CN113214414A - 改性聚乙烯醇、聚乙烯醇微纳凝胶的可控制备方法及应用 - Google Patents

改性聚乙烯醇、聚乙烯醇微纳凝胶的可控制备方法及应用 Download PDF

Info

Publication number
CN113214414A
CN113214414A CN202110508572.0A CN202110508572A CN113214414A CN 113214414 A CN113214414 A CN 113214414A CN 202110508572 A CN202110508572 A CN 202110508572A CN 113214414 A CN113214414 A CN 113214414A
Authority
CN
China
Prior art keywords
pva
micro
polyvinyl alcohol
nano
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110508572.0A
Other languages
English (en)
Inventor
陈维
周静静
陈恩平
董斌
黄德春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Pharmaceutical University
Original Assignee
China Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Pharmaceutical University filed Critical China Pharmaceutical University
Priority to CN202110508572.0A priority Critical patent/CN113214414A/zh
Publication of CN113214414A publication Critical patent/CN113214414A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pulmonology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了改性聚乙烯醇、聚乙烯醇微纳凝胶的可控制备方法及应用。基于FDA认证的聚乙烯醇(PVA)为原材料,与甲基丙烯酸酯乙烯基醚单体(VEMA)通过缩醛化反应形成酸响应改性PVA,在无需添加表面活性剂或有机溶剂的反应条件下,在水中通过热相变效应形成PVA微纳聚集体,然后光交联得到酸响应降解型PVA微纳凝胶,并且通过控制形成微纳聚集体的浓度和温度精准调控微纳凝胶尺寸。本发明设计的PVA凝胶能在弱酸性条件下快速降解并触发药物释放,且降解产物为PVA本身和聚甲基丙烯羟乙酯(PHEMA)药物辅料。PVA微纳凝胶有望在吸入给药中降低药物颗粒的粘附性,增加其流动性,成功实现药物的肺部递送。

Description

改性聚乙烯醇、聚乙烯醇微纳凝胶的可控制备方法及应用
技术领域
本发明涉及高分子材料和药物制剂制备方法和用途,特别涉及改性聚乙烯醇(PVA)、聚乙烯醇微纳凝胶的可控制备方法及应用。
背景技术
传统上,呼吸道感染的治疗方法选择是使用适当的抗生素进行全身治疗,而全身治疗的临床治愈率只有50%。在肺部感染的情况下,由于炎症引起的血液供应中断,传统的全身治疗途径限制了药物的可用性,显著降低了深部肺组织的药物浓度,而浓度必须超过病原体最低抑菌浓度(MIC),才能杀菌;因此这种治疗方法是增加细菌耐药性的驱动力,并且,为了应对这一挑战,人们使用比通常给予的更高的剂量,这种模式可能会使患者暴露于多种毒性。除此以外,感染不仅包括肺实质,还包括有异物存在的近端气道,这个区域形成一个受感染的分泌物储存库,增加了治疗的难度,病人在重症加强护理病房(ICU)接受系统性抗生素治疗感染的时间越长,肺部感染的治疗就越困难。
面临细菌耐药性迅速而持续地增加,全身给药无法跨越肺泡毛细血管屏障,或在炎症和肺区域达到可预测的浓度,研究人员被迫要么探索新的抗菌药物,要么以非传统的方式使用现有的抗生素。吸入是一种非侵入性的、器官特异性的方法,可将治疗药物直接送到肺部治疗肺部疾病。因此,针对肺部,吸入抗生素治疗,就可能在不伤害患者的情况下,产生高浓度的药物水平和有限的全身暴露。
但既往研究表明,尽管吸入给药优势明显,也存在一定的问题。抗生素半衰期短,常用抗菌药半衰期多在1~4h之间,达峰时间多在0.5~2h之间,需要短时间重复给药。并且,在这种环境下,大部分抗生素可能由于与粘蛋白或其他气道蛋白结合而失去活性或药效较差。近年来,载药系统凭借其药物控制递送能力受到了极大的关注,通过载药系统协同口鼻吸入药物治疗,可以在保证药效、延长药物循环时间、实现药物有效靶向积累的同时,减少药物副作用、避免肝脏首过效应。药物载体的大小是影响给药系统的一个重要考虑因素,药物颗粒大小不合适不会到达下气道,很可能只会沉积在中气道和更大的气道,因而不能有效治疗肺部疾病。大颗粒药物的使用降低了吸入药物的粘附性,增加其流动性。粒径0.5~5μm被称为可吸入粒子,可沉积于支气管或肺泡,大于7μm的粒子沉积在上呼吸道如咽喉部,后被纤毛运动排出;小于0.5μm的粒子不易沉积,大部分随呼吸被排出。
发明内容
发明目的:本专利通过缩醛化反应接上单体VEMA,使PVA具有酸响应可降解能力,并且调整材料的不同浓度和不同温度条件下结合快速光交联技术得到纳米至微米级凝胶,定制出微纳尺寸凝胶在吸入给药中降低药物颗粒的粘附性,增加其流动性,实现药物在肺部组织的成功递送,应用于肺部疾病的治疗。
技术方案:本发明提供的一种改性PVA的制备方法,将PVA溶于有机溶剂中,加入甲基丙烯酸酯乙烯基醚(VEMA),通过酸响应型缩醛键连接形成改性PVA。
进一步地,PVA羟基单元数/VEMA的摩尔比为1∶0.02~1∶0.2。
进一步地,所述的甲基丙烯酸酯乙烯基醚单体(VEMA),通过以下方法合成:将乙二醇单乙烯基醚溶于有机溶剂中,向反应体系中滴加甲基丙烯酰氯或甲基丙烯酸酐进行缩合反应。
进一步地,所述PVA分子量范围为2000~500000,能够通过其浓度、光交联温度和交联时间控制所形成的聚乙烯醇凝胶的尺寸。
一种聚乙烯醇微纳凝胶的可控制备方法,配制一定浓度的改性PVA水溶液,加入光引发剂,在不同温度水浴中形成PVA聚集体,紫外交联后得到聚乙烯醇微纳凝胶,其结构如式(1):
Figure BDA0003057823030000021
进一步地,PVA微纳凝胶具有酸响应性,能在弱酸性环境下快速降解,且降解产物为PVA本身和FDA认证的聚甲基丙烯羟乙酯(PHEMA)。
进一步地,作为药物载体,用于吸入制剂的制备。
具体地:
本发明的酸响应降解型生物可降解的PVA凝胶,其主要是通过缩醛化反应将甲基丙烯酸酯乙烯基醚单体(VEMA)与聚乙烯醇(PVA)连接形成改性PVA,在水中通过热相变效应形成PVA微纳聚集体,然后光交联得到酸响应降解型PVA微纳凝胶。所述有机溶剂选自N,N-二甲基甲酰胺、二甲亚砜等。
所述改性PVA通过以下方法合成:将PVA溶于有机溶剂中,以有机酸为催化剂,与包含乙烯基烷基醚单元的VEMA发生缩醛化反应,制备改性PVA。所述有机溶剂选自N,N-二甲基甲酰胺、二甲亚砜等。所述酸催化剂包括但不局限于对甲苯磺酸(PTSA)。所述酸响应降解型PVA凝胶的尺寸与温度(10~60℃)、浓度(0.01~50mg/mL)、紫外光交联时间(0~1h)有关,为50纳米~50微米,尺寸稳定。所述的光引发剂的用量为聚合物质量的0.1~5%,凝胶的稳定性大大提高。
本发明还公开了上述载药凝胶的制备方法,包括以下步骤:
将小分子药物溶解和上述酸敏感改性PVA按0.1~10%载药量混合,在水溶液中混合,通过调控温度和浓度得到不同尺寸的微纳聚集体,接着加入0.1~5%的光引发剂,置于热水浴使其形成载药聚集体,再紫外交联形成PVA载药凝胶;在高纯水中透析除去有机试剂和未包裹的药物,得到载药凝胶。
本发明设计、合成的一类酸敏感降解型聚乙烯醇微纳凝胶,此交联型聚合物能负载较高含量的药物,可降低吸入药物颗粒的粘附性,增加其流动性,有效将药物运送至肺部深处,同时增加药物的稳定性和溶解性,有效治疗肺部疾病。
所述负载的小分子药物可选自但不局限于:紫杉醇、哌拉西林、匹氨西林、头孢哌酮、麦迪霉素、克拉霉素或布地奈德等。
有益效果:
1、本发明首次公开了一类酸响应降解型聚乙烯醇凝胶的制备工艺,该载体载药率高,药物利用率高,并且生物相容性好,副作用小。
2、本发明公开的酸响应降解型聚乙烯醇凝胶,疏水末端为丙烯双键,通过光交联作用可以得到稳定的凝胶,该凝胶不易解离,保证包封药物稳定性;并且该凝胶具有酸敏感性,在酸性环境中响应性解交联,释放药物,将药物有效递送至目标组织。
3、本发明公开的酸响应降解型聚乙烯醇凝胶,制备简单,结构明确,具有良好的生物相容性,代谢产物对人体无害;并且在酸性条件下能快速解交联,将药物快速释放出来,从而产生高效治疗作用,在药物控制释放领域具有巨大的应用前景。
4、本发明公开的药物载体尺寸大小可通过限制原料浓度、反应温度及紫外交联时间等条件进行精准调控,所制备的微纳凝胶可以应用于不同疾病的治疗。
本专利定制出微纳凝胶,在保证药物的稳定性和溶解性的情况下,还可降低吸入药物颗粒的粘附性、增加其流动性,有效运送药物至肺部深处,应用于肺部疾病的治疗。
附图说明
图1为实施例1中乙烯基乙醚甲基丙烯酸酯(VEMA)的氢核磁图谱;
图2为实施例2中改性PVA(MW=15000)的氢核磁图谱;
图3为实施例3中不同分子量的PVA和改性PVA在不同温度条件下的尺寸;
图4为实施例4中不同浓度的P-V(MW=15000)在不同温度条件下的尺寸;
图5为实施例4中不同浓度的P-V(MW=15000)在5℃及40℃条件下的尺寸;
图6为实施例5中不同浓度的P-V(MWPVA=15000)在40℃条件下光交联10min前后的尺寸;
图7为实施例5中不同浓度的P-V(MW=15000)凝胶在37℃条件下静置24h内的尺寸。
具体实施方式
实施例1
乙烯基乙醚甲基丙烯酸酯(VEMA)的合成,过程如下:
Figure BDA0003057823030000041
取乙二醇乙烯基醚(150mL,1.73mol)溶于1.2L二氯甲烷(DCM)中,加入310mL三乙胺,冰水浴下滴加甲基丙烯酰氯(168mL,1.49mol)进行反应。反应结束后,用饱和碳酸钠水溶液萃取,有机相用无水硫酸钠干燥,抽滤,旋蒸浓缩至无液体蒸出,产物通过蒸馏得到无色有刺激性气味液体,即为VEMA。
实施例2
改性PVA(P-V)的合成,过程如下:
Figure BDA0003057823030000042
取聚乙烯醇(PVA,1g,分子量MW=8200、15000、49000)加入30mL二甲基亚砜(DMSO),搅拌均匀;取对甲苯磺酸一水化合物作为催化剂溶于2mL二甲基亚砜(DMSO),搅拌均匀;将PTSA加入到聚乙烯醇(PVA)溶液中搅拌均匀,再将乙烯基乙醚甲基丙烯酸酯(VEMA,0.05mL~2mL)加入到聚乙烯醇(PVA)溶液中,常温反应3~8h。加入三乙胺终止反应,悬蒸浓缩,滴加至冰乙醚沉淀,挥干处理,加高纯水在冰水浴条件下溶解,经冷冻干燥得白色的改性PVA(P-V)。
实施例3
研究不同分子量的改性PVA的热相变能力,过程如下:
取改性PVA(P-V,1mg)分别加入高纯水(1mL)中,冰水浴搅拌半小时溶解;通过DLS法测定其在5~40℃的粒径分布,以5℃为间隔。由结果可知,PVA没有热相变能力,P-V有热相变能力;P-V热相变临界温度在25~30℃;在25℃及以下,P-V平均粒径在6~20nm;越过临界温度后,以纳米聚集体形式存在,尺寸在200~600nm。
实施例4
研究不同浓度的P-V(MWPVA=15000)的热相变能力,过程如下:
取一定量的P-V加入高纯水(1mL)中,冰水浴搅拌半小时溶解;通过DLS法测定其在5~50℃的粒径分布,以5℃为间隔。由结果可知,改性PVA的热相变临界温度与浓度无关;其所形成的纳米聚集体的尺寸与浓度有关,浓度越高,粒径越大;在低温,P-V平均粒径在6~20nm,以单聚物形式存在;越过临界温度后,以微纳聚集体形式存在,尺寸在50nm~50μm。
实施例5
聚乙烯醇凝胶的制备,过程如下:
配制0.01~10mg/mL的P-V水溶液;取光引发剂(以5%的投量比计算)加入P-V水溶液(1mL);在氮气保护条件下,于40℃水浴2min形成纳米聚集体,紫外交联5~60min得凝胶,尺寸为50nm~50μm。
实施例6
聚乙烯醇凝胶的降解,过程如下:
将不同尺寸的聚乙烯醇微纳凝胶分别悬浮于水溶液(pH 7.4和5.0)中,置于37℃摇床孵育,监测凝胶尺寸的变化。24~48小时后微纳凝胶下降至5~20纳米的大小,与溶解在水中的非功能化PVA的尺寸相似。
实施例7
聚乙烯醇凝胶对紫杉醇(PTX)的包裹,过程如下:
配制0.05~10mg/mL的P-V水溶液;取PTX溶于无水乙醇配制50mg/mL的PTX溶液;取光引发剂溶于无水乙醇配制50mg/mL光引发剂溶液;取PTX溶液(以10%的投量比计算)和光引发剂(以5%的投量比计算)加入P-V水溶液(1mL);在氮气保护条件下,于40℃水浴2min形成包裹PTX的微纳聚集体,紫外交联10min得包裹PTX的聚乙烯醇凝胶。取0.1mL载药凝胶加到0.9mL甲醇中超声30min后,用高效液相色谱法测定PTX的含量,以60/40(v/v)乙腈和水的混合物为流动相,在227nm处进行紫外吸收。
载药量(DLC)和包封率(DLE)通过下面的公式计算:
DLC载药量(wt%)=(装载药物质量/聚合物质量+载药质量)×100%;
DLE包封率(%)=(装载药物质量/药物总投入量)×100%。

Claims (7)

1.一种改性PVA的制备方法,其特征在于:将PVA溶于有机溶剂中,加入甲基丙烯酸酯乙烯基醚(VEMA),通过酸响应型缩醛键连接形成改性PVA。
2.根据权利要求1所述的改性PVA的制备方法,其特征在于:PVA羟基/VEMA单元数的摩尔比为1∶0.02~1∶0.2。
3.根据权利要求1所述的改性PVA的制备方法,其特征在于:所述的甲基丙烯酸酯乙烯基醚单体(VEMA),通过以下方法合成:将乙二醇单乙烯基醚溶于有机溶剂中,向反应体系中滴加甲基丙烯酰氯或甲基丙烯酸酐进行缩合反应。
4.根据权利要求1所述的改性PVA的制备方法,其特征在于:所述PVA分子量范围为2000~500000,能够通过其浓度、光交联温度和交联时间控制所形成的PVA凝胶的尺寸。
5.一种PVA微纳凝胶的可控制备方法,其特征在于:配制一定浓度的改性PVA水溶液,加入光引发剂,在不同温度水浴中形成PVA微纳聚集体,紫外交联后得到聚乙烯醇微纳凝胶,其结构如式(1):
Figure FDA0003057823020000011
6.根据权利要求5所述PVA微纳凝胶的可控制备方法,其特征在于:聚乙烯醇微纳凝胶具有酸响应性,能在弱酸性环境下快速降解,且降解产物为PVA本身和FDA认证的聚甲基丙烯羟乙酯(PHEMA)。
7.根据权利要求5所述PVA微纳凝胶的可控制备方法,其特征在于:作为药物载体,用于吸入制剂的制备。
CN202110508572.0A 2021-05-10 2021-05-10 改性聚乙烯醇、聚乙烯醇微纳凝胶的可控制备方法及应用 Pending CN113214414A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110508572.0A CN113214414A (zh) 2021-05-10 2021-05-10 改性聚乙烯醇、聚乙烯醇微纳凝胶的可控制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110508572.0A CN113214414A (zh) 2021-05-10 2021-05-10 改性聚乙烯醇、聚乙烯醇微纳凝胶的可控制备方法及应用

Publications (1)

Publication Number Publication Date
CN113214414A true CN113214414A (zh) 2021-08-06

Family

ID=77094755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110508572.0A Pending CN113214414A (zh) 2021-05-10 2021-05-10 改性聚乙烯醇、聚乙烯醇微纳凝胶的可控制备方法及应用

Country Status (1)

Country Link
CN (1) CN113214414A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524955A (zh) * 2022-02-24 2022-05-24 中国药科大学 一种单一调控机械特性的酸响应纳米凝胶的方法及用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788242A (en) * 1986-10-06 1988-11-29 Shin-Estu Chemical Co., Ltd. Polyvinyl alcohol-based reversibly hydrated gel, highly water-absorptive resin and method for the preparation thereof
CN101433521A (zh) * 2007-11-14 2009-05-20 中国医学科学院药用植物研究所 药用可吸入微粒、使用其的肺部吸入制剂及其制备方法
CN102675503A (zh) * 2012-05-14 2012-09-19 北京化工大学 一种可光交联的聚乙烯醇衍生物的制备方法
CN109678992A (zh) * 2019-01-09 2019-04-26 上海应用技术大学 一种用于可溶性微针的叶酸功能化修饰聚乙烯醇药用高分子材料及其制备方法
CN111297829A (zh) * 2020-02-25 2020-06-19 中国科学院上海硅酸盐研究所 一种改性葡聚糖包覆的核壳型复合纳米颗粒及其制备方法
CN111330014A (zh) * 2020-03-11 2020-06-26 中国药科大学 一种酸响应交联型聚合物前药及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788242A (en) * 1986-10-06 1988-11-29 Shin-Estu Chemical Co., Ltd. Polyvinyl alcohol-based reversibly hydrated gel, highly water-absorptive resin and method for the preparation thereof
CN101433521A (zh) * 2007-11-14 2009-05-20 中国医学科学院药用植物研究所 药用可吸入微粒、使用其的肺部吸入制剂及其制备方法
CN102675503A (zh) * 2012-05-14 2012-09-19 北京化工大学 一种可光交联的聚乙烯醇衍生物的制备方法
CN109678992A (zh) * 2019-01-09 2019-04-26 上海应用技术大学 一种用于可溶性微针的叶酸功能化修饰聚乙烯醇药用高分子材料及其制备方法
CN111297829A (zh) * 2020-02-25 2020-06-19 中国科学院上海硅酸盐研究所 一种改性葡聚糖包覆的核壳型复合纳米颗粒及其制备方法
CN111330014A (zh) * 2020-03-11 2020-06-26 中国药科大学 一种酸响应交联型聚合物前药及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAISHI QIAO等: "Folated pH-degradable nanogels for simultaneous delivery of", 《BIOMATERIALS SCIENCE》 *
HAISHI QIAO等: "Tumor localization of oncolytic adenovirus", 《BIOMSTERIALS SCIENCE》 *
WEI CHEN等: "pH-Degradable PVA-Based Nanogels via Photo-Crosslinking of Thermo-Preinduced Nanoaggregates for Controlled Drug Delivery", 《JOURNAL OF CONTROLLED RELEASE》 *
XINGMEI CHEN等: "Tumor-Adhesive and pH-Degradable Microgels by Microfluidics and", 《BIOMACROMOLECULES》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524955A (zh) * 2022-02-24 2022-05-24 中国药科大学 一种单一调控机械特性的酸响应纳米凝胶的方法及用途
CN114524955B (zh) * 2022-02-24 2024-01-23 中国药科大学 一种单一调控机械特性的酸响应纳米凝胶的方法及用途

Similar Documents

Publication Publication Date Title
EP0895473B1 (en) Polysaccharide microspheres for the pulmonary delivery of drugs
CN101703776B (zh) 一种抗感染剂长效注射液的制备方法
CN112546041A (zh) (-)-表没食子儿茶素没食子酸酯在制备抗冠状病毒药物方面的应用
JP2000508675A (ja) 新規製剤
CN105555276A (zh) 作为治疗病毒性感染的药剂的贝前列素异构体
WO2014154025A1 (zh) 类黄酮在制药中的应用
CN107998110A (zh) 白藜芦醇用于制备治疗或缓解慢性气道炎症性疾病用药物的用途
CN113214414A (zh) 改性聚乙烯醇、聚乙烯醇微纳凝胶的可控制备方法及应用
CN1272010C (zh) 粉末状吸入剂组合物
US20240335386A1 (en) Powder composition
CN111793147B (zh) 改性壳聚糖、双响应纳米载体药及其制备方法和应用
JP2006523723A (ja) 医薬的に活性な化合物を調節して導入する方法
WO2020043182A1 (zh) 黄酮碳苷单体化合物的应用
CN111773182B (zh) 一种预防病毒传染的复方制剂及其配制/使用方法与应用
CN115645381B (zh) 一种盐酸左沙丁胺醇雾化吸入溶液缓释剂及其制备方法
US11147785B2 (en) Modified free amino acid formulation and uses
US20240336482A1 (en) Powder composition
CN108383887A (zh) 一种替米考星纳米结晶的制备方法
CN117838672B (zh) 一种替米考星/g型褐藻寡糖雾化吸入纳米混悬液及其制备方法
CN100542540C (zh) 天麻素鼻腔给药制剂
JP2023525662A (ja) トレハロース又はトレハロースの誘導体を含有する医薬及び経鼻スプレー
CN118161594A (zh) 一种多肽类药物的鼻腔给药制剂及其制备方法和应用
EP4452219A2 (en) Powder composition
CN118490680A (zh) 瑞香素在制备治疗病毒性肺炎的药物中的应用
CN101190883B (zh) 新的具有抗病毒活性的化合物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination