CN115458626A - 2D GaS/GaN II型异质结自驱动紫外光探测器及其制备方法与应用 - Google Patents

2D GaS/GaN II型异质结自驱动紫外光探测器及其制备方法与应用 Download PDF

Info

Publication number
CN115458626A
CN115458626A CN202211030231.8A CN202211030231A CN115458626A CN 115458626 A CN115458626 A CN 115458626A CN 202211030231 A CN202211030231 A CN 202211030231A CN 115458626 A CN115458626 A CN 115458626A
Authority
CN
China
Prior art keywords
layer
gan
gas
metal electrode
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211030231.8A
Other languages
English (en)
Inventor
王文樑
林正梁
李国强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202211030231.8A priority Critical patent/CN115458626A/zh
Publication of CN115458626A publication Critical patent/CN115458626A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种2D GaS/GaN II型异质结自驱动紫外光探测器及其制备方法与应用,该紫外光探测器包括Si衬底与在Si衬底上依次生长的AlN/AlGaN缓冲层、u‑GaN缓冲层和n‑GaN层,以及在n‑GaN层一侧的上面生长的第一金属电极,在另一侧的上面依次生长的2D GaS层和第二金属电极,其中,2D GaS层与n‑GaN层形成II型异质结结构。本发明通过在n‑GaN层上引入2D GaS层,利用2D GaS材料禁带宽度及其天然p型的特点,与n‑GaN层实现II型异质结结构,在界面上形成内建电场,实现自驱动,完成光生载流子的有效分离和传输,产生更大光电流,实现了高响应的紫外探测器。

Description

2D GaS/GaN II型异质结自驱动紫外光探测器及其制备方法 与应用
技术领域
本发明涉及紫外光探测器领域,具体涉及一种2D GaS/GaN II型异质结自驱动紫外光探测器及其制备方法与应用。
背景技术
III族氮化物半导体材料拥有优良的光学、电学、热学、化学、机械性能,目前,III族氮化物光电器件和功率器件也得到了广泛研究。作为第三代半导体材料研究热点之一的GaN材料具有电子迁移率高、热化学稳定性好、适合高频高压工作条件的特点,相比传统探测器具有体积小、易携带、易集成、工作电压低、节能环保、无需滤光系统等优势,但同时也存在P型材料掺杂困难、器件响应度低等问题。
近年来,继石墨烯后,二维材料逐渐得到发掘,其层厚仅为几个原子层,同时相比于体材料具有优异的电学、光学、机械性能,因此在催化、微电子、离子储存、光电子学领域的巨大潜力得到了研究发展。
有研究人员采用GaN/AlGaN多量子阱材料制备的紫外光探测器,响应时间为300ms,暗电流为10-7A,在12V电压下,峰值响应度达到4.56A/W的响应度。但由于材料表面存在悬挂键,器件暗电流仍较高;其次,该探测器需要外加电源才可以进行工作。
发明内容
为了解决上述现有技术的不足,本发明提供了一种2D GaS/GaN II型异质结自驱动紫外光探测器及其制备方法与应用,该紫外光探测器通过在n-GaN层上引入2D GaS层,利用2D GaS材料禁带宽度为2.7eV及其天然p型的特点,能够与n-GaN层实现II型异质结结构,在界面上形成内建电场,实现自驱动,完成光生载流子的有效分离和传输,产生更大光电流,实现了高响应的紫外探测器。
本发明的第一个目的在于提供一种2D GaS/GaN II型异质结自驱动紫外光探测器。
本发明的第二个目的在于提供一种2D GaS/GaN II型异质结自驱动紫外光探测器的制备方法。
本发明的第三个目的在于提供一种2D GaS/GaN II型异质结自驱动紫外光探测器的应用。
本发明的第一个目的可以通过采取如下技术方案达到:
一种2D GaS/GaN II型异质结自驱动紫外光探测器,包括Si衬底与在Si衬底上依次生长的AlN/AlGaN缓冲层、u-GaN缓冲层和n-GaN层,以及在n-GaN层一侧的上面生长的第一金属电极,在n-GaN层另一侧的上面依次生长的2D GaS层和第二金属电极,其中,2D GaS层与n-GaN层形成II型异质结结构,第一金属电极和2D GaS层之间存在间隔。
进一步的,所述n-GaN的掺杂元素为Si,掺杂浓度为1×1018~1×1019cm-3
进一步的,所述第一金属电极和第二金属电极均为Ti/Au金属层电极,包括Ti层以及蒸镀在Ti层上的Au层。
进一步的,所述AlN/AlGaN缓冲层包括在Si衬底上生长的AlN层,以及在AlN层生长的AlGaN层,其中,Si衬底以(111)为外延方向。
进一步的,所述Si衬底层、AlN层、AlGaN、u-GaN缓冲层、n-GaN层的长宽尺寸均相同;
所述2D GaS层的长度与n-GaN层相同,宽度为n-GaN层的一半;
所述第一金属电极和第二金属电极的长宽尺寸相同,且长度等于宽度,其宽度比n-GaN层的宽度和长度中任意一个都小。
本发明的第二个目的可以通过采取如下技术方案达到:
一种2D GaS/GaN II型异质结自驱动紫外光探测器的制备方法,所述方法包括:
采用MOCVD在Si衬底上依次高温生长AlN缓冲层、AlGaN缓冲层、u-GaN缓冲层和n-GaN层;
采用CVD技术在n-GaN层上的一侧生长2D GaS层,获得2D GaS/GaN异质结结构;
对n-GaN层和2D GaS层进行光刻;
对光刻后的n-GaN层和2D GaS层分别进行金属电极蒸镀,分别得到在n-GaN层上生长的第一金属电极,以及在2D GaS层上生长的第二金属电极,从而得到2D GaS/GaN II型异质结自驱动紫外光探测器;其中,第一金属电极和2D GaS层之间有间隔;n-GaN层蒸镀金属电极为阳极,2D GaS层蒸镀金属电极为阴极。
进一步的,所述金属电极蒸镀包括先蒸镀Ti,得到Ti层;再在Ti层上蒸镀Au,得到Au层;其中,蒸镀速率为12~18nm/min。
进一步的,所述Si衬底以(111)为外延方向;所述AlN缓冲层、AlGaN缓冲层、u-GaN缓冲层和n-GaN层的生长温度分别为950~1150℃、850~1050℃、950~1100℃和850~1050℃。
进一步的,所述光刻包括匀胶、烘干、曝光和显影,其中,烘干时间为80~100s,曝光时间为15~25s,显影时间为55~65s。
本发明的第三个目的可以通过采取如下技术方案达到:
一种2D GaS/GaN II型异质结自驱动紫外光探测器的应用,基于上述的2D GaS/GaN II型异质结自驱动紫外光探测器在紫外光探测中的应用,或基于上述的制备方法制备的2D GaS/GaN II型异质结自驱动紫外光探测器在紫外光探测中的应用。
本发明相对于现有技术具有如下的有益效果:
1、本发明提供的2D GaS/GaN II型异质结自驱动紫外光探测器,通过引入u-GaN缓冲层提升GaN材料质量,引入Si掺杂提高载流子浓度,同时通过采用2D GaS材料与GaN功能层形成II型结异质结结构,在异质结界面处建立内建电场,空穴向2D GaS层迁移,电子向n-GaN层迁移,完成光生载流子的有效分离和传输,产生更大光电流,从而使器件获得自驱动效应,并且大幅提升了器件的响应度及灵敏度;同时由于二维生长材料表面无悬挂键,降低了暗电流,使得二维材料与传统研究材料相结合,获得了质量好、自驱动性能和外量子效率高的高性能水平的创新型器件。
2、本发明提供的制备方法,通过采用MOCVD高温外延方法在Si衬底上生长AlN/AlGaN缓冲层和u-GaN缓冲层,然后在u-GaN缓冲层上生长n-GaN层,由于MOCVD适合大面积材料生长,通过采用MOCVD可获得大面积n-GaN薄膜,同时通过采用缓冲层结构,能够降低晶格失配,从而提升GaN材料质量;接着采用CVD法在n-GaN层上生长2D GaS;最后通过光刻蒸镀工艺在n-GaN层以及2D GaS层上制备金属电极,实现了2D GaS/GaN II型异质结自驱动紫外光探测器的制备。该制备方法具有工艺简单、省时高效以及能耗低的优点,有利于规模化生产。
3、本发明提供的制备方法,通过光刻掩模版优化探测器件的电极接触面积、种类等参数,增强电极对光生载流子的收集能力,提升紫外光波段的量子效率;在异质结界面通过调控生长工艺参数进行界面改性,有效实现异质结构的可控性,实现高灵敏度探测。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明实施例的2D GaS/GaN II型异质结自驱动紫外光探测器的结构剖面示意图。
图2为本发明实施例的2D GaS/GaN II型异质结自驱动紫外光探测器的结构俯视图。
图3为本发明实施例的2D GaS/GaN II型异质结自驱动紫外光探测器在无外加偏压下的光谱响应图。
图1、2中:
1-衬底,2-AlN/AlGaN缓冲层2,3-u-GaN缓冲层3,4-n-GaN层,5-2D GaS层,61-第一金属电极,62-第二金属电极。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。应当理解,描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本发明主要是采用以下几种技术手段,获得高性能的2D GaS/GaN II型异质结自驱动紫外光探测器:
(1)设计AlN/AlGaN缓冲层和u-GaN缓冲层。对于GaN材料与Si衬底之间晶格失配(>17%)和热失配(>56%)较大因而容易导致高密度缺陷和裂纹的问题,通过设计AlN/AlGaN缓冲层和u-GaN缓冲层,可以有效控制外延层的应力以及缺陷密度,提高GaN材料的质量;
(2)用MOCVD技术在Si衬底上生长高质量n-GaN材料。通过MOCVD技术先在Si衬底上高温生长AlN/AlGaN缓冲层、GaN缓冲层,再在缓冲层上生长n-GaN层,可以降低晶格失配,实现高质量n-GaN材料的生长;
(3)设计2D GaS/GaN II型异质结自驱动紫外光探测器的器件结构。利用2D GaS材料可以与n-GaN材料形成II型异质结结构的特点,在n-GaN部分区域沉积2D GaS层,获得锐利界面的异质结结构,通过内建电场大幅提升器件性能。分析并优化芯片单元结构及参数、电极种类及接触面积、异质结结构等,实现高性能自驱动器件结构设计;
(4)优化探测器制备工艺。采用CVD法在n-GaN层上生长2D GaS,通过光刻蒸镀工艺,在暴露n-GaN层以及2D GaS层上制备Ti/Au金属电极。改变光刻曝光显影等时间、电极材料种类、电极接触面积,蒸镀速率等工艺参数,探究其对2D GaS/GaN II型异质结自驱动紫外光探测器性能的影响,提升2D GaS/GaN II型异质结自驱动紫外光探测器的灵敏度和响应度,实现高性能自驱动紫外光探测器制备。
实施例1:
如图1、2所示,本实施例提供了一种2D GaS/GaN II型异质结自驱动紫外光探测器,包括Si衬底1与在Si衬底1上依次生长的AlN/AlGaN缓冲层2、u-GaN缓冲层3和n-GaN层4,以及在n-GaN层4一侧的上面生长的第一金属层电极61,在n-GaN层4另一侧的上面依次生长的2D GaS层5和第二金属层电极62,其中:
Si衬底1的厚度为450~460μm,以(111)为外延方向;
AlN/AlGaN缓冲层2包括AlN层和AlGaN层,为下上两层,厚度分别为300~400nm、450~650nm;
u-GaN缓冲层3的厚度为1.0~2.0μm;
n-GaN层4厚度为140~200nm;
2D GaS层5厚度为80~100nm;
第一金属层电极61和第二金属层电极62均为Ti/Au金属层电极,厚度相同,均为80~120nm。
下述实施例中Si衬底层、AlN/AlGaN缓冲层、u-GaN缓冲层、n-GaN层的长宽尺寸均为1mm×4mm,2D GaS层尺寸为1mm×2mm,第一金属电极尺寸为0.5mm×0.5mm,第二金属电极尺寸为0.5mm×0.5mm。
实施例2:
本实施例提供了一种2D GaS/GaN II型异质结自驱动紫外光探测器的制备方法,包括以下步骤:
(1)首先按照结构设计,用MOCVD在Si衬底上依次高温生长AlN缓冲层、AlGaN缓冲层和u-GaN缓冲层,温度分别为1000℃、900℃、1000℃,所述AlN缓冲层、AlGaN缓冲层、u-GaN缓冲层薄膜厚度分别为330nm、500nm、1.3μm;其中,Si衬底以(111)为外延方向;
其次采用MOCVD在u-GaN缓冲层上生长n-GaN层,温度为850℃,n-GaN层厚度为140nm。
(2)按照结构设计,采用CVD技术在n-GaN衬底上生长2D GaS层,2D GaS层厚度为80nm,获得2D GaS/GaN异质结结构。
(3)按照电极设计,将步骤(2)得到的n-GaN及2D GaS光刻,首先将样品匀胶,并烘干85s,然后进行曝光15s,并显影55s。
(4)按照电极设计,将步骤(3)得到的n-GaN及2D GaS进行蒸镀,控制蒸镀速率为12nm/min,先蒸镀Ti后蒸镀Au分别蒸镀80nm,n-GaN层蒸镀电极为阳极,2D GaS层蒸镀电极为阴极。取出后清洗得到2D GaS/GaN II型异质结自驱动紫外探测器。
本实施例制备的2D GaS/GaN II型异质结自驱动紫外光探测器如图1所示。
(5)将步骤(4)得到的2D GaS/GaN II型异质结自驱动紫外光探测器进行测试。
如图3所示,由曲线可看出,制备得到的探测器在365nm波长下拥有最高17.8mA/W的响应度。
实施例3:
本实施例提供了一种2D GaS/GaN II型异质结自驱动紫外光探测器的制备方法,包括以下步骤:
(1)首先按照结构设计,用MOCVD在Si衬底上依次高温生长AlN缓冲层、AlGaN缓冲层和u-GaN缓冲层,温度分别为950℃、850℃、950℃,所述AlN缓冲层、AlGaN缓冲层、u-GaN缓冲层薄膜厚度分别为300nm、450nm、1μm;其中,Si衬底以(111)为外延方向;
其次采用MOCVD生长n-GaN层,温度为900℃,n-GaN层厚度为150nm。
(2)按照结构设计,采用CVD技术在n-GaN衬底上生长2D GaS层,2D GaS层厚度为85nm,获得2D GaS/GaN异质结结构。
(3)按照电极设计,将步骤(2)得到的的n-GaN及2D GaS光刻,首先将样品匀胶,并烘干88s,然后进行曝光18s,并显影58s。
(4)按照电极设计,将步骤(3)得到的n-GaN及2D GaS进行蒸镀,控制蒸镀速率为14nm/min,先蒸镀Ti后蒸镀Au分别蒸镀85nm,n-GaN层蒸镀电极为阳极,2D GaS层蒸镀电极为阴极。取出后清洗得到2D GaS/GaN II型异质结自驱动紫外探测器。
本实施例制备的2D GaS/GaN II型异质结自驱动紫外光探测器如图1所示。
(5)将步骤(4)得到的2D GaS/GaN II型异质结自驱动紫外光探测器进行测试。
本实施例制备的2D GaS/GaN II型异质结自驱动紫外光探测器具有与实施例2相近的效果,在此不再赘述。
实施例4:
本实施例提供了一种2D GaS/GaN II型异质结自驱动紫外光探测器的制备方法,包括以下步骤:
(1)首先按照结构设计,用MOCVD在Si衬底上依次高温生长AlN缓冲层、AlGaN缓冲层和u-GaN缓冲层,温度分别为1030℃、930℃、1030℃,所述AlN缓冲层、AlGaN缓冲层、u-GaN缓冲层薄膜厚度分别为330nm、480nm、1.4μm;其中,Si衬底以(111)为外延方向;
其次采用MOCVD生长n-GaN层,温度为980℃,n-GaN层厚度为160nm。
(2)按照结构设计,采用CVD技术在n-GaN衬底上生长2D GaS层,2D GaS层厚度为90nm,获得2D GaS/GaN异质结结构。
(3)按照电极设计,将步骤(2)得到的的n-GaN及2D GaS光刻,首先将样品匀胶,并烘干92s,然后进行曝光22s,并显影62s。
(4)按照电极设计,将步骤(3)得到的n-GaN及2D GaS进行蒸镀,控制蒸镀速率为16nm/min,先蒸镀Ti后蒸镀Au分别蒸镀90nm,n-GaN层蒸镀电极为阳极,2D GaS层蒸镀电极为阴极。取出后清洗得到2D GaS/GaN II型异质结自驱动紫外探测器。
本实施例制备的2D GaS/GaN II型异质结自驱动紫外光探测器如图1所示。
(5)将步骤(4)得到的2D GaS/GaN II型异质结自驱动紫外光探测器进行测试。
本实施例制备的2D GaS/GaN II型异质结自驱动紫外光探测器具有与实施例2相近的效果,在此不再赘述。
实施例5:
本实施例提供了一种2D GaS/GaN II型异质结自驱动紫外光探测器的制备方法,包括以下步骤:
(1)首先按照结构设计,用MOCVD在Si衬底上依次高温生长AlN缓冲层、AlGaN缓冲层、u-GaN缓冲层,温度分别为990℃、890℃、990℃,所述AlN缓冲层、AlGaN缓冲层、u-GaN缓冲层薄膜厚度分别为310nm、460nm、1.5μm;其中,Si衬底以(111)为外延方向;
其次采用MOCVD生长n-GaN层,温度为1000℃,n-GaN层厚度为200nm。
(2)按照结构设计,采用CVD技术在n-GaN衬底上生长2D GaS层,2D GaS层厚度为100nm,获得2D GaS/GaN异质结结构。
(3)按照电极设计,将步骤(2)得到的的n-GaN及2D GaS光刻,首先将样品匀胶,并烘干95s,然后进行曝光25s,并显影65s。
(4)按照电极设计,将步骤(3)得到的n-GaN及2D GaS进行蒸镀,控制蒸镀速率为18nm/min,先蒸镀Ti后蒸镀Au分别蒸镀100nm,n-GaN层蒸镀电极为阳极,2D GaS层蒸镀电极为阴极。取出后清洗得到2D GaS/GaN II型异质结自驱动紫外探测器。
本实施例制备的2D GaS/GaN II型异质结自驱动紫外光探测器如图1所示。
(5)将步骤(4)得到的2D GaS/GaN II型异质结自驱动紫外光探测器进行测试。
本实施例制备的2D GaS/GaN II型异质结自驱动紫外光探测器具有与实施例2相近的效果,在此不再赘述。
综上所述,本发明提供的2D GaS/GaN自驱动异质结紫外光探测器及其制备方法与应用,该紫外光探测器由下至上依次包括Si衬底层、AlN/AlGaN缓冲层、u-GaN缓冲层、n-GaN层,以及n-GaN层上有2D GaS层和第一金属电极,以及2D GaS层上有第二金属电极。本发明通过在n-GaN层上引入2D GaS层,利用2D GaS材料禁带宽度为2.7eV及其天然p型的特点,能够与n-GaN层实现II型异质结结构,在界面上形成内建电场,实现自驱动,完成光生载流子的有效分离和传输,产生更大光电流,实现了高响应的紫外探测器。
以上所述,仅为本发明专利较佳的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明构思加以等同替换或改变,都属于本发明专利的保护范围。

Claims (10)

1.一种2D GaS/GaN II型异质结自驱动紫外光探测器,其特征在于,包括Si衬底与在Si衬底上依次生长的AlN/AlGaN缓冲层、u-GaN缓冲层和n-GaN层,以及在n-GaN层一侧的上面生长的第一金属电极,在n-GaN层另一侧的上面依次生长的2D GaS层和第二金属电极,其中,2D GaS层与n-GaN层形成II型异质结结构,第一金属电极和2D GaS层之间存在间隔。
2.根据权利要求1所述的2D GaS/GaN II型异质结自驱动紫外光探测器,其特征在于,所述n-GaN的掺杂元素为Si,掺杂浓度为1×1018~1×1019cm-3
3.根据权利要求1所述的2D GaS/GaN II型异质结自驱动紫外光探测器,其特征在于,所述第一金属电极和第二金属电极均为Ti/Au金属层电极,包括Ti层以及蒸镀在Ti层上的Au层。
4.根据权利要求1所述的2D GaS/GaN II型异质结自驱动紫外光探测器,其特征在于,所述AlN/AlGaN缓冲层包括在Si衬底上生长的AlN层,以及在AlN层生长的AlGaN层,其中,Si衬底以(111)为外延方向。
5.根据权利要求4所述的2D GaS/GaN II型异质结自驱动紫外光探测器,其特征在于,所述Si衬底层、AlN层、AlGaN、u-GaN缓冲层、n-GaN层的长宽尺寸均相同;
所述2D GaS层的长度与n-GaN层相同,宽度为n-GaN层的一半;
所述第一金属电极和第二金属电极的大小尺寸相同,且长度等于宽度,其宽度比n-GaN层的宽度和长度中任意一个都小。
6.一种2D GaS/GaN II型异质结自驱动紫外光探测器的制备方法,其特征在于,所述方法包括:
采用MOCVD在Si衬底上依次高温生长AlN缓冲层、AlGaN缓冲层、u-GaN缓冲层和n-GaN层;
采用CVD技术在n-GaN层上的一侧生长2D GaS层,获得2D GaS/GaN异质结结构;
对n-GaN层和2D GaS层进行光刻;
对光刻后的n-GaN层和2D GaS层分别进行金属电极蒸镀,分别得到在n-GaN层上生长的第一金属电极以及在2D GaS层上生长的第二金属电极,从而得到2D GaS/GaN II型异质结自驱动紫外光探测器;其中,第一金属电极和2D GaS层之间有间隔;n-GaN层蒸镀金属电极为阳极,2D GaS层蒸镀金属电极为阴极。
7.根据权利要求6所述的制备方法,其特征在于,所述金属电极蒸镀包括先蒸镀Ti,得到Ti层;再在Ti层上蒸镀Au,得到Au层;其中,蒸镀速率为12~18nm/min。
8.根据权利要求6所述的制备方法,其特征在于,所述Si衬底以(111)为外延方向;所述AlN缓冲层、AlGaN缓冲层、u-GaN缓冲层和n-GaN层的生长温度分别为950~1150℃、850~1050℃、950~1100℃和850~1050℃。
9.根据权利要求6~8任一项所述的制备方法,其特征在于,所述光刻包括匀胶、烘干、曝光和显影,其中,烘干时间为80~100s,曝光时间为15~25s,显影时间为55~65s。
10.一种2D GaS/GaN II型异质结自驱动紫外光探测器的应用,其特征在于,基于权利要求1~5任一项所述的2D GaS/GaN II型异质结自驱动紫外光探测器在紫外光探测中的应用,或基于权利要求6~9任一项所述的制备方法制备的2D GaS/GaN II型异质结自驱动紫外光探测器在紫外光探测中的应用。
CN202211030231.8A 2022-08-26 2022-08-26 2D GaS/GaN II型异质结自驱动紫外光探测器及其制备方法与应用 Pending CN115458626A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211030231.8A CN115458626A (zh) 2022-08-26 2022-08-26 2D GaS/GaN II型异质结自驱动紫外光探测器及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211030231.8A CN115458626A (zh) 2022-08-26 2022-08-26 2D GaS/GaN II型异质结自驱动紫外光探测器及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN115458626A true CN115458626A (zh) 2022-12-09

Family

ID=84301710

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211030231.8A Pending CN115458626A (zh) 2022-08-26 2022-08-26 2D GaS/GaN II型异质结自驱动紫外光探测器及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115458626A (zh)

Similar Documents

Publication Publication Date Title
CN113224198B (zh) 一种2DWS2/InGaN II型异质结自驱动蓝光探测器及其制备方法与应用
JP2006261666A (ja) 高効率無機ナノロッド強化光起電素子
US20140007931A1 (en) Techniques for Enhancing Efficiency of Photovoltaic Devices Using High-Aspect-Ratio Nanostructures
CN101853894B (zh) 一种纳米线异质结阵列基紫外光探测器及其制备方法
WO2018082251A1 (zh) 一种带有GaN纳米线阵列的紫外探测器及其制作方法
CN114220878B (zh) 一种具有载流子传输层的Ga2O3/GaN日盲紫外探测器及其制备方法
WO2021018307A1 (zh) 一种多量子阱蓝光探测器及制备方法与应用
CN110364584A (zh) 基于局域表面等离激元效应的深紫外msm探测器及制备方法
CN113972294A (zh) 一种碳化钛/InGaN异质结蓝光探测器及其制备方法
WO2022218141A1 (zh) 结合嵌入电极与钝化层结构的 InGaN/GaN 多量子阱蓝光探测器及其制备方法与应用
KR101136882B1 (ko) 질화물 반도체 기반의 태양전지 및 그 제조방법
CN210778633U (zh) 一种氮化物多结太阳能电池
CN212011003U (zh) 一种Si衬底InGaN可见光探测器
CN104538478B (zh) 一种复合钝化膜结构的延伸波长铟镓砷探测器及制备方法
CN201638834U (zh) 一种纳米线异质结阵列基紫外光探测器
CN115458626A (zh) 2D GaS/GaN II型异质结自驱动紫外光探测器及其制备方法与应用
CN217426770U (zh) 一种纳米线-薄膜结构紫外探测器
CN210607284U (zh) 一种多量子阱蓝光探测器
CN214797436U (zh) 一种采用栅调制石墨烯/半导体肖特基结的光电探测器
CN213816179U (zh) 一种AlGaN基深紫外LED外延片
CN219040493U (zh) 一种2D Ga2S3/GaN II型异质结自驱动紫外光探测器
CN110137294B (zh) 一种氮化物多结太阳能电池及其制备方法
CN115188856B (zh) 一种2D GaS/AlGaN II型异质结自驱动紫外光探测器及其制备方法与应用
CN219800871U (zh) 一种2D h-BN/AlGaNⅡ型异质结自驱动紫外光探测器
CN219800878U (zh) 一种p-GeS2/AlGaN/n-AlGaN II型异质结自驱动紫外光探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination