CN113224198A - 一种2DWS2/InGaN II型异质结自驱动蓝光探测器及其制备方法与应用 - Google Patents

一种2DWS2/InGaN II型异质结自驱动蓝光探测器及其制备方法与应用 Download PDF

Info

Publication number
CN113224198A
CN113224198A CN202110391226.9A CN202110391226A CN113224198A CN 113224198 A CN113224198 A CN 113224198A CN 202110391226 A CN202110391226 A CN 202110391226A CN 113224198 A CN113224198 A CN 113224198A
Authority
CN
China
Prior art keywords
layer
ingan
blue light
light detector
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110391226.9A
Other languages
English (en)
Other versions
CN113224198B (zh
Inventor
王文樑
李国强
苏柏煜
林正梁
柴吉星
孔德麒
汪祥瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202110391226.9A priority Critical patent/CN113224198B/zh
Publication of CN113224198A publication Critical patent/CN113224198A/zh
Application granted granted Critical
Publication of CN113224198B publication Critical patent/CN113224198B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种2D WS2/InGaN II型异质结自驱动蓝光探测器及其制备方法与应用;该蓝光探测器由下至上依次包括:Si衬底层、AlN/AlGaN缓冲层、u‑GaN缓冲层、InGaN层;所述InGaN层上有SiO2窗口层、2D WS2层、第一金属电极;所述2D WS2层上有第二金属电极。本发明通过在InGaN层上引入2D WS2层,利用2D WS2材料禁带宽度为2eV及其能带结构特点,能够与InGaN层实现II型异质结结构,在界面上形成内建电场,电子将向2D WS2层迁移,空穴将向InGaN层迁移,完成光生载流子的有效分离和传输,产生更大光电流,实现了自驱动、高响应蓝光探测器。

Description

一种2DWS2/InGaN II型异质结自驱动蓝光探测器及其制备方 法与应用
技术领域
本发明涉及蓝光探测器领域,具体涉及一种2D WS2/InGaN II型异质结自驱动蓝光探测器及其制备方法与应用。
背景技术
III族氮化物半导体材料拥有优良的光学、电学、热学、化学、机械性能,目前,Ⅲ族氮化物光电器件和功率器件也得到了广泛研究。作为第三代半导体材料研究热点之一的InGaN材料电子迁移率高、热稳定性好、化学稳定性好。并且可通过调整合金中In的组分,实现禁带宽度从3.4eV到0.7eV的连续调节,从而使得InGaN光电测器能够覆盖整个可见光波段,相比传统探测器具有体积小、易携带、易集成、工作电压低、节能环保、无需滤光系统等优势,但同时也存在相分离导致的制备困难、器件响应度低等问题。
近年来,继石墨烯后,二维材料逐渐得到发掘,其层厚仅为几个原子层,同时相比于体材料具有优异的电学、光学、机械性能,因此在催化、微电子、离子储存、光电子学领域的巨大潜力得到了研究发展。
有研究人员采用GaN/InGaN多量子阱材料制备的蓝光探测器,响应时间为300ms,暗电流为10-7A,在5V电压下,峰值响应度达到0.35A/W的响应度。但由于材料表面存在悬挂键,器件暗电流仍较高。其次,该探测器需要外加电源才可以进行工作。相比之下,为了解决以上不足,本发明通过引入缓冲层提升InGaN材料质量,通过采用2D WS2材料与InGaN功能层形成II型异质结结构,从而获得器件自驱动效应,大幅提升器件的响应度及灵敏度,同时由于二维生长材料表面无悬挂键,降低了暗电流,使得二维材料与传统研究材料相结合,获得了高性能水平的创新型器件。
发明内容
为了克服现有技术的上述缺点与不足,本发明的目的在于提供2DWS2/InGaN II型异质结自驱动蓝光探测器及其制备方法与应用,所述蓝光探测器具有生长InGaN薄膜质量好,器件获得自驱动性能,具有外量子效率高,响应速度快和灵敏度高等优点。
由于InGaN材料自身容易发生相分离,采用MOCVD方法在AlN/AlGaN缓冲层、u-GaN缓冲层上生长InGaN薄层,通过沉积2D WS2层后转移2D WS2至InGaN层制备II型异质结结构蓝光探测器具有以下突出优势;一、MOCVD适合大面积材料生长,可获得大面积InGaN薄膜;二、采用缓冲层结构,降低晶格失配,且InGaN为薄层,可降低相分离,可提升InGaN薄膜质量;三、设计II型异质结结构,通过内建电场使器件获得自驱动能力,同时大幅提升器件响应度、灵敏度等参数,从而获得高性能蓝光探测器。
本发明的目的通过以下技术方案实现。
一种2D WS2/InGaN II型异质结自驱动蓝光探测器,由下至上依次包括:Si衬底层、AlN/AlGaN缓冲层、u-GaN缓冲层、InGaN层;所述InGaN层上有SiO2窗口层、2D WS2层、第一金属电极;所述2D WS2层上有第二金属电极。
优选的,所述Si衬底的厚度为420~430μm;
优选的,所述AlN/AlGaN缓冲层包括AlN层和AlGaN层;进一步优选的,所述AlN层的厚度为250~350nm,所述AlGaN层的厚度为400~600nm。
优选的,所述u-GaN缓冲层的厚度为1.5~2.5μm;
优选的,所述InGaN层的厚度为120~180nm;
优选的,所述SiO2窗口层的厚度为50~100nm;
优选的,所述2D WS2层的厚度为2~5nm。
优选的,所述SiO2窗口层设有孔,2D WS2层位于SiO2窗口层孔内,且SiO2窗口层和2D WS2层不接触;进一步优选的,所述孔规格为3mm×3mm,所述SiO2窗口层外尺寸的规格为5mm×5mm。
优选的,所述第一金属电极位于SiO2窗口层外侧,且第一金属电极和SiO2窗口层不接触。
优选的,所述第一金属电极和第二金属电极为Ni/Au金属层电极,所述Ni/Au金属层电极包括Ni层和Au层,所述Ni层和Au层的厚度分别为70~100nm。
上述的2D WS2/InGaN II型异质结自驱动蓝光探测器的制备方法,包括以下步骤:
(1)用MOCVD在Si衬底上生长AlN/AlGaN缓冲层、u-GaN缓冲层、InGaN层;
(2)采用CVD技术在另一Si衬底上生长2D WS2层;
(3)采用PECVD法在步骤(1)所述InGaN层部分区域沉积SiO2窗口层,将步骤(2)得到的的2D WS2层进行湿法转移至InGaN层上;
(4)首先将InGaN层和步骤(3)得到的2D WS2层进行匀胶,并烘干,然后进行曝光,并显影,最后经过氧离子处理,实现光刻操作;
(5)将步骤(4)得到的InGaN层和2D WS2进行蒸镀金属电极,得到2DWS2/InGaN II型异质结自驱动蓝光探测器。
优选的,步骤(1)所述AlN/AlGaN缓冲层包括AlN层和AlGaN层,所述AlN层的生长温度为1000~1100℃,所述AlGaN层的生长温度为900~1100℃;
优选的,所述u-GaN缓冲层的生长温度为900~1050℃;
优选的,所述InGaN层的生长温度为600~800℃。
优选的,步骤(3)所述沉积SiO2窗口层的温度为150~250℃。
优选的,步骤(4)所述烘干的时间为37~46s,曝光的时间为5~11s,显影的时间为37~46s,氧离子处理的时间为1.5~3min;
优选的,步骤(5)所述蒸镀金属电极的速率为0.20~0.24nm/min。
上述的2D WS2/InGaN II型异质结自驱动蓝光探测器在蓝光探测中的应用。
本发明的2D WS2/InGaN II型异质结自驱动蓝光探测器设计思路如下:
(1)设计2D WS2/InGaN II型异质结自驱动蓝光探测器的外延结构:对于InGaN材料与Si衬底之间晶格失配(>17%)和热失配(>54%)较大因而容易导致高密度缺陷和裂纹的问题,通过设计AlN/AlGaN缓冲层、u-GaN缓冲层,可以有效控制外延层的应力以及缺陷密度,提高InGaN材料的质量。
(2)用MOCVD技术在Si衬底上生长高质量InGaN材料:通过MOCVD技术先在Si衬底上高温生长AlN/AlGaN缓冲层、u-GaN缓冲层,再在缓冲层上生长InGaN层,抑制相分离,实现高质量InGaN材料的生长。
(3)2D WS2/InGaN II型异质结自驱动蓝光探测器及其异质结的优化设计:设计2DWS2/InGaN II型异质结自驱动蓝光探测器的器件结构,利用2D WS2材料可以与InGaN材料形成II型异质结结构的特点,在InGaN部分区域沉积SiO2窗口层,再将2D WS2转移至SiO2窗口层的InGaN上,获得锐利界面的异质结结构,通过内建电场大幅提升器件性能。分析并优化芯片单元结构及参数、电极种类及接触面积、异质结结构等,实现高性能自驱动器件结构设计。
(4)2D WS2/InGaN II型异质结自驱动蓝光探测器的制备:优化探测器制备工艺,先采用PECVD法在InGaN层上沉积SiO2窗口层,后采用CVD法生长2D WS2,通过湿法转移技术将Si衬底上2D WS2层转移至InGaN层上SiO2窗口处,通过光刻蒸镀工艺,在暴露InGaN层以及2D WS2层上制备Ni/Au金属电极。改变湿法转移参数及条件、光刻曝光显影等时间、氧离子处理时间电极材料种类、电极接触面积,蒸镀速率等工艺参数,探究其对2D WS2/InGaN II型异质结自驱动蓝光探测器性能的影响,提升2D WS2/InGaN II型异质结自驱动蓝光探测器的灵敏度和响应度,实现高性能自驱动蓝光探测器制备。
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明的一种2D WS2/InGaN II型异质结自驱动蓝光探测器提供了一种先采用MOCVD高温外延方法在Si衬底上生长AlN/AlGaN缓冲层、u-GaN缓冲层,然后在缓冲层上生长InGaN层,接着通过PECVD沉积SiO2窗口层,再采用CVD法生长2D WS2,通过湿法转移的方法将Si衬底上2D WS2层转移至InGaN层上,最后通过光刻蒸镀工艺,在InGaN层以及2D WS2层上制备金属电极,实现了2D WS2/InGaN II型异质结自驱动蓝光探测器。制备方法具有工艺简单、省时高效以及能耗低的优点,有利于规模化生产。
(2)本发明的一种2D WS2/InGaN II型异质结自驱动蓝光探测器实现。通过2D WS2/InGaN II型异质结结构,在异质结界面处建立内建电场,电子向2DWS2层迁移,空穴向InGaN层迁移,完成光生载流子的有效分离和传输,产生更大光电流,实现了自驱动、高响应蓝光探测器结构设计及制备。
(3)本发明的一种2D WS2/InGaN II型异质结自驱动蓝光探测器实现。通过优化探测器件的电极接触面积、种类等参数,增强电极对光生载流子的收集能力,提升蓝光波段的量子效率;在异质结界面进行界面改性,有效实现异质结构的可控性,实现高灵敏度探测。
附图说明
图1为本发明的2D WS2/InGaN II型异质结自驱动蓝光探测器的结构剖面示意图;
图2为本发明的2D WS2/InGaN II型异质结自驱动蓝光探测器的结构俯视图;
图3为实施例1制备的2D WS2/InGaN II型异质结自驱动蓝光探测器在无外加偏压下的光谱响应图。
具体实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
具体实施例中,本发明的2D WS2/InGaN II型异质结自驱动蓝光探测器的结构剖面示意图如图1所示,由图1可知,由下至上依次包括Si衬底1、AlN/AlGaN缓冲层2、u-GaN缓冲层3、InGaN层4、SiO2窗口层5,2D WS2层6以及第一Ni/Au金属层电极7-2,第二Ni/Au金属层电极7-1;其中,Si衬底1的厚度为420~430μm;AlN/AlGaN缓冲层2包括AlN层和AlGaN层,厚度分别为250~350nm、400~600nm;u-GaN缓冲层3的厚度为1.5~2.5μm;InGaN层4厚度为120~180nm;SiO2窗口层5厚度为50~100nm;2D WS2层6厚度为2~4nm。Ni/Au金属层电极包括的厚度各为70~100nm。
本发明的2D WS2/InGaN II型异质结自驱动蓝光探测器的结构俯视图如图2所示,所述SiO2窗口层5设有孔,2D WS2层6位于SiO2窗口层5孔内,且SiO2窗口层5和2D WS2层6不接触;所述第一金属电极7-2位于SiO2窗口层5外侧,且第一金属电极和SiO2窗口层不接触。
以下实施例中Si衬底层、AlN/AlGaN缓冲层、u-GaN缓冲层、InGaN层的长宽尺寸均为5mm×10mm;SiO2窗口层外尺寸为5mm×5mm、2D WS2层尺寸为3mm×3mm、第一金属电极尺寸为1.5mm×1.5mm、第二金属电极尺寸为1.5mm×1.5mm。
实施例1
本实施例的2D WS2/InGaN II型异质结自驱动蓝光探测器的制备方法,包括以下步骤:
(1)首先按照结构设计,用MOCVD在Si衬底上高温生长AlN缓冲层、AlGaN缓冲层、u-GaN缓冲层,温度分别为1000℃、1000℃、900℃,所述AlN缓冲层、AlGaN缓冲层、u-GaN缓冲层薄膜厚度分别为250nm、400nm、2μm;其次采用MOCVD生长InGaN层,温度为600℃,InGaN层厚度为120nm。
(2)按照结构设计,采用CVD技术在另一Si衬底上生长2D WS2层,2D WS2层厚度为2nm。
(3)按照异质结设计,采用PECVD法在InGaN部分区域沉积SiO2窗口层,将步骤(2)得到的的2D WS2层进行湿法转移至SiO2窗口处InGaN层上,获得2D WS2/InGaN异质结结构。
(4)按照电极设计,将步骤(3)得到的的InGaN及2D WS2光刻,首先将样品匀胶,并烘干38s,然后进行曝光8s,并显影38s,最后经过氧离子处理2.5min。(5)按照电极设计,将步骤(4)得到的InGaN及2D WS2进行蒸镀,控制蒸镀速率为0.20nm/min,先蒸镀Ni后蒸镀Au分别蒸镀80nm,在InGaN层蒸镀电极为阳极,2D WS2层蒸镀电极为阴极。取出后清洗得到2DWS2/InGaN II型异质结自驱动蓝光探测器。
(6)将步骤(5)得到的2D WS2/InGaN II型异质结自驱动蓝光探测器进行测试。
如图1所示,本实施例制备的2D WS2/InGaN异质结t光/蓝光双色光电探测器,包括Si衬底1,生长在Si衬底1上的AlN/AlGaN缓冲层2、生长在AlN/AlGaN缓冲层2上的u-GaN缓冲层3、生长在u-GaN缓冲层3上的InGaN层4,生长在InGaN层4上的SiO2窗口层5,转移至SiO2窗口处InGaN层4上的2D WS2层6,生长在InGaN层4及2D WS2层6上的Ni/Au金属层电极7。
图3为本实施例所得2D WS2/InGaN II型异质结自驱动蓝光探测器在无外加偏压下所测得的光谱响应图。由曲线可看出,该探测器在蓝光波段拥有极高的带宽与0.82A/W高的响应度。
实施例2
本实施例的2D WS2/InGaN II型异质结自驱动蓝光探测器的制备方法,包括以下步骤:
(1)首先按照结构设计,用MOCVD在Si衬底上高温生长AlN缓冲层、AlGaN缓冲层、u-GaN缓冲层,温度分别为1050℃、1050℃、950℃,所述AlN缓冲层、AlGaN缓冲层、u-GaN缓冲层薄膜厚度分别300nm、400nm、3μm;其次采用MOCVD生长InGaN层,温度为800℃,InGaN层厚度为130nm。
(2)按照结构设计,采用CVD技术在另一Si衬底上生长2D WS2层,2D WS2层厚度为3nm。
(3)按照异质结设计,采用PECVD法在InGaN部分区域沉积SiO2窗口层,将步骤(2)得到的的2D WS2层进行湿法转移至SiO2窗口处InGaN层上,获得2D WS2/InGaN异质结结构。
(4)按照电极设计,将步骤(3)得到的的InGaN及2D WS2光刻,首先将样品匀胶,并烘干40s,然后进行曝光10s,并显影40s,最后经过氧离子处理3min。
(5)按照电极设计,将步骤(4)得到的InGaN及2D WS2进行蒸镀,控制蒸镀速率为0.22nm/min,先蒸镀Ni后蒸镀Au分别蒸镀90nm,在InGaN层蒸镀电极为阳极,2D WS2层蒸镀电极为阴极。取出后清洗得到2D WS2/InGaN II型异质结自驱动蓝光探测器。
(6)将步骤(5)得到的2D WS2/InGaN II型异质结自驱动蓝光探测器进行测试。
本实施例制备的2D WS2/InGaN II型异质结自驱动蓝光探测器具有与实施例1相近的效果,在此不再赘述。
实施例3
本实施例的2D WS2/InGaN II型异质结自驱动蓝光探测器的制备方法,包括以下步骤:
(1)首先按照结构设计,用MOCVD在Si衬底上高温生长AlN缓冲层、AlGaN缓冲层、u-GaN缓冲层,温度分别为950℃、950℃、1000℃,所述AlN缓冲层、AlGaN缓冲层、u-GaN缓冲层薄膜厚度分别350nm、600nm、3.5μm;其次采用MOCVD生长InGaN层,温度为700℃,InGaN层厚度为150nm。
(2)按照结构设计,采用CVD技术在另一Si衬底上生长2D WS2层,2D WS2层厚度为4nm。
(3)按照异质结设计,采用PECVD法在InGaN部分区域沉积SiO2窗口层,将步骤(2)得到的的2D WS2层进行湿法转移至SiO2窗口处InGaN层上,获得2D WS2/InGaN异质结结构。
(4)按照电极设计,将步骤(3)得到的的InGaN及2D WS2光刻,首先将样品匀胶,并烘干42s,然后进行曝光12s,并显影42s,最后经过氧离子处理3.5min。
(5)按照电极设计,将步骤(4)得到的InGaN及2D WS2进行蒸镀,控制蒸镀速率为0.24nm/min,先蒸镀Ni后蒸镀Au分别蒸镀100nm,在InGaN层蒸镀电极为阳极,2D WS2层蒸镀电极为阴极。取出后清洗得到2D WS2/InGaN II型异质结自驱动蓝光探测器。
(6)将步骤(5)得到的2D WS2/InGaN II型异质结自驱动蓝光探测器进行测试。
本实施例制备的2D WS2/InGaN II型异质结自驱动蓝光探测器具有与实施例1相近的效果,在此不再赘述。
实施例4
本实施例的2D WS2/InGaN II型异质结自驱动蓝光探测器的制备方法,包括以下步骤:
(1)首先按照结构设计,用MOCVD在Si衬底上高温生长AlN缓冲层、AlGaN缓冲层、u-GaN缓冲层,温度分别为1025℃、975℃、925℃,所述AlN缓冲层、AlGaN缓冲层、u-GaN缓冲层薄膜厚度分别325nm、500nm、2.5μm;其次采用MOCVD生长InGaN层,温度为650℃,InGaN层厚度为140nm。
(2)按照结构设计,采用CVD技术在另一Si衬底上生长2D WS2层,2D WS2层厚度为5nm。
(3)按照异质结设计,采用PECVD法在InGaN部分区域沉积SiO2窗口层,将步骤(2)得到的的2D WS2层进行湿法转移至SiO2窗口处InGaN层上,获得2D WS2/InGaN异质结结构。
(4)按照电极设计,将步骤(3)得到的的InGaN及2D WS2光刻,首先将样品匀胶,并烘干41s,然后进行曝光11s,并显影41s,最后经过氧离子处理2.75min。
(5)按照电极设计,将步骤(4)得到的InGaN及2D WS2进行蒸镀,控制蒸镀速率为0.23nm/min,先蒸镀Ni后蒸镀Au分别蒸镀70nm,在InGaN层蒸镀电极为阳极,2D WS2层蒸镀电极为阴极。取出后清洗得到2D WS2/InGaN II型异质结自驱动蓝光探测器。
(6)将步骤(5)得到的2D WS2/InGaN II型异质结自驱动蓝光探测器进行测试。
本实施例制备的2D WS2/InGaN II型异质结自驱动蓝光探测器具有与实施例1相近的效果,在此不再赘述。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种2D WS2/InGaN II型异质结自驱动蓝光探测器,其特征在于,由下至上依次包括:Si衬底层、AlN/AlGaN缓冲层、u-GaN缓冲层、InGaN层;所述InGaN层上有SiO2窗口层、2D WS2层、第一金属电极;所述2D WS2层上有第二金属电极。
2.根据权利要求1所述的2D WS2/InGaN II型异质结自驱动蓝光探测器,其特征在于,所述Si衬底的厚度为420~430μm;所述AlN/AlGaN缓冲层包括AlN层和AlGaN层;所述u-GaN缓冲层的厚度为1.5~2.5μm;所述InGaN层的厚度为120~180nm;所述SiO2窗口层的厚度为50~100nm;所述2D WS2层的厚度为2~5nm。
3.根据权利要求2所述的2D WS2/InGaN II型异质结自驱动蓝光探测器,其特征在于,所述AlN层的厚度为250~350nm,所述AlGaN层的厚度为400~600nm。
4.根据权利要求1所述的2D WS2/InGaN II型异质结自驱动蓝光探测器,其特征在于,所述SiO2窗口层设有孔,2D WS2层位于SiO2窗口层孔内,且SiO2窗口层和2D WS2层不接触;所述第一金属电极位于SiO2窗口层外侧,且第一金属电极和SiO2窗口层不接触。
5.根据权利要求1所述的2D WS2/InGaN II型异质结自驱动蓝光探测器,其特征在于,所述第一金属电极和第二金属电极为Ni/Au金属层电极,所述Ni/Au金属层电极包括Ni层和Au层,所述Ni层和Au层的厚度分别为70~100nm。
6.权利要求1-5任一项所述的2D WS2/InGaN II型异质结自驱动蓝光探测器的制备方法,其特征在于,包括以下步骤:
(1)用MOCVD在Si衬底上生长AlN/AlGaN缓冲层、u-GaN缓冲层、InGaN层;
(2)采用CVD技术在另一Si衬底上生长2D WS2层;
(3)采用PECVD法在步骤(1)所述InGaN层部分区域沉积SiO2窗口层,将步骤(2)得到的的2D WS2层进行湿法转移至InGaN层上;
(4)首先将InGaN层和步骤(3)得到的2D WS2层进行匀胶,并烘干,然后进行曝光,并显影,最后经过氧离子处理,实现光刻操作;
(5)将步骤(4)得到的InGaN层和2D WS2进行蒸镀金属电极,得到2D WS2/InGaN II型异质结自驱动蓝光探测器。
7.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述AlN/AlGaN缓冲层包括AlN层和AlGaN层,所述AlN层的生长温度为1000~1100℃,所述AlGaN层的生长温度为900~1100℃;所述u-GaN缓冲层的生长温度为900~1050℃;所述InGaN层的生长温度为600~800℃。
8.根据权利要求1所述的制备方法,其特征在于,步骤(3)所述沉积SiO2窗口层的温度为150~250℃。
9.根据权利要求1所述的制备方法,其特征在于,步骤(4)所述烘干的时间为37~46s,曝光的时间为5~11s,显影的时间为37~46s,氧离子处理的时间为1.5~3min;步骤(5)所述蒸镀金属电极的速率为0.20~0.24nm/min。
10.权利要求1-5任一项所述的2D WS2/InGaN II型异质结自驱动蓝光探测器在蓝光探测中的应用。
CN202110391226.9A 2021-04-12 2021-04-12 一种2DWS2/InGaN II型异质结自驱动蓝光探测器及其制备方法与应用 Active CN113224198B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110391226.9A CN113224198B (zh) 2021-04-12 2021-04-12 一种2DWS2/InGaN II型异质结自驱动蓝光探测器及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110391226.9A CN113224198B (zh) 2021-04-12 2021-04-12 一种2DWS2/InGaN II型异质结自驱动蓝光探测器及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN113224198A true CN113224198A (zh) 2021-08-06
CN113224198B CN113224198B (zh) 2022-07-26

Family

ID=77087089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110391226.9A Active CN113224198B (zh) 2021-04-12 2021-04-12 一种2DWS2/InGaN II型异质结自驱动蓝光探测器及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN113224198B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113972293A (zh) * 2021-09-26 2022-01-25 华南理工大学 一种二硒化钼/InGaN多光谱光电探测器及其制备方法与应用
CN114242817A (zh) * 2021-11-15 2022-03-25 华南理工大学 一种Mg掺杂增强过渡金属硫化物基可见光探测器及其制备方法
CN115188856A (zh) * 2022-07-21 2022-10-14 华南理工大学 一种2D GaS/AlGaN II型异质结自驱动紫外光探测器及其制备方法与应用
WO2023045172A1 (zh) * 2021-09-26 2023-03-30 华南理工大学 一种碳化钛/InGaN异质结蓝光探测器及其制备方法
JP7506833B2 (ja) 2021-09-26 2024-06-26 華南理工大学 二セレン化モリブデン/InGaNマルチスペクトル光検出器及びその製造方法と応用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2162712Y (zh) * 1993-07-02 1994-04-20 中国科学院半导体研究所 一种硅的光探测器件
JP2002305204A (ja) * 2001-04-05 2002-10-18 Nippon Telegr & Teleph Corp <Ntt> 半導体構造及びヘテロ接合バイポーラトランジスタ
US20140061057A1 (en) * 2012-09-06 2014-03-06 California Institute Of Technology Light-driven hydroiodic acid splitting from semiconductive fuel generator
CN105405942A (zh) * 2015-12-26 2016-03-16 中国电子科技集团公司第十三研究所 Si衬底LED外延片及其制备方法
US20160233383A1 (en) * 2015-02-10 2016-08-11 iBeam Materials, Inc. Epitaxial Hexagonal Materials on IBAD-Textured Substrates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2162712Y (zh) * 1993-07-02 1994-04-20 中国科学院半导体研究所 一种硅的光探测器件
JP2002305204A (ja) * 2001-04-05 2002-10-18 Nippon Telegr & Teleph Corp <Ntt> 半導体構造及びヘテロ接合バイポーラトランジスタ
US20140061057A1 (en) * 2012-09-06 2014-03-06 California Institute Of Technology Light-driven hydroiodic acid splitting from semiconductive fuel generator
US20160233383A1 (en) * 2015-02-10 2016-08-11 iBeam Materials, Inc. Epitaxial Hexagonal Materials on IBAD-Textured Substrates
CN105405942A (zh) * 2015-12-26 2016-03-16 中国电子科技集团公司第十三研究所 Si衬底LED外延片及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG YU等: "Fabrication of WS2/GaN p-n Junction by Wafer-Scale WS2 Thin Film Transfer", 《SCIENTIFIC REPORTS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113972293A (zh) * 2021-09-26 2022-01-25 华南理工大学 一种二硒化钼/InGaN多光谱光电探测器及其制备方法与应用
WO2023045172A1 (zh) * 2021-09-26 2023-03-30 华南理工大学 一种碳化钛/InGaN异质结蓝光探测器及其制备方法
JP7506833B2 (ja) 2021-09-26 2024-06-26 華南理工大学 二セレン化モリブデン/InGaNマルチスペクトル光検出器及びその製造方法と応用
CN114242817A (zh) * 2021-11-15 2022-03-25 华南理工大学 一种Mg掺杂增强过渡金属硫化物基可见光探测器及其制备方法
CN115188856A (zh) * 2022-07-21 2022-10-14 华南理工大学 一种2D GaS/AlGaN II型异质结自驱动紫外光探测器及其制备方法与应用

Also Published As

Publication number Publication date
CN113224198B (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
CN113224198B (zh) 一种2DWS2/InGaN II型异质结自驱动蓝光探测器及其制备方法与应用
WO2018082251A1 (zh) 一种带有GaN纳米线阵列的紫外探测器及其制作方法
WO2021018307A1 (zh) 一种多量子阱蓝光探测器及制备方法与应用
WO2023045172A1 (zh) 一种碳化钛/InGaN异质结蓝光探测器及其制备方法
CN112635614A (zh) 一种采用栅调制石墨烯/半导体肖特基结的光电探测器及制备方法
CN109402653A (zh) 一种Si衬底上InGaN纳米柱@Au纳米粒子复合结构及其制备方法与应用
CN111799378B (zh) 一种基于二维材料与氮化镓薄膜双异质结的光电探测器及其制备方法
WO2022218141A1 (zh) 结合嵌入电极与钝化层结构的 InGaN/GaN 多量子阱蓝光探测器及其制备方法与应用
CN114220878A (zh) 一种具有载流子传输层的Ga2O3/GaN日盲紫外探测器及其制备方法
CN110364582A (zh) 一种基于石墨烯模板上AlGaN纳米柱基MSM型紫外探测器及其制备方法
CN109698250A (zh) 栅极调控AlGaN基金属-半导体-金属紫外探测器及制备方法
CN107230734A (zh) 一种背对背肖特基结构的BeMgZnO基紫外探测器及其制备方法
US20100043873A1 (en) Semiconducting devices and methods of making the same
CN217426770U (zh) 一种纳米线-薄膜结构紫外探测器
CN113972298B (zh) 一种自供电偏振可见光探测器及制备方法与应用
CN109950359A (zh) 一种利用二氧化铪钝化增强型低维纳米探测器及制备方法
CN213401224U (zh) 一种基于阻挡杂质带msm型探测器
CN115188856A (zh) 一种2D GaS/AlGaN II型异质结自驱动紫外光探测器及其制备方法与应用
CN210607284U (zh) 一种多量子阱蓝光探测器
CN210092100U (zh) 一种基于石墨烯模板上AlGaN纳米柱基MSM型紫外探测器
CN219800871U (zh) 一种2D h-BN/AlGaNⅡ型异质结自驱动紫外光探测器
CN115458626A (zh) 2D GaS/GaN II型异质结自驱动紫外光探测器及其制备方法与应用
US20220328706A1 (en) Ingan/gan multiple quantum well blue light detector combined with embedded electrode and passivation layer structure and preparation method and application thereof
CN219800878U (zh) 一种p-GeS2/AlGaN/n-AlGaN II型异质结自驱动紫外光探测器
WO2023045171A1 (zh) 一种二硒化钼/InGaN多光谱光电探测器及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant