CN113198996A - 一种基于连铸坯表面回温控制的二冷水量配置方法 - Google Patents

一种基于连铸坯表面回温控制的二冷水量配置方法 Download PDF

Info

Publication number
CN113198996A
CN113198996A CN202110489207.XA CN202110489207A CN113198996A CN 113198996 A CN113198996 A CN 113198996A CN 202110489207 A CN202110489207 A CN 202110489207A CN 113198996 A CN113198996 A CN 113198996A
Authority
CN
China
Prior art keywords
section
secondary cooling
cooling
temperature return
return rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110489207.XA
Other languages
English (en)
Other versions
CN113198996B (zh
Inventor
刘青
韩延申
张江山
曾凡政
陈军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Hunan Valin Xiangtan Iron and Steel Co Ltd
Original Assignee
University of Science and Technology Beijing USTB
Hunan Valin Xiangtan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB, Hunan Valin Xiangtan Iron and Steel Co Ltd filed Critical University of Science and Technology Beijing USTB
Priority to CN202110489207.XA priority Critical patent/CN113198996B/zh
Publication of CN113198996A publication Critical patent/CN113198996A/zh
Priority to JP2022007366A priority patent/JP7165955B1/ja
Application granted granted Critical
Publication of CN113198996B publication Critical patent/CN113198996B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Continuous Casting (AREA)

Abstract

一种基于连铸坯表面回温控制的二冷水量配置方法,涉及连铸坯质量控制技术领域,包括:S1:获取二冷区各段冷却水量,利用连铸坯凝固传热数学模型,得到与二冷区各段冷却水量对应的二冷区各段温度和空冷段温度;S2:基于二冷区各段温度得到二冷区各段回温速率,并基于空冷段温度得到空冷段回温速率;S3:建立二冷区各段冷却水量与二冷区各段回温速率或空冷段回温速率之间的拟合关系;S4:基于二冷区各段需求回温速率和空冷段需求回温速率,利用所述S3中建立的拟合关系,计算得到二冷区各段需求冷却水量。本发明提供的一种基于连铸坯表面回温控制的二冷水量配置方法,能够提高二冷水量的控制精度,从而控制连铸坯中间裂纹的产生。

Description

一种基于连铸坯表面回温控制的二冷水量配置方法
技术领域
本发明涉及连铸坯质量控制技术领域,尤其涉及一种基于连铸坯表面回温控制的二冷水量配置方法。
背景技术
在实际连铸二次冷却过程,由于二冷区各段水量的差异,铸坯表面会产生回温,该回温现象对铸坯内部质量有重要影响。当铸坯表面回温速率超过100℃/m时,铸坯中间裂纹的产生几率大大增加。因此,保证铸坯表面回温速率小于100℃/m,是控制中间裂纹的关键措施。
现有技术中提出的冶金连铸冷却水的智能控制方法中,其步骤包括:(c)根据生产经验数据库给出的用于所述温度场计算模型的初始参数,并根据一冷铸坯表面目标温度、二冷铸坯表面目标温度反算一冷目标水量和二冷各分区目标水量,用于铸机生产;(d)铸机生产时,对各项数据进行监控,所述数据包括:结晶器水量、入口出口温度、结晶器铜板厚度、拉速、钢种、漏钢预报系统热电偶测量的铜板表面温度、结晶器锥度、结晶器出口铸坯表面温度;以及二冷各段水量、水温、环境温度、二冷各段压缩空气气量、在二冷各分区设置的温度监测装置返回的实时铸坯表面温度;根据所述数据调整优化所述温度场计算模型中的各项参数,使计算得到的所述一冷铸坯表面计算温度等于一冷铸坯表面实际温度,使计算得到的所述二冷铸坯表面计算温度等于二冷铸坯表面实际温度;(e)将参数调整优化后的所述温度场计算模型应用于铸机生产,根据优化后的所述温度场计算模型、所述一冷铸坯表面目标温度、所述二冷铸坯表面目标温度计算得到优化后的一冷目标水量和优化后的二冷各分区目标水量;(f)交替重复步骤(d)和步骤(e),使所述一冷铸坯表面实际温度逐渐接近所述一冷铸坯表面目标温度,使所述二冷铸坯表面实际温度逐渐接近所述二冷铸坯表面目标温度。该方法在确定二冷区各段水量时,主要关注铸坯表面温度,没有考虑铸坯表面回温速率,因此,采用该方法可能会引起铸坯表面回温速率过大,导致中间裂纹的产生。而且,该方法需要进行大量重复计算,人工成本和时间成本较高。
发明内容
针对目前现有技术中存在的前述问题,本发明旨在提供一种基于连铸坯表面回温控制的二冷水量配置方法以提高二冷水量的控制精度,从而控制连铸坯中间裂纹的产生。
为了实现上述目的,本发明采用的技术方案是:
一种基于连铸坯表面回温控制的二冷水量配置方法,包括:
S1:获取二冷区各段冷却水量,利用连铸坯凝固传热数学模型,得到与二冷区各段冷却水量对应的二冷区各段温度和空冷段温度;
S2:基于二冷区各段温度得到二冷区各段回温速率,并基于空冷段温度得到空冷段回温速率;
S3:建立二冷区各段冷却水量与二冷区各段回温速率或空冷段回温速率之间的拟合关系;
S4:基于二冷区各段需求回温速率和空冷段需求回温速率,利用所述S3中建立的拟合关系,计算得到二冷区各段需求冷却水量。
进一步的,所述S1具体包括:
S11:获取二冷区各段冷却水量,并采集空冷段运行参数;
S12:建立连铸坯凝固传热数学模型,并基于二冷区各段冷却水量和空冷段运行参数校正连铸坯凝固传热数学模型;
S13:利用校正后的连铸坯凝固传热数学模型,计算二冷区各段温度和空冷段温度。
进一步的,所述二冷区各段冷却水量包括:以二冷区各段初始水量为基础,按比例多次调节后获得的多组冷却水量。
进一步的,每次调节的比例为15%~25%。
进一步的,所述S13中建立连铸坯凝固传热数学模型具体包括:
S131:测量二冷区各段水量分布,获得水量分布结果;
S132:根据水量分布结果,建立连铸坯凝固传热数学模型;
其中,连铸坯凝固传热数学模型采用水量分布结果作为二冷区各段边界条件。
进一步的,所述二冷区各段需求回温速率和所述空冷段需求回温速率均在99℃/m以上,100℃/m以下。
进一步的,所述二冷区各段需求回温速率和所述空冷段需求回温速率均在99.5℃/m以上,100℃/m以下。
进一步的,所述S3中的拟合关系采用最小二乘法拟合得到。
进一步的,所述S3中的拟合关系具体包括:
Figure BDA0003049546070000031
其中,Ri+1表示二冷区第i+1段回温速率,单位℃/m;
Rk表示空冷段回温速率,单位℃/m;
Wi表示二冷区第i段冷却水量,单位m3/h;
i为正整数,用于表示二冷区各段,i=1,2,3,…,n,其中,i=1为二冷区首段,i=n为二冷区末段;
k用于表示空冷段;
ai、bi、ci均为常量系数。
进一步的,所述方法还包括:
S5:配置足辊段水量,所述足辊段水量为足辊段初始水量÷二冷区各段初始水量之和×所述S4中二冷区各段需求冷却水量之和。
相对于现有技术,本发明所述的一种基于连铸坯表面回温控制的二冷水量优化方法,具有如下优势:
在大量实验过程中,基于本发明的技术方案发现,在连铸过程中显著影响二冷各段以及空冷段的回温速率的因素为与该段近弯月面一侧相邻段的冷却水量,在此基础上本发明建立了二冷区第i段冷却水量对第i+1段回温速率影响的“冷却水量-回温速率拟合关系”以及二冷区末段冷却水量对空冷段回温速率影响的“冷却水量-回温速率拟合关系”并以此为依据精准地对二冷区各段的水量进行配置。
本发明正是发现二冷区各段水量和铸坯表面回温速率之间的影响规律,建立了“冷却水量-回温速率拟合关系”,从而能够精确控制铸坯表面回温速率。
当各段的回温速率控制在100℃以内时,随着回温速率的升高,连铸坯表面裂纹发生率显著降低,基于本发明的“冷却水量-回温速率拟合关系”,其对二冷区各段以及空冷区铸坯表面回温速率的控制精度达到1%以内,甚至于0.5%以内,基于此,可以实现二冷区各段以及空冷区需求回温速率初始获取范围达到99℃/m以上,100℃/m以下,进一步优选地控制为99.5℃/m,100℃/m以下,进而实现将连铸坯表面裂纹发生率控制在0.5%以内。
附图说明
说明书附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1是本发明实施例中一种基于连铸坯表面回温控制的二冷优化方法的流程图;
图2是本发明实施例中铸坯表面测温结果和计算结果对比;
图3是本发明实施例中不同二冷区2段水量下空冷段铸坯表面回温速率;
图4是本发明实施例中不同二冷区1段水量下二冷区2段铸坯表面回温速率;
图5是本发明实施例中优化前后铸坯表面回温速率。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
本发明的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例,例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
多个,包括两个或者两个以上。
和/或,应当理解,对于本发明中使用的术语“和/或”,其仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
一种基于连铸坯表面回温控制的二冷水量配置方法,包括如下步骤:
1)获取二冷区各段的冷却水量Wi,并根据连铸坯凝固传热数学模型计算得出二冷区各段各点的温度Tij以及空冷段各点温度Tkj,其中Wi为二冷区第i段的冷却水量,Tij为二冷区第i段距结晶器弯月面距离为j位置的温度,Tkj为空冷段距结晶器弯月面距离为j位置的温度;
2)根据步骤1)获得的二冷区各段和空冷段温度,计算得出各段的回温速率Ri、Rk,其中Ri为二冷区第i段的回温速率,Rk为空冷段回温速率;
3)根据步骤1)的二冷区各段的冷却水量Wi以及步骤2)获得的二冷区各段回温速率Ri、空冷段回温速率Rk,建立二冷区第i段冷却水量对第i+1段回温速率影响的“冷却水量-回温速率数值拟合关系”以及二冷区末段冷却水量对空冷段回温速率影响的“冷却水量-回温速率数值拟合关系”;
4)获取二冷区各段以及空冷段需求回温速率值Rui、Ruk,通过步骤3)的“冷却水量-回温速率数值拟合关系”分别计算出二冷区各段的需求冷却水量Wui
可选的,步骤1)还包括获取二冷区各段的冷却水量Wi之后进一步获取与冷却水量对应的空冷段温度Tsj,然后采用Wi、Tsj以及距结晶器弯月面距离j值对连铸坯凝固传热数学模型进行校正的步骤,其中,Tsj为通过传感器测得的空冷段铸坯表面中心距结晶器弯月面为j位置的温度。
可选的,连铸坯凝固传热数学模型考虑二冷区水量横向分布。
可选的,获取二冷区各段的冷却水量Wi具体为获取连铸坯初始二冷区各段建议配水量的0.1-0.2倍为基础按照增幅调节所得的一组水量。
可选的,增幅为(15-25)%×建议配水量。
可选的,二冷区各段以及空冷段需求回温速率值Rui、Ruk均为99℃/m以上,100℃/m以下。
可选的,二冷区各段以及空冷段需求回温速率值Rui、Ruk均为99.5℃/m以上,100℃/m以下。
可选的,冷却水量回温速率拟合关系采用最小二乘法建立。
可选的,方法还包括配置足辊段水量的步骤,足辊段水量为步骤4)得到的二冷区各段的需求冷却水量之和(ΣWui)×(连铸坯初始足辊段建议水量÷二冷区各段建议配水量之和)。
实施例
一种基于连铸坯表面回温控制的二冷水量配置方法的流程图如图1所示。
下面以具体实施案例,针对某钢厂连铸生产的82B钢为例对本专利作进一步说明,82B钢的主要化学成分如表1所示,82B钢的主要连铸工艺参数如表2所示。
表1 82B钢主要化学成分
Figure BDA0003049546070000051
Figure BDA0003049546070000061
表2 82B钢主要连铸工艺参数
Figure BDA0003049546070000062
在考虑二冷水横向分布的基础上建立连铸坯凝固传热数学模型,并通过铸坯表面测温对模型进行校正。为了更好地校正连铸坯凝固传热数学模型,同时测量了铸坯沿拉坯方向和宽度方向的表面温度。其中,拉坯方向温度的测量位于铸坯表面中心,共测量了四个位置;宽度方向温度的测量位于距离弯月面5.20m处,共测量了五个位置。图2所示为测量温度和计算温度对比。可知,在误差允许范围内,测量温度和计算温度符合较好,表明建立的连铸坯凝固传热数学模型具有较高的准确性。
调整二冷区2段水量至初始水量的0.4、0.6、0.8、1.0、1.2、1.4和1.6倍,采用校正过的连铸坯凝固传热数学模型计算铸坯表面温度,并分析不同二冷区2段水量下空冷段铸坯表面回温速率,如图3所示。采用最小二乘法,对二冷区2段水量和空冷段铸坯表面回温速率进行拟合,得到二冷区2段水量对空冷段铸坯表面回温速率影响的“冷却水量-回温速率拟合关系”:
R3=55.75+17.69W2-0.5068W2 2 (1)
其中,R3表示空冷段回温速率,℃/m;W2表示二冷区2段水量,m3/h。
根据公式1,代入需求回温速率99℃/m,得出二冷区2段水量,结果为2.93m3/h,此即为优化后的二冷区2段水量。
调整二冷区1段水量至初始水量的0.4、0.6、0.8、1.0、1.2、1.4和1.6倍,采用校正过的连铸坯凝固传热数学模型计算铸坯表面温度,并分析不同二冷区1段水量下二冷区2段铸坯表面回温速率,如图4所示。采用最小二乘法,对二冷区1段水量和二冷区2段铸坯表面回温速率进行拟合,得到二冷区1段冷却水量对二冷区2段回温速率影响的“冷却水量-回温速率拟合关系”:
R2=-27.61+17.99W1-0.3144W1 2 (2)
其中,R2表示二冷区2段回温速率,℃/m;W1表示二冷区1段水量,m3/h。
根据公式2,代入需求回温速率99℃/m,得到二冷区1段水量,结果为8.22m3/h,此即为优化后的二冷区1段水量。
在初始工艺下,足辊段水量比例为29.0%,保持该比例,根据上述确定的二冷区1段水量和二冷区2段水量,确定足辊段水量为4.56m3/h。
采用本专利所述的方法对二冷区各段水量进行优化后,足辊段、二冷区1段和二冷区2段水量分别为4.56、8.22和2.93m3/h,采用连铸坯凝固传热数学模型分析优化前后铸坯表面回温速率,如图5所示。可知,优化前铸坯表面回温速率较高,在二冷区2段和空冷段分别为116.1℃/m和160.0℃/m;优化后,二冷区2段和空冷段铸坯表面回温速率都刚好控制在100℃/m以内,分别为99.0℃/m和99.7℃/m,经检测,连铸坯中间裂纹率为0.5%。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (10)

1.一种基于连铸坯表面回温控制的二冷水量配置方法,其特征在于,包括:
S1:获取二冷区各段冷却水量,利用连铸坯凝固传热数学模型,得到与二冷区各段冷却水量对应的二冷区各段温度和空冷段温度;
S2:基于二冷区各段温度得到二冷区各段回温速率,并基于空冷段温度得到空冷段回温速率;
S3:建立二冷区各段冷却水量与二冷区各段回温速率或空冷段回温速率之间的拟合关系;
S4:基于二冷区各段需求回温速率和空冷段需求回温速率,利用所述S3中建立的拟合关系,计算得到二冷区各段需求冷却水量。
2.根据权利要求1所述的二冷水量配置方法,其特征在于,所述S1具体包括:
S11:获取二冷区各段冷却水量,并采集空冷段运行参数;
S12:建立连铸坯凝固传热数学模型,并基于二冷区各段冷却水量和空冷段运行参数校正连铸坯凝固传热数学模型;
S13:利用校正后的连铸坯凝固传热数学模型,计算二冷区各段温度和空冷段温度。
3.根据权利要求2所述的二冷水量配置方法,其特征在于,所述二冷区各段冷却水量包括:以二冷区各段初始水量为基础,按比例多次调节后获得的多组冷却水量。
4.根据权利要求3所述的二冷水量配置方法,其特征在于,每次调节的比例为15%~25%。
5.根据权利要求2所述的二冷水量配置方法,其特征在于,所述S13中建立连铸坯凝固传热数学模型具体包括:
S131:测量二冷区各段水量分布,获得水量分布结果;
S132:根据水量分布结果,建立连铸坯凝固传热数学模型;
其中,连铸坯凝固传热数学模型采用水量分布结果作为二冷区各段边界条件。
6.根据权利要求1所述的二冷水量配置方法,其特征在于,所述二冷区各段需求回温速率和所述空冷段需求回温速率均在99℃/m以上,100℃/m以下。
7.根据权利要求1所述的二冷水量配置方法,其特征在于,所述二冷区各段需求回温速率和所述空冷段需求回温速率均在99.5℃/m以上,100℃/m以下。
8.根据权利要求1所述的二冷水量配置方法,其特征在于,所述S3中的拟合关系采用最小二乘法拟合得到。
9.根据权利要求8所述的二冷水量配置方法,其特征在于,所述S3中的拟合关系具体包括:
Figure FDA0003049546060000021
其中,Ri+1表示二冷区第i+1段回温速率,单位℃/m;
Rk表示空冷段回温速率,单位℃/m;
Wi表示二冷区第i段冷却水量,单位m3/h;
i为正整数,用于表示二冷区各段,i=1,2,3,…,n,其中,i=1为二冷区首段,i=n为二冷区末段;
k用于表示空冷段;
ai、bi、ci均为常量系数。
10.根据权利要求1所述的二冷水量配置方法,其特征在于,所述方法还包括:
S5:配置足辊段水量,所述足辊段水量为足辊段初始水量÷二冷区各段初始水量之和×所述S4中二冷区各段需求冷却水量之和。
CN202110489207.XA 2021-04-30 2021-04-30 一种基于连铸坯表面回温控制的二冷水量配置方法 Active CN113198996B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110489207.XA CN113198996B (zh) 2021-04-30 2021-04-30 一种基于连铸坯表面回温控制的二冷水量配置方法
JP2022007366A JP7165955B1 (ja) 2021-04-30 2022-01-20 連続鋳造鋳片の表面温度回復制御に基づく二次冷却水量配分方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110489207.XA CN113198996B (zh) 2021-04-30 2021-04-30 一种基于连铸坯表面回温控制的二冷水量配置方法

Publications (2)

Publication Number Publication Date
CN113198996A true CN113198996A (zh) 2021-08-03
CN113198996B CN113198996B (zh) 2022-04-05

Family

ID=77028482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110489207.XA Active CN113198996B (zh) 2021-04-30 2021-04-30 一种基于连铸坯表面回温控制的二冷水量配置方法

Country Status (2)

Country Link
JP (1) JP7165955B1 (zh)
CN (1) CN113198996B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101474666A (zh) * 2009-01-16 2009-07-08 重庆大学 一种连铸坯凝固过程温度和质量控制冷却方法
CN102814481A (zh) * 2012-08-29 2012-12-12 重庆大学 基于在线测温与传热模型的连铸二冷动态控制方法
JP2014014854A (ja) * 2012-07-11 2014-01-30 Nippon Steel & Sumitomo Metal 連続鋳造機の二次冷却方法及び二次冷却装置
CN109500371A (zh) * 2018-12-20 2019-03-22 南京钢铁股份有限公司 一种板坯动态二冷和轻压下控制系统
JP2019048322A (ja) * 2017-09-11 2019-03-28 新日鐵住金株式会社 連続鋳造機の2次冷却制御装置、連続鋳造機の2次冷却制御方法、およびプログラム
CN110293212A (zh) * 2019-07-25 2019-10-01 中冶赛迪工程技术股份有限公司 一种高拉速条件下小方坯连铸二冷水量控制方法
CN110315049A (zh) * 2019-07-25 2019-10-11 中冶赛迪工程技术股份有限公司 一种连铸二冷水控制装置及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03193253A (ja) * 1989-12-20 1991-08-23 Sumitomo Metal Ind Ltd 連続鋳造鋳片の表面温度制御方法
JP4690995B2 (ja) * 2006-10-18 2011-06-01 新日本製鐵株式会社 鋼の連続鋳造方法及び連続鋳造設備

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101474666A (zh) * 2009-01-16 2009-07-08 重庆大学 一种连铸坯凝固过程温度和质量控制冷却方法
JP2014014854A (ja) * 2012-07-11 2014-01-30 Nippon Steel & Sumitomo Metal 連続鋳造機の二次冷却方法及び二次冷却装置
CN102814481A (zh) * 2012-08-29 2012-12-12 重庆大学 基于在线测温与传热模型的连铸二冷动态控制方法
JP2019048322A (ja) * 2017-09-11 2019-03-28 新日鐵住金株式会社 連続鋳造機の2次冷却制御装置、連続鋳造機の2次冷却制御方法、およびプログラム
CN109500371A (zh) * 2018-12-20 2019-03-22 南京钢铁股份有限公司 一种板坯动态二冷和轻压下控制系统
CN110293212A (zh) * 2019-07-25 2019-10-01 中冶赛迪工程技术股份有限公司 一种高拉速条件下小方坯连铸二冷水量控制方法
CN110315049A (zh) * 2019-07-25 2019-10-11 中冶赛迪工程技术股份有限公司 一种连铸二冷水控制装置及方法

Also Published As

Publication number Publication date
CN113198996B (zh) 2022-04-05
JP7165955B1 (ja) 2022-11-07
JP2022172052A (ja) 2022-11-15

Similar Documents

Publication Publication Date Title
KR101889668B1 (ko) 압연 시뮬레이션 장치
CN110064667B (zh) 一种钢板层流冷却方法
WO2009011070A1 (ja) 冷却制御方法、冷却制御装置及び冷却水量計算装置
KR101709623B1 (ko) 응고 완료 위치 제어 방법 및 응고 완료 위치 제어 장치
CN108921232B (zh) 一种热轧带钢冷却历史数据聚类及相似性度量方法
TW200806984A (en) Rolling line material quality prediction and control apparatus
CN107999547B (zh) 一种层流冷却的自学习方法及装置
CN109013717B (zh) 一种热连轧中间坯心部温度计算方法
CN115121626B (zh) 一种基于误差补偿的热轧带钢瞬态热辊型预报方法
CN110523941A (zh) 连铸粘结漏钢多级风险控制方法及控制装置
CN113198996B (zh) 一种基于连铸坯表面回温控制的二冷水量配置方法
CN109570242A (zh) 一种热轧冷却辊道控制系统及方法
CN105855297B (zh) 一种提高热轧首块无取向硅钢头部厚度精度的控制方法
CN113930600A (zh) 一种基于数字孪生技术的罩式炉退火过程监测及控制方法
CN104815853A (zh) 温度分布预测装置
JP2020157327A (ja) 鋼板の仕上出側温度制御方法、鋼板の仕上出側温度制御装置、及び鋼板の製造方法
CN114634294B (zh) 一种基板玻璃厚度自动调节方法及系统
JP7298645B2 (ja) 形鋼の断面寸法変化量予測モデルの生成方法、形鋼の断面寸法変化量予測モデルの生成装置、形鋼の断面寸法の予測方法、形鋼の断面寸法の制御方法、および形鋼の製造方法
CN105631231A (zh) 一种对热轧过程温度实测值进行修正的方法
CN102784815B (zh) 钢板冷矫直机来料长度方向板形的分类处理方法
CN108229072A (zh) 基于数据解析的连退均热炉带钢张力在线测量方法
KR20080022074A (ko) 압연 라인의 재질 예측 및 재질 제어 장치
KR102045651B1 (ko) 인공지능 기반 열연 런아웃 테이블 열유속계수 추정 장치
KR910010145B1 (ko) 열간압연에 있어서의 권취온도 제어방법
CN108067506B (zh) 中厚板轧制道次动态变设定控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant