CN113223842B - 一种高稳定性的钕铁硼磁体及其制备方法 - Google Patents

一种高稳定性的钕铁硼磁体及其制备方法 Download PDF

Info

Publication number
CN113223842B
CN113223842B CN202110445009.3A CN202110445009A CN113223842B CN 113223842 B CN113223842 B CN 113223842B CN 202110445009 A CN202110445009 A CN 202110445009A CN 113223842 B CN113223842 B CN 113223842B
Authority
CN
China
Prior art keywords
weight
boron magnet
iron boron
neodymium iron
neodymium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110445009.3A
Other languages
English (en)
Other versions
CN113223842A (zh
Inventor
梁卫荣
周波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Zhenhaixing Strong Magnetic Material Co ltd
Original Assignee
Ningbo Zhenhaixing Strong Magnetic Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Zhenhaixing Strong Magnetic Material Co ltd filed Critical Ningbo Zhenhaixing Strong Magnetic Material Co ltd
Priority to CN202110445009.3A priority Critical patent/CN113223842B/zh
Publication of CN113223842A publication Critical patent/CN113223842A/zh
Application granted granted Critical
Publication of CN113223842B publication Critical patent/CN113223842B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本申请涉及钕铁硼磁体材料领域,具体公开了一种高稳定性的钕铁硼磁体及其制备方法。一种高稳定性的钕铁硼磁体的制备方为:1)将硬脂酸锌、邻苯二甲酸二辛酯、三乙醇胺硼酸酯与有机溶剂混合均匀;2)将铁、硼、钕、镨、铈、铜、钐、钽、钴熔炼制成铸片;3)粗磨;4)细磨;5)将细粉与添加剂搅拌混合制得磁粉;6)将磁粉取向压制得生坯;7)将生坯真空烧结、一级回火以及二级回火,得到高稳定性的钕铁硼磁体。其具有高磁性能和稳定性的优点;另外,本申请的制备方法具有提高钕铁硼磁体磁性能和稳定性的优点。

Description

一种高稳定性的钕铁硼磁体及其制备方法
技术领域
本申请涉及磁体领域,更具体地说,它涉及一种高稳定性的钕铁硼磁体及其制备方法。
背景技术
钕铁硼磁体是一种以硼、钕以及铁为主要原材料制成的永磁材料,钕铁硼磁体的优点是体积小、重量轻、磁性强、机械性能强、性价比佳,因此在现代工业和电子技术中得到了广泛的应用。
磁性能和稳定性是评估永磁材料技术先进性的两个重要方面,磁性能主要用剩磁、内禀矫顽力等参数进行评价,而稳定性则体现在磁体对温度的敏感性,稳定性主要用剩磁温度系数和内禀矫顽力温度系数。
普通的钕铁硼槽体的居里温度点低,稳定特性较差,一般需要通过调整其化学成分来提高温度稳定性,目前多采用镝代替部分钕,或采用钴替代部分铁,以提高钕铁硼磁体的居里温度,但镝为重稀土金属,使钕铁硼磁体的造价高昂,而钴的加入则会降低磁体的内禀矫顽力,使钕铁硼磁体的磁性能变差。因此,平衡地提高磁体的磁性能和稳定性是现如今研究钕铁硼磁体的当务之急。
发明内容
为了提高磁体的磁性能和稳定性,本申请提供一种高稳定性的钕铁硼磁体。
第一方面,本申请提供的一种高稳定性的钕铁硼磁体的制备方法,采用如下的技术方案:
一种高稳定性的钕铁硼磁体的制备方法,包括以下步骤:
步骤一:备料,将0.02~0.05重量份的硬脂酸锌、0.03~0.08重量份邻苯二甲酸二辛酯、0.05~0.08重量份的三乙醇胺硼酸酯稀释于1.0~1.5重量份有机溶剂,获得添加剂;
步骤二:熔炼,称取70~100重量份的铁、1.2~1.8重量份的硼、10~15重量份的钕、8~13重量份的镨、2~6重量份的铈、0.5~1重量份的铜、0.3~0.8重量份的钐、0.1~0.3重量份的钽、0.8~1.2重量份的钴真空熔炼,制成厚度0.3~0.5mm的铸片;
步骤三:粗磨,将步骤二的铸片氢碎处理成平均粒径为10~500μm的粗粉;
步骤四:细磨,将步骤三的粗粉气流磨制成平均粒径小于4μm的细粉;
步骤五:混料,将步骤四制得的细粉在氩气或氮气的保护下与步骤一中所得的添加剂搅拌混合3~4h,搅拌速度100~120r/min,制得磁粉;
步骤六:磁场压制,将步骤五制得的磁粉在氩气或氮气的保护下经1.5~2T磁场取向成型,等静压压力为180~200Mpa静压处理50s~70s,制得钕铁硼磁体生坯;
步骤七:烧结,将步骤六制得的钕铁硼磁体生坯置于真空烧结炉中,升温至500~600℃排放有机物并保温0.5~1h,升温至1100~1300℃烧结1~2h后降温至室温,升温至800~900℃进行一级回火处理2h~3h后降温至室温,升温至450~650℃中进行二级回火处理2~3h后降温至室温,得到高稳定性的钕铁硼磁体。
优选的,步骤一中的硬脂酸锌为0.035~0.040重量份,邻苯二甲酸二辛酯、为0.045~0.06重量份,三乙醇胺硼酸酯为0.062~0.07重量份,有机溶剂为1.23~1.38重量份;步骤二中的铁为80~90重量份,硼为1.4~1.6重量份、钕为12~13重量份、镨为10~12重量份、铈3.5~5.0重量份、铜为0.75~0.85重量份、钐为0.45~0.65重量份、钽为0.18~0.22重量份、钴为0.98~1.05重量份。
通过在金属组分中添加适量铜、钐、钽、钴微量元素,并通过与硬脂酸锌、邻苯二甲酸二辛酯、三乙醇胺硼酸酯的相互配合,使钕铁硼磁体具有较好的内禀矫顽力和剩磁,并且提高了钕铁硼磁体的温度稳定性,使得钕铁硼磁体在高温下能够具有良好且稳定的磁性能,从而使钕铁硼磁体满足高温电机、精密仪器等领域的需求。
金属组分和添加剂组分的相互作用使磁体在热稳定性上和磁性能上兼具较好的水平,可能的原因是添加剂使金属组分在压制过程中磁粉间的摩擦减小,流动性增强,从而提高了取向度,使钕铁硼磁体具有较好的内禀矫顽力和剩磁,并且铜、钐、钽在硬脂酸锌、邻苯二甲酸二辛酯、三乙醇胺硼酸酯的共同作用下,细化了钕铁硼磁体内部结构的晶粒,减小了钕铁硼磁体内部微小孔洞等非磁性相,使钕铁硼磁体的晶粒形状更加规则,从而提高了钕铁硼磁体的磁性能,并有效地改善了钕铁硼磁体的磁性能的热稳定性。
优选的,所述有机溶剂由45~60%正辛烷、25~40%二甲苯、10~20%石油醚组成。
通过采用上述技术方案,使硬脂酸锌、邻苯二甲酸二辛酯、三乙醇胺硼酸酯稀释后具有更好的流动性,利于与金属组分进行混合。
优选的,步骤四中的细粉取出70~80%真空封装待用,剩下的细粉继续气流磨制成粒径为0.5~1μm的超细粉,步骤五中先将超细粉与添加剂搅拌混合2~3h,再投入70~80%待用的细粉继续搅拌混合,制得磁粉。
通过采用上述技术方案,磁粉的进一步细化利于提高钕铁硼磁体的磁性能,超细粉通过与添加剂混合而不易团聚,使超细粉能够均匀地与细粉混合,超细粉具有更细的结晶结构能够修复填补细粉表面的凹坑与棱角,从而使钕铁硼机体的磁晶更加致密,提高钕铁硼磁体的温度稳定性。
优选的,步骤五中添加剂的投加速度为0.5~0.8mL/min,并以喷雾方式投加。
通过采用上述技术方案,缓慢控制加料速度能够使添加剂和细粉混合更加均匀,喷雾方式能够使添加剂更加均匀地将细粉进行包覆,利于改善磁性能的均匀度。
优选的,步骤五中添加剂预热至70~90℃并以0.5~0.8mL/min速度投加。
通过采用上述技术方案,预热至一定的温度能够使添加剂的流动扩散性能更好,使细粉的各组分原料不易产生团聚。
优选的,步骤七中升温速度为8~10℃/min,降温速度为5~7℃/min。
通过采用上述技术方案,钕铁硼磁体控制在适宜的升温和降温速度中进行烧结和热处理,能够具有更好的磁性能和热稳定性。
优选的,步骤五中升温至80~100℃恒温搅拌混合;步骤六中的成型模具预热至90~110℃。
通过采用上述技术方案,使搅拌后的磁粉能够预热至一定的温度再进行取向压制,成型模具也相应地进行预热,有利于磁粉在装入成型模具时具有更好的流动性,提高了压实生坯的密度均匀性,也有利于磁粉更好地取向。
第二方面,本申请提供的一种采用上述高稳定性的钕铁硼磁体的制备方法制备所得的高稳定性钕铁硼磁体,其具有良好的磁性能和热稳定性。
综上所述,本申请具有以下有益效果:
1、由于本申请采用以铁、硼、钕、镨、铜、铈、钐、钽、钴作为钕铁硼磁体的金属组分原料,并采用以稀释于有机溶剂的硬脂酸锌、邻苯二甲酸二辛酯、三乙醇胺硼酸酯作为添加剂组分原料,金属组分与添加剂组分的相互配合,使钕铁硼磁体的内部磁晶结构更加致密整齐,对钕铁硼磁体起到同时提高磁性能和稳定性的作用,使钕铁硼磁体在不同的工作温度中具备良好且稳定的矫顽力和剩磁,扩大了钕铁硼磁体的温度适用范围;
2、本申请中优选采用以正辛烷、二甲苯以及石油醚按适当的比例混合作为有机溶剂,使硬脂酸锌、邻苯二甲酸二辛酯、三乙醇胺硼酸酯在金属组分原料中能够发挥更好的效果,使压制过程中磁粉间的摩擦减小,流动性增强,从而提高了钕铁硼磁体的取向度,改善钕铁硼磁体的磁性能和热稳定性;
3、采用本申请的方法制备出的高稳定性钕铁硼磁体,具有良好的磁性能以及高温稳定性。
附图说明
图1是本申请实施例1-18提供的方法的流程图;
图2是本申请实施例19-20提供的方法的流程图。
具体实施方式
以下结合附图和实施例对本申请作进一步详细说明。
以下实施例及对比例中所用原料的来源信息详见表1。
表1
原料 来源信息
硬脂酸锌 济南汇锦川化工有限公司
邻苯二甲酸二辛酯 济南宏泉钛业有限公司
三乙醇胺硼酸酯 济南云佰汇生物科技有限公司
正庚烷 济南汇锦川化工有限公司
正辛烷 济南汇锦川化工有限公司
二甲苯 济南铭信化工有限公司
石油醚 济南铭信化工有限公司
实施例
实施例1-5中,各组分的具体投加量(单位:kg)详见表2。
表2
Figure BDA0003036527520000041
Figure BDA0003036527520000051
实施例1-5,参照图1,一种高稳定性的钕铁硼磁体的制备方法包括以下步骤:
步骤一:备料,将硬脂酸锌、邻苯二甲酸二辛酯、三乙醇胺硼酸酯与正庚烷按表2的投加量混合均匀,获得添加剂;
步骤二:熔炼,将各铁、硼、钕、镨、铈、铜、钐、钽、钴按表2的投加量称取,真空熔炼后制成厚度0.3mm的铸片;
步骤三:粗磨,将步骤二的铸片放入氢碎炉中氢碎处理成平均粒径为100μm的粗粉;
步骤四:细磨,将步骤三的粗粉在气流磨机中气流磨制成平均粒径小于4μm的细粉;
步骤五:混料,将步骤四制得的细粉在氮气的保护下与步骤一中所得的添加剂搅拌混合4h,搅拌速度100r/min,制得磁粉;
步骤六:磁场压制,将步骤五制得的磁粉在氮气的保护下经2T磁场取向成型,等静压压力为200Mpa静压处理50s,制得钕铁硼磁体生坯;
步骤七:烧结,将步骤六制得的钕铁硼磁体生坯置于真空烧结炉中,升温至600℃排放有机物并保温0.5h,升温至1300℃烧结1h后降温至室温,升温至900℃进行一级回火处理2h后降温至室温,升温至450℃中进行二级回火处理3h后降温至室温,得到高稳定性的钕铁硼磁体。其中升温速度为10℃/min,降温温速度为20℃/min。
实施例6-8,与实施例5的不同之处在于:实施例6-8的高稳定性的钕铁硼磁体的制备方法中的参数控制不同,如表3所示。
表3
Figure BDA0003036527520000052
Figure BDA0003036527520000061
实施例9-11,与实施例8的不同之处在于:步骤七的升温速度依次为8℃/min、15℃/min、20℃/min,步骤七的降温速度依次为15℃/min、10℃/min、20℃/min。
制备例1-3:有机溶剂以正辛烷、二甲苯以及石油醚按照表4的投加量(单位:kg)混合制得。
表4
投加量(kg) 制备例1 制备例2 制备例3
正辛烷 0.792 0.660 0.594
二甲苯 0.330 0.528 0.462
石油醚 0.198 0.132 0.264
实施例12-14,与实施例8的不同之处在于:步骤一中依次以制备例1、制备例2、制备例3替代正庚烷。
实施例15-16,与实施例8的不同之处在于:步骤五中添加剂依次预热至90℃、70℃,并依次以0.8mL/min、0.5mL/min的喷雾速度进行投加。
实施例17-18,与实施例8的不同之处在于:步骤五中依次升温至80℃、100℃恒温搅拌混合,步骤六中的成型模具依次预热至90℃、110℃。
实施例19,参照图2,与实施例8的不同之处在于:
步骤四中的细粉取出依次取出80%真空封装待用,剩下的细粉继续气流磨制成粒径为0.5~1μm的超细粉;步骤五中先将超细粉与添加剂依次搅拌混合2h,再投入取出待用的细粉继续搅拌混合,两次搅拌时间共4h,制得磁粉。
实施例20,参照图2,与实施例8的不同之处在于:
步骤四中的细粉取出依次取出70%真空封装待用,剩下的细粉继续气流磨制成粒径为0.5~1μm的超细粉;步骤五中先将超细粉与添加剂依次搅拌混合3h,再投入取出待用的细粉继续搅拌混合,两次搅拌时间共4h,制得磁粉。
对比例
对比例1,与实施例8的不同之处在于:高稳定性的钕铁硼磁体的制备组分中的钽由同等重量份的钴代替。
对比例2,与实施例8的不同之处在于:高稳定性的钕铁硼磁体的制备组分中的钐由同等重量份的钴代替。
对比例3,与实施例8的不同之处在于:高稳定性的钕铁硼磁体的制备组分中的铜由同等重量份的钴代替。
对比例4,与实施例8的不同之处在于:高稳定性的钕铁硼磁体的制备组分中以同等重量份的正庚烷替代硬脂酸锌。
对比例5,与实施例8的不同之处在于:高稳定性的钕铁硼磁体的制备组分中以同等重量份的正庚烷替代邻苯二甲酸二辛酯。
对比例6,与实施例8的不同之处在于:高稳定性的钕铁硼磁体的制备组分中以同等重量份的正庚烷替代三乙醇胺硼酸酯。
性能检测试验
实验1
根据GB/T3217-2013《永磁(硬磁)材料磁性试验方法》中的方法测量各实施例和各对比例制备的钕铁硼磁体试样在20℃和120℃下的内禀矫顽力(KA/m)和剩磁(T)。
实验2
根据GB/T24270-2009《永磁材料磁性能温度系数检测方法》中的方法检测各实施例和各对比例制备的钕铁硼磁体试样的内禀矫顽力温度系数剩(%/℃)和剩磁温度系数(%/℃)。
实验1-2的具体检测数据详见表5-7。
表5
Figure BDA0003036527520000071
Figure BDA0003036527520000081
根据表5中对比例1-6与实施例8的数据对比可得,当在钕铁硼磁体的金属组分原料中加入适量的铜、钐、钽微量元素,并与硬脂酸锌、邻苯二甲酸二辛酯、三乙醇胺硼酸酯相互配合作用,改良了钕铁硼磁体内部晶粒结构,能够提高钕铁硼磁体的热稳定性的同时,还提高了钕铁硼磁体的内禀矫顽力和剩磁,使钕铁硼磁体具有优良的磁性能,且在高温下能够体现出更为稳定的磁性能,从而令钕铁硼磁体能够适宜高温环境使用。
实施例1-8之间的数据对比可得,钕铁硼磁体在如表2-3中所示的适当量的组分原料和参数条件下,均能制备出具有良好磁性能的高稳定性钕铁硼磁体。实施例9-11与实施例8的数据对比可得,在对钕铁硼磁体进行烧结、一级回火和二级回火时,控制适宜的升温速度和降温速度,能够生产出磁性能和热稳定性更好的钕铁硼磁体。
表6
Figure BDA0003036527520000082
根据表6中实施例12-14与实施例8的数据对比可得,由正庚烷、二甲苯以及石油醚按照适宜的比例混合作为有机溶剂使用,将硬脂酸锌、邻苯二甲酸二辛酯、三乙醇胺硼酸酯稀释后使其具有更好的流动性能,从而使硬脂酸锌、邻苯二甲酸二辛酯、三乙醇胺硼酸酯能够更好地与各金属组分原料混合,利于在压制时发挥更好的润滑和取向效果,提高了钕铁硼磁体的磁性能和稳定性。
表7
Figure BDA0003036527520000091
根据表7中实施例15-16与实施例8的数据对比可得,对添加剂进行预热并喷雾式缓慢投加,能够提高添加剂与金属组分原料的混合均匀性,使金属组分不易团聚,以提高钕铁硼的磁性能。实施例17-18与实施例8的数据对比,添加剂与金属组分原料在一定的高温中进行搅拌,有利于添加剂更均匀地在金属组分原料中扩散包覆,在一定程度上帮助提高钕铁硼磁体的磁性能和稳定性。
根据表7中实施例19-20与实施例8的数据对比可得,将适量部分的金属组分原料进一步细化,使添加剂与金属组分原料的混合效果更好,利于提高钕铁硼磁体的取向性,使钕铁硼磁体具有更好的磁性能,而金属组分原料之间的粒径差异,也有利于提高钕铁硼磁体的晶粒结构的致密化,使钕铁硼磁体具有更优良的热稳定性。
本具体实施例仅仅是对本申请的解释,其并不是对本申请的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本申请的权利要求范围内都受到专利法的保护。

Claims (9)

1.一种高稳定性的钕铁硼磁体的制备方法,其特征在于,包括以下步骤:
步骤一:备料,将0.02~0.05重量份的硬脂酸锌、0.03~0.08重量份邻苯二甲酸二辛酯、0.05~0.08重量份的三乙醇胺硼酸酯稀释于1.0~1.5重量份有机溶剂,获得添加剂;
步骤二:熔炼,称取70~100重量份的铁、1.2~1.8重量份的硼、10~15重量份的钕、8~13重量份的镨、2~6重量份的铈、0.5~1重量份的铜、0.3~0.8重量份的钐、0.1~0.3重量份的钽、0.8~1.2重量份的钴真空熔炼,制成厚度0.3~0.5mm的铸片;
步骤三:粗磨,将步骤二的铸片氢碎处理成平均粒径为10~500μm的粗粉;
步骤四:细磨,将步骤三的粗粉气流磨制成平均粒径小于4μm的细粉;
步骤五:混料,将步骤四制得的细粉在氩气或氮气的保护下与步骤一中所得的添加剂搅拌混合3~4h,搅拌速度100~120r/min,制得磁粉;
步骤六:磁场压制,将步骤五制得的磁粉在氩气或氮气的保护下经1.5~2T磁场取向成型,等静压压力为180~200Mpa静压处理50s~70s,制得钕铁硼磁体生坯;
步骤七:烧结,将步骤六制得的钕铁硼磁体生坯置于真空烧结炉中,升温至500~600℃排放有机物并保温0.5~1h,升温至1100~1300℃烧结1~2h后降温至室温,升温至800~900℃进行一级回火处理2~3h后降温至室温,升温至450~650℃中进行二级回火处理2~3h后降温至室温,得到高稳定性的钕铁硼磁体。
2.根据权利要求1所述的一种高稳定性的钕铁硼磁体的制备方法,其特征在于:
步骤一中的硬脂酸锌为0.035~0.040重量份,邻苯二甲酸二辛酯为0.045~0.06重量份,三乙醇胺硼酸酯为0.062~0.07重量份,有机溶剂为 1.23~1.38重量份;
步骤二中的铁为80~90重量份,硼为1.4~1.6重量份,钕为12~13重量份,镨为10~12重量份,铈3.5~5.0重量份,铜为0.75~0.85重量份,钐为0.45~0.65重量份,钽为0.18~0.22重量份,钴为0.98~1.05重量份。
3.根据权利要求1所述的一种高稳定性的钕铁硼磁体的制备方法,其特征在于:所述有机溶剂由45~60%正辛烷、25~40%二甲苯、10~20%石油醚组成。
4.根据权利要求1所述的高稳定性的钕铁硼磁体的制备方法,其特征在于:步骤四中的细粉取出70~80%真空封装待用,剩下的细粉继续气流磨制成粒径为0.5~1μm的超细粉,步骤五中先将超细粉与添加剂搅拌混合2~3h,再投入70~80%待用的细粉继续搅拌混合,制得磁粉。
5.根据权利要求1所述的高稳定性的钕铁硼磁体的制备方法,其特征在于:步骤五中添加剂的投加速度为0.5~0.8mL/min,并以喷雾方式投加。
6.根据权利要求1所述的高稳定性的钕铁硼磁体的制备方法,其特征在于:步骤五中添加剂预热至70~90℃再进行投加。
7.根据权利要求1所述的高稳定性的钕铁硼磁体的制备方法,其特征在于:步骤七中升温速度为8~10℃/min,降温速度为15~20℃/min。
8.根据权利要求1所述的高稳定性的钕铁硼磁体的制备方法,其特征在于:步骤五中升温至80~100℃恒温搅拌混合;步骤六中的成型模具预热至90~110℃。
9.一种高稳定性的钕铁硼磁体,其特征在于:其由权利要求1-8任一项所述的高稳定性的钕铁硼磁体的制备方法制得。
CN202110445009.3A 2021-04-24 2021-04-24 一种高稳定性的钕铁硼磁体及其制备方法 Active CN113223842B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110445009.3A CN113223842B (zh) 2021-04-24 2021-04-24 一种高稳定性的钕铁硼磁体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110445009.3A CN113223842B (zh) 2021-04-24 2021-04-24 一种高稳定性的钕铁硼磁体及其制备方法

Publications (2)

Publication Number Publication Date
CN113223842A CN113223842A (zh) 2021-08-06
CN113223842B true CN113223842B (zh) 2022-11-15

Family

ID=77088937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110445009.3A Active CN113223842B (zh) 2021-04-24 2021-04-24 一种高稳定性的钕铁硼磁体及其制备方法

Country Status (1)

Country Link
CN (1) CN113223842B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216702A (ja) * 2010-03-31 2011-10-27 Nitto Denko Corp 永久磁石及び永久磁石の製造方法
CN106336596A (zh) * 2016-08-25 2017-01-18 江阴市富华包装材料有限公司 一种优良加工流动性的超透明pvc膜及其制备方法
JP2019062155A (ja) * 2017-09-28 2019-04-18 日立金属株式会社 R−t−b系焼結磁石の製造方法
CN110895985A (zh) * 2019-11-06 2020-03-20 包头稀土研究院 混合稀土烧结钕铁硼永磁体及其制备方法
CN112086255A (zh) * 2020-09-18 2020-12-15 湖南奔朗新材料科技有限公司 一种高矫顽力、耐高温烧结钕铁硼磁体及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216702A (ja) * 2010-03-31 2011-10-27 Nitto Denko Corp 永久磁石及び永久磁石の製造方法
CN106336596A (zh) * 2016-08-25 2017-01-18 江阴市富华包装材料有限公司 一种优良加工流动性的超透明pvc膜及其制备方法
JP2019062155A (ja) * 2017-09-28 2019-04-18 日立金属株式会社 R−t−b系焼結磁石の製造方法
CN110895985A (zh) * 2019-11-06 2020-03-20 包头稀土研究院 混合稀土烧结钕铁硼永磁体及其制备方法
CN112086255A (zh) * 2020-09-18 2020-12-15 湖南奔朗新材料科技有限公司 一种高矫顽力、耐高温烧结钕铁硼磁体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高性能烧结钕铁硼永磁材料的研究;高娇;《中国优秀硕士学位论文全文数据库》;20181115;C042-19 *

Also Published As

Publication number Publication date
CN113223842A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
CN103212714B (zh) 制备钕铁硼材料的方法
CN106128673B (zh) 一种烧结钕铁硼磁体及其制备方法
CN102586682B (zh) 一种高性能稀土永磁烧结磁体及其制造方法
CN112562952A (zh) 一种钕铁硼永磁材料及其制备方法
JP2022094920A (ja) 焼結磁性体の製造方法
CN111326304B (zh) 一种稀土永磁材料及其制备方法和应用
CN104464997B (zh) 一种高矫顽力钕铁硼永磁材料的制备方法
CN113223842B (zh) 一种高稳定性的钕铁硼磁体及其制备方法
CN114171275A (zh) 一种多元合金钕铁硼磁性材料及其制备方法
CN106409458A (zh) 一种电机复合永磁材料及其制备方法
CN111312462B (zh) 一种钕铁硼材料及其制备方法和应用
CN108806912A (zh) 一种无重稀土烧结钕铁硼磁体及其制备方法
CN114743784B (zh) 利用晶界扩散技术提高烧结钕铁硼磁体矫顽力的方法
CN111554499A (zh) 一种降低烧结钕铁硼永磁体氧含量的方法
JP2023177261A (ja) 希土類磁性体及びその製造方法
CN107026002B (zh) 钕铁硼合金磁体的制备方法
CN115732155A (zh) 一种高矫顽力钕铁硼磁性材料及其制备方法
CN112017834B (zh) 一种高性能烧结钕铁硼磁体及其制备方法
CN112017835B (zh) 一种低重稀土高矫顽力烧结钕铁硼磁体及其制备方法
CN111261356B (zh) 一种r-t-b系永磁材料及其制备方法和应用
CN102867603A (zh) 一种钕铁硼永磁材料及生产工艺
CN107403675A (zh) 一种高热稳定性钕铁硼磁体的制备方法
CN113223801A (zh) 一种高硼钕铁硼永磁体及其制备方法
CN103779062B (zh) 含氧Re-(Fe,TM)-B系烧结磁体及其制造方法
CN111312464A (zh) 一种稀土永磁材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant