。
烷基可以是直链状的,也可以是支链状的,具体可举出甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、新戊基、异戊基、仲戊基、叔戊基、正己基、异己基等。R2所示的环烷基的碳原子数优选为3~6,具体可举出环丙基、环丁基、环戊基、环己基等。
作为所述含有烃基的乙烯基醚单体,具体而言,优选为选自甲基乙烯基醚、乙基乙烯基醚、正丙基乙烯基醚、异丙基乙烯基醚、环丙基乙烯基醚、正丁基乙烯基醚、异丁基乙烯基醚、仲丁基乙烯基醚、叔丁基乙烯基醚、环丁基乙烯基醚、正戊基乙烯基醚、新戊基乙烯基醚、异戊基乙烯基醚、仲戊基乙烯基醚、叔戊基乙烯基醚、环戊基乙烯基醚、正己基乙烯基醚、异己基乙烯基醚、环己基乙烯基醚等所示的烷基乙烯基醚的组中的至少1种,从与偏氟乙烯和溶剂等的相容性的观点考虑,更优选正丁基乙烯基醚、环己基乙烯基醚,特别优选正丁基乙烯基醚。
所述乙烯基醚系共聚物的数均分子量(Mn)优选为3,000~30,000,更优选为5,000~25,000,进一步优选为7,000~23,000。另外,所述乙烯基醚系共聚物的分子量分布(Mw/Mn)优选为1.00~2.00,更优选为1.05~1.70,进一步优选为1.10~1.50。乙烯基醚系共聚物的Mn和Mw/Mn在上述数值范围内时,所述乙烯基醚系共聚物的大部分可保留于成膜后的多孔膜中,在过滤中和进行化学品清洗时等中,能够防止从多孔膜中溶出,长时间保持多孔膜的亲水性。
乙烯基醚系共聚物的聚合方法没有特别限定,可通过以往已知的方法进行,嵌段共聚和无规共聚中的任一均可。
<多孔膜的制造方法>
本发明的多孔膜无特殊限制,可以根据各种方法制得。可举出例如相分离法、延伸法、蚀刻法、熔融提取法等。熔融提取法为下述这样的方法,其中,在混合物中对无机微粒和有机液体进行熔融混炼,在聚偏二氟乙烯树脂和乙烯基醚系共聚物的熔点以上的温度将其从喷嘴挤出、或者在通过压力机成型后进行冷却固化之后,通过提取有机液体与无机微粒而得到多孔膜。
作为本发明的多孔膜的制造方法,相分离法是优选的,作为相分离法,可举出非溶剂致相分离法、热致相分离法、或者将这二者组合得到的方法。非溶剂致相分离法是包括下述工序的方法:经历将聚偏二氟乙烯树脂和乙烯基醚系共聚物在能溶解其的溶剂(良溶剂)中溶解的工序之后,将该掺杂溶液(成膜液)从狭缝模具或喷嘴喷出、使其在含有非溶剂的凝固浴中接触而引起相分离的工序。此外,热致相分离法为下述这样的方法,其中,将聚偏二氟乙烯树脂和乙烯基醚系共聚物在其能溶解的良溶剂中或者在其于高温范围下可溶解的不良溶剂中溶解之后,从狭缝模具或喷嘴喷出,通过与空气或水接触而冷却,从而引起相分离。
本发明中,非溶剂致相分离法因其易于控制多孔膜的孔径尺寸而更优选。通过将掺杂溶液浸渍到含有非溶剂的凝固浴中,而可利用掺杂溶液的溶剂和凝固浴中的非溶剂的浓度梯度促进非溶剂诱导型的相分离。
根据该方法,可制得所谓的不对称膜,其中,在最初通过溶剂和非溶剂的置换而发生相分离的外表面形成致密的层,随着相分离朝向膜内部方向进展,以朝向膜内部方向的形式呈现为孔径连续增大。
本发明的多孔膜的制造方法中,使用非溶剂致相分离法的情况下,使用良溶剂与非溶剂,良溶剂表示对聚偏二氟乙烯树脂和乙烯基醚系共聚物的溶解度高的溶剂。此外,非溶剂表示直到达到树脂的熔点或者液体的沸点树脂也不能溶解或溶胀的溶剂。
作为良溶剂,可举出例如N-甲基-2-吡咯烷酮、N,N-二甲基甲酰胺、二甲基亚砜、N,N-二甲基乙酰胺、磷酸三甲酯等以及它们的混合溶剂等。本发明中,良溶剂优选为N-甲基-2-吡咯烷酮、N,N-二甲基乙酰胺,特别优选为N-甲基-2-吡咯烷酮。
另一方面,作为非溶剂,可举出水、甲醇、乙醇、丙醇等以及它们的混合溶剂等。本发明中,非溶剂优选为水、甲醇,从通用性的观点考虑,特别优选为水。
实施例
下文中举出实施例和比较例以更详细地阐述本发明,但本发明不受这些实施例等的任何限制。
(Mn、Mw/Mn的测定方法)
对均聚物和共聚物的数均分子量(Mn)和重均分子量(Mw)的分析使用凝胶渗透色谱(GPC)以下述条件进行。
<条件>
分析柱:昭和电工(株)制造,“ShodexLF-804”(商品名)(8.0×300mm)3根(东曹(株)制造)
参考柱:“TSKgelSuperHZM-N”(商品名)(6.0×150mm)3根(东曹(株)制造)
洗提液:THF
测定温度:40℃
流速:分析柱1.00mL/分、参考柱0.50mL/分
需要说明,Mw和Mn利用使用东曹(株)制造的聚苯乙烯(Mp(峰位分子量)为1,090,000、706,000、427,000、190,000、96,400、37,900、19,500、10,200、5,390、2,630和1,010的11种)得到的校准曲线来求得。
<合成例>
<合成流程1>
向四口烧瓶中放入一个搅拌子,用涂有润滑脂的塞子封闭顶部和侧面的各一个口。侧面的一个口以三通开关封闭,另一个口通过底部封起来的温度计保护管也同样密封。在脱气的同时用热风枪对烧瓶整体进行加热,排走其中的水分后进行氮气置换。该脱气和氮气置换的操作重复3次。接着,在氮气流动下,将烧瓶放进配有电磁搅拌器的低温恒温水浴槽中(东京理科器械(株)制造,“PSL-1400”(商品名)),于-5℃保持。此时,向温度计保护管中加入甲醇,安装温度计(T&D Corporation制造,TR-81(商品名))。向其中加入92.00mL经超脱水的甲苯(富士胶片和光纯药(株)制造)。
<合成例1乙烯基醚系共聚物(B-1)的合成>
遵循合成流程1,合成了甲氧基乙基乙烯基醚(MOVE)与正丁基乙烯基醚(nBVE)的嵌段共聚物。
具体而言,向合成流程1中所示的烧瓶中进一步地加入18.34mL乙酸乙酯(AcOEt)、0.136mL异丁氧基乙醇乙酸酯(IBEA)、10.45mL的MOVE、2.75mL乙基三氯化二铝(EASC),之后,在内部保持为-5℃的状态下保持到MOVE的转换率达到95%。接着,向同一烧瓶中加入1.29mL的nBVE,再保持到nBVE的转化率达到95%以上。使用1.00mol/L的甲醇钠将该聚合反应物的pH调节为中性,加入离子交换树脂持续搅拌一夜。第二天进行减压过滤,使滤液真空干燥,得到MOVE与nBVE的嵌段共聚物。得到的乙烯基醚系共聚物的Mn为15,700,Mw/Mn为1.18。
<合成例2~6、8~12乙烯基醚系共聚物(B-2)~(B-6)、(B-8)~(B-10)和均聚物(B-11、B-12)的合成>
遵循合成流程1,除了如表1所示那样改变单体组成比(摩尔比)以外,按照与乙烯基醚系共聚物(B-1)相同的方法,合成了乙烯基醚系共聚物(B-2)~(B-10)和均聚物(B-11、B-12)。分别测定了Mn和Mw/Mn。需要说明,合成例3和合成例8中虽然单体组成比相同,但通过改变添加的单体的量而调节了分子量和分子量分布。
<合成例7乙烯基醚系共聚物(B-7)的合成>
遵循合成流程1,合成了MOVE与nBVE的无规共聚物。
具体而言,向合成路线1中所示的烧瓶中进一步地加入18.34mL的AcOEt、0.136mL的IBEA、6.96mL的MOVE、5.15mL的nBVE、2.75mL的EASC,之后,在内部保持为-5℃的状态下保持到MOVE和nBVE二者的转换率均达到95%以上。使用1.00mol/L的甲醇钠将该聚合反应物的pH调节为中性,加入离子交换树脂持续搅拌一夜。第二天进行减压过滤,使滤液真空干燥,获得MOVE与nBVE的无规共聚物。得到的乙烯基醚系共聚物的Mn为17,500,Mw/Mn为1.20。
上述的结果示于表1中。此外,表中的TEGVE表示(=)甲氧基乙氧基乙氧基乙基乙烯基醚,CHVE表示(=)环己基乙烯基醚。
[表1]
Figure BDA0003127216100000111
(测定方法)
(1)浸出试验
对从多孔膜中浸出的乙烯基醚系共聚物B的定量通过下述方法来测定。将各合成例中得到的乙烯基醚系共聚物B(0.1~1.4重量%)和聚偏二氟乙烯(14重量%)溶解于作为溶剂的N-甲基-2-吡咯烷酮(84.6~85.9重量%)中,制得树脂溶液。接着,使用涂覆器(254μm)将制得的树脂溶液涂布到玻璃板上,并立即将其在25℃的离子交换水浴中浸渍1小时,由此得到平膜型多孔膜。对得到的多孔膜进行24小时利用隔膜泵与干燥器的减压干燥,从而除去水分和残留的溶剂。然后,向玻璃瓶中加入切为1.0g大小的干燥膜和50mL的纯水、磁力搅拌子,将其密封,在25℃下以100rpm的搅拌速度进行搅拌。在24、48、72小时的各时间点进行对容器内水溶液的采样和置换为纯水的操作,对各时间点得到的水溶液中的总有机碳(TOC)量分别进行定量,对溶出的乙烯基醚系共聚物B的量的经过进行评价。
(2)透水量测定
将上文制备的树脂溶液伴随作为内部液体的离子交换水一起从二重管式喷嘴喷出,通过离子交换水进行固化,成膜为中空纤维膜。
使用得到的中空纤维膜,通过25℃下、膜间压差100kPa的条件下实施的外压法进行测定,并换算为每1平方米、1小时、100kPa的透水量。
(3)结垢实验
制作100ppm牛血清白蛋白水溶液,使用上文成膜得到的中空纤维膜,通过25℃下、膜间压差100kPa的条件下实施的外压法进行1小时过滤,并记录渗透流量的相对变化。
(浸出实验)
<实施例1-1>
将作为基材聚偏二氟乙烯树脂(A)的聚偏二氟乙烯(阿科玛公司,“Kynar MG15”(商品名))、作为乙烯基醚系共聚物(B)的通过合成例1合成的B-1、作为溶剂的N-甲基-2-吡咯烷酮加入到玻璃容器中并进行混合,于25℃搅拌3小时后静置一夜,制得具有如下组成的树脂溶液。
聚偏二氟乙烯(PVDF)(A):14重量%
聚乙烯基醚系共聚物(B-1):0.70重量%
N-甲基-2-吡咯烷酮(NMP):85.3重量%
使用得到的树脂溶液制造平膜,进行浸出实验。结果示于表2中。
<实施例1-2~1-6>
除了作为乙烯基醚系共聚物(B)分别使用表1中示出的B-2~B-6以外,以与实施例1-1相同的方式进行浸出实验。结果示于表2中。
<比较例1-1>
除了使用表1中示出的均聚物(B-11)代替乙烯基醚系共聚物(B)之外,以与实施例1-1相同的方式进行浸出实验。结果示于表2中。
[表2]
浸出实验结果
Figure BDA0003127216100000131
从表2中示出的实施例1-1~1-6和比较例1-1的结果可见,较之将含有氧乙烯基的乙烯基醚单体单独聚合得到的均聚物混合于聚偏二氟乙烯树脂中的情况而言,在将作为含有氧乙烯基的乙烯基醚单体与含有烃基的乙烯基醚单体的共聚物的乙烯基醚系共聚物混合于聚偏二氟乙烯树脂中的情况下,能够抑制向纯水中的溶出量。
(透水量测定、结垢实验)
<实施例2-1>
将作为基材聚偏二氟乙烯树脂(A)的聚偏二氟乙烯(阿科玛公司,“Kynar MG15”(商品名))、作为乙烯基醚系共聚物(B)的通过合成例1合成的B-1、作为溶剂的N-甲基-2-吡咯烷酮加入到玻璃容器中并进行混合,于25℃搅拌3小时后静置一夜,制成具有表3所示组成的树脂溶液。使用此树脂溶液制造中空纤维膜,进行透水量测定和结垢实验。结果示于表3中。
<实施例2-2~2-14>
除了使用表3中所示的物质作为含有乙烯基醚系共聚物(B)的树脂溶液以外,以与实施例2-1相同的方式制得中空纤维膜,进行透水量测定和结垢实验。结果示于表3中。
<比较例2-1>
除了使用不添加乙烯基醚系共聚物(B)而是通过14重量%的聚偏二氟乙烯、86重量%的N-甲基-2-吡咯烷酮的树脂溶液制造的中空纤维膜以外,以与实施例2-1相同的方式进行透水量测定和结垢实验。结果示于表3中。
[表3]
Figure BDA0003127216100000151
从表3中示出的实施例2-1~2-14和比较例2-1的结果可见,较之比较例2-1的仅由聚偏二氟乙烯组成的膜而言,通过像实施例2-1~2-14那样在聚偏二氟乙烯树脂中混合乙烯基醚系共聚物,改善了纯水渗透通量(透水性)和抗结垢性。另外,在改变了含有氧乙烯基的乙烯基醚单体的种类或者含有烃基的乙烯基醚单体的种类的情况下,或者将聚合类型从无规共聚改变为嵌段共聚的情况下,均确认到相同的效果。
实施例2-2和2-11~2-14中,树脂溶液中的乙烯基醚共聚物(B)以相对于树脂溶液整体而言0.1~1.4重量%的范围添加。确认到纯水渗透通量随乙烯基醚共聚物的添加量而增加。另外,与比较例2-1的仅由聚偏二氟乙烯组成的膜比较可见,抗结垢性均得到改善。

Claims (8)

1.多孔膜,其含有作为基材的聚偏二氟乙烯树脂、和乙烯基醚系共聚物,
所述乙烯基醚系共聚物是含有氧乙烯基的乙烯基醚单体与含有烃基的乙烯基醚单体的共聚物。
2.如权利要求1所述的多孔膜,其中,所述含有氧乙烯基的乙烯基醚单体如下式(1)所示,
Figure FDA0003127216090000011
式(1)中,n以平均值计表示1~3,R1表示碳原子数为1~2的烷基。
3.如权利要求1或2所述的多孔膜,其中,所述含有烃基的乙烯基醚单体如下式(2)所示,
Figure FDA0003127216090000012
式(2)中,R2表示碳原子数为1~6的烃基。
4.如权利要求1~3中任一项所述的多孔膜,其中,所述聚偏二氟乙烯树脂与所述乙烯基醚系共聚物的质量比为90.0:10.0~99.5:0.5。
5.如权利要求1~4中任一项所述的多孔膜,其中,所述含有氧乙烯基的乙烯基醚单体与所述含有烃基的乙烯基醚单体的摩尔比为10:90~90:10。
6.如权利要求1~5中任一项所述的多孔膜,其中,所述乙烯基醚系共聚物的数均分子量(Mn)为3,000~30,000。
7.权利要求1~6中任一项所述的多孔膜的制造方法,其中,使用非溶剂致相分离法、热致相分离法、或者该二者的组合。
8.如权利要求7所述的制造方法,所述制造方法使用非溶剂致相分离法,
其中,作为良溶剂使用选自N-甲基-2-吡咯烷酮和N,N-二甲基乙酰胺中的一种以上,以及作为非溶剂使用选自水和甲醇中的一种以上。
CN201980085483.0A 2018-12-27 2019-12-25 聚偏二氟乙烯树脂制多孔膜及其制造方法 Withdrawn CN113226528A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018246097 2018-12-27
JP2018-246097 2018-12-27
PCT/JP2019/050997 WO2020138230A1 (ja) 2018-12-27 2019-12-25 ポリフッ化ビニリデン樹脂製多孔膜及びその製造方法

Publications (1)

Publication Number Publication Date
CN113226528A true CN113226528A (zh) 2021-08-06

Family

ID=71128739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980085483.0A Withdrawn CN113226528A (zh) 2018-12-27 2019-12-25 聚偏二氟乙烯树脂制多孔膜及其制造方法

Country Status (6)

Country Link
US (1) US20210362100A1 (zh)
EP (1) EP3875170A1 (zh)
JP (1) JPWO2020138230A1 (zh)
KR (1) KR20210089658A (zh)
CN (1) CN113226528A (zh)
WO (1) WO2020138230A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022009968A1 (zh) * 2020-07-09 2022-01-13

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA919243A (en) 1969-03-07 1973-01-16 Rca Corporation Toroidal electromagnetic deflection yoke
AU2003903507A0 (en) 2003-07-08 2003-07-24 U. S. Filter Wastewater Group, Inc. Membrane post-treatment
CN101948571A (zh) * 2010-08-20 2011-01-19 中国科学院上海应用物理研究所 接枝改性高分子材料及其制备方法和应用
SG193905A1 (en) * 2011-03-14 2013-11-29 Gore W L & Ass Co Ltd Filter medium for water treatment filter and production method thereof
CN103582672A (zh) * 2011-06-03 2014-02-12 旭硝子株式会社 亲水化处理剂组合物、亲水化方法、亲水化树脂多孔体及其制造方法
EP3015506A4 (en) * 2013-06-26 2017-01-11 Daikin Industries, Ltd. Composition, porous polymer membrane and hydrophilic agent
JP2016013544A (ja) * 2014-06-13 2016-01-28 ダイキン工業株式会社 多孔膜
JP6767141B2 (ja) 2016-03-23 2020-10-14 旭化成株式会社 ポリフッ化ビニリデン製多孔膜とその製造方法

Also Published As

Publication number Publication date
US20210362100A1 (en) 2021-11-25
JPWO2020138230A1 (ja) 2021-11-04
WO2020138230A1 (ja) 2020-07-02
KR20210089658A (ko) 2021-07-16
EP3875170A1 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
CN100411722C (zh) 聚偏氟乙烯共混多孔膜及其制备方法
US9844759B2 (en) Polymer composition and porous membrane
US20150217237A1 (en) Method for producing a thermoresponsive filtration membrane and thermoresponsive filtration membrane
CA2249253A1 (en) Hydrophilic membrane
US20200246761A1 (en) Nanofiltration composite membranes comprising self-assembled supramolecular separation layer
CN104607063B (zh) 一种pvdf永久性亲水化超滤膜及其改性方法
CN106457163A (zh) 不对称聚(亚苯基醚)共聚物膜、其分离组件及制备方法
KR20190066635A (ko) 여과 멤브레인의 제조
CN101274227B (zh) 一种聚合物微滤膜的制备方法
EP2962746B1 (en) Hydrophilic membranes and method of preparation thereof
Bildyukevich et al. Preparation of high-flux ultrafiltration polyphenylsulfone membranes
CN113226528A (zh) 聚偏二氟乙烯树脂制多孔膜及其制造方法
Cho et al. Swelling-induced pore generation in fluorinated polynorbornene block copolymer films
KR101733848B1 (ko) 친수성 및 기계적 강도가 향상된 여과막 제조용 고분자 수지 조성물 제조방법
Roy Composite membrane: fabrication, characterization, and applications
CN116078193A (zh) 一种掺杂聚乙二醇小分子的pim-1非对称气体分离膜规模化制备工艺
KR101780012B1 (ko) 고분자 여과막의 제조 방법 및 고분자 여과막
JP7291599B2 (ja) ガス分離膜用塗工液及びこれを用いたガス分離膜の製造方法
KR102328470B1 (ko) 클로로트리플루오로에틸렌와 비닐 염화물에 기초한 공중합체와 3량체 및 그의 용도
Wang et al. Outstanding antifouling performance of poly (vinylidene fluoride) membranes: Novel amphiphilic brushlike copolymer blends and one‐step surface zwitterionization
EP3621997B1 (en) Copolymers and terpolymers based on chlorotrifluoroethylene and vinyl chloride and uses thereof
CA1184715A (en) Porous sulfone polymer membrane and process for its preparation
Wenfang et al. Formation of polyethersulfone film with regular microporous structure by water vapor induced phase separation
CN109096453A (zh) 一种梳状两亲性聚偏氟乙烯基嵌段共聚物及其应用
CN117679977A (zh) 一种聚硫酸酯共混超滤膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20210806