CN113185299A - 一种多层吸波陶瓷基复合材料的制备方法 - Google Patents

一种多层吸波陶瓷基复合材料的制备方法 Download PDF

Info

Publication number
CN113185299A
CN113185299A CN202110366478.6A CN202110366478A CN113185299A CN 113185299 A CN113185299 A CN 113185299A CN 202110366478 A CN202110366478 A CN 202110366478A CN 113185299 A CN113185299 A CN 113185299A
Authority
CN
China
Prior art keywords
wave
absorbing
composite material
nanoparticles
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110366478.6A
Other languages
English (en)
Inventor
王晓猛
邱海鹏
王岭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVIC Beijing Aeronautical Manufacturing Technology Research Institute
AVIC Manufacturing Technology Institute
Original Assignee
AVIC Beijing Aeronautical Manufacturing Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVIC Beijing Aeronautical Manufacturing Technology Research Institute filed Critical AVIC Beijing Aeronautical Manufacturing Technology Research Institute
Priority to CN202110366478.6A priority Critical patent/CN113185299A/zh
Publication of CN113185299A publication Critical patent/CN113185299A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/589Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Ceramic Products (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明涉及一种多层吸波陶瓷基复合材料的制备方法,本发明采用混合不同电磁纳米粒子的陶瓷先驱体,处理纤维织物使其具有不同电磁性能,将调控后的不同电磁性能的纤维织物按吸波结构设计铺层排布,通过热压固化、浸渍裂解循环工艺,制备出多层吸波陶瓷基复合材料。本发明可以通过改变电磁纳米粒子的种类和含量实现对多层纤维织物不同电磁性能的调控,达到调节陶瓷基复合材料吸波性能的目的,满足不同用途的使用需求,并且工艺操作简单,适合成型大尺寸复杂构件。

Description

一种多层吸波陶瓷基复合材料的制备方法
技术领域
本发明涉及雷达吸波陶瓷基复合材料技术领域,特别是涉及一种多层吸波陶瓷基复合材料的制备方法。
背景技术
陶瓷基复合材料因其具有优异的力学性能,热物理性能和环境性能等,成为航空航天领域迅速发展的材料体系。随着雷达侦察技术的提升,发展吸波陶瓷基复合材料成为提高航空航天武器装备生存能力的关键。
陶瓷基复合材料主要由纤维预制体、界面层和基体等组成,现有技术的吸波复合材料的制备方法主要集中于纤维预制体设计,对纤维的电性能要求较高,因目前可选纤维种类较少,所以难以灵活调节复合材料吸波性能。专利CN201811199009.4开展了复合材料基体设计,结合多种工艺,制备出由外而内Si3N4/SiC/C的电磁阻抗渐变基体的吸波陶瓷基复合材料,但其存在基体成分设计单一且工艺制备复杂的问题,较难成型大尺寸复杂吸波陶瓷基复合材料构件。
综上,目前吸波陶瓷基复合材料制备方法主要存在以下问题:(1)吸波纤维预制体设计对纤维的电性能要求较高,纤维可选种类较少且电性能调节困难;(2)电磁阻抗渐变基体成分设计单一且制备工艺复杂,较难成型大尺寸复杂吸波陶瓷基复合材料构件。
因此,发明人提供了一种多层吸波陶瓷基复合材料的制备方法。
发明内容
(1)要解决的技术问题
本发明实施例提供了一种多层吸波陶瓷基复合材料的制备方法,解决了现有技术的吸波纤维可选种类少且电性能调节困难,难以调控陶瓷基复合材料吸波性能的技术问题。
(2)技术方案
本发明的实施例提出了一种多层吸波陶瓷基复合材料的制备方法,该制备方法至少包括以下步骤(1)~步骤(7):
步骤(1),选取连续纤维编织的二维织物,在真空烘箱中烘干2~5h,取出后置于800~1000℃高温真空或惰性气氛处理0.5~1h除去纤维织物表面上的浆剂。
步骤(2),在经步骤(1)处理后的纤维织物表面制备氮化硼界面层,通过控制沉积时间使得氮化硼界面层厚度在100~1000nm。
步骤(3),取黏度为20~200cP的陶瓷先驱体,通过搅拌、球磨的混合方式将电磁纳米粒子分散在先驱体中,改变电磁纳米粒子的种类和含量,制得具有不同电磁性能的混合先驱体,以实现混合先驱体不同电磁性能的调控。
步骤(4),将步骤(2)制得的带有氮化硼界面层的纤维织物浸渍于步骤(3)制得的不同电磁性能的混合陶瓷先驱体中6~10h,得到不同电磁性能的纤维织物。
步骤(5),根据多层吸波复合材料结构设计,通过将步骤(4)制得的不同电磁性能的纤维织物进行多层铺层叠加,再将其置于模具中热压完成固化。
步骤(6),将步骤(5)固化后的复合材料再次浸渍于黏度为20~200cP的陶瓷先驱体中6~10h,之后在800~1200℃高温真空或惰性气氛下保持0.5~2h完成裂解。
步骤(7),按照步骤(6)的方法采用黏度20~200cP的陶瓷先驱体对复合材料进行浸渍-裂解的循环操作,直到复合材料增重小于2wt%,完成致密化,制备出多层吸波陶瓷基复合材料。
进一步地,所述步骤(1)中,所述连续纤维编织的二维织物采用吸波SiC纤维、透波SiC纤维、透波Si3N4纤维或透波Al2O3纤维的平纹或缎纹织物。
进一步地,所述步骤(3)、(6)、(7)中,所述陶瓷先驱体为采用适用浸渍裂解工艺的聚碳硅烷、聚硅氮烷或聚硅硼氮烷的陶瓷先驱体。
进一步地,所述步骤(3)中,所述电磁纳米粒子的种类包括但电性能调节的电导纳米粒子、介电纳米粒子以及磁性能调节的磁性纳米粒子。
进一步地,所述电导纳米粒子包括碳纳米管、炭黑、石墨烯纳米粒子。
进一步地,所述介电纳米粒子包括SiC、SiO2、Al2O3、Ti3SiC2纳米粒子。
进一步地,所述磁性能调节的磁性纳米粒子包括铁磁性金属粉末、铁氧体Fe2O3
进一步地,所述步骤(3)中,所述电磁纳米粒子在所述混合先驱体中的含量范围在1wt%~20wt%。
进一步地,在所述步骤(5)中,所述多层吸波复合材料结构设计采用磁性能层、介电性能层、电导性能层的不同电磁性能的纤维织物实现多种组合设计。
(3)有益效果
1、本发明采用陶瓷先驱体混合电磁纳米粒子的方式,通过控制电磁纳米粒子的种类和含量,实现对多层纤维织物不同电磁性能的调控,可调节范围大。
2、本发明通过不同电磁性能纤维织物的叠加组合,实现磁性能、介电性能、电导性能等不同电磁性能纤维织物的多层结构设计,达到灵活调控陶瓷基复合材料的吸波性能的目的,满足不同的使用需求。
3、本发明采用先驱体浸渍裂解工艺,通过浸渍-裂解循环实现复合材料致密化,其操作简单,适合成型大尺寸复杂构件,满足航空航天隐身构件的研制需求。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的一种多层吸波陶瓷基复合材料结构示意图;
图2是本发明实施例的一种多层吸波陶瓷基复合材料平板试样。
具体实施方式
下面结合附图和实施例对本发明的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本发明的原理,但不能用来限制本发明的范围,即本发明不限于所描述的实施例,在不脱离本发明的精神的前提下覆盖了零件、部件和操作方式的任何修改、替换和改进。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参照附图并结合实施例来详细说明本申请。
实施例1
请参照图1和图2所示,实施例1提供了一种多层吸波陶瓷基复合材料的制备方法,该制备方法至少包括以下步骤(1)~步骤(7):
步骤(1),选取10层连续SiC纤维编织的平纹二维织物,在100℃真空烘箱中烘干2h,取出后置于800℃高温下真空处理0.5h除去纤维织物表面上的浆剂。
步骤(2),在经步骤(1)处理后的纤维织物表面通过沉积4h制备厚度为300nm的氮化硼界面层。
步骤(3),取黏度为20cP的聚碳硅烷陶瓷先驱体两份,通过搅拌或球磨的混合方式,分别将10wt%质量分数的SiO2纳米粒子和20wt%质量分数的Fe2O3纳米粒子分散在前述的两份聚碳硅烷陶瓷先驱体中,因SiO2粒子的低介电性和Fe2O3粒子的磁性,使得混合先驱体分别具有低介电性能和磁损耗性能。
步骤(4),将步骤(2)制得的带有氮化硼界面层的5层纤维织物浸渍于步骤(3)制得的混合SiO2纳米粒子的陶瓷先驱体中10h,其余5层浸渍于混合Fe2O3纳米粒子的陶瓷先驱体中10h,分别得到具有介电性能和磁性能的两种电磁性能的纤维织物。
步骤(5),根据多层吸波复合材料结构设计,通过将步骤(4)制得的两种电磁性能的纤维织物进行多层铺层叠加,再将其置于模具中,在压力4MPa,温度180℃,热压1h条件下完成热压固化。
步骤(6),将步骤(5)固化后的复合材料再次浸渍于黏度为20cP的聚碳硅烷陶瓷先驱体中10h,之后在800℃高温真空下保持0.5h完成裂解。
步骤(7),按照步骤(6)的方法采用黏度20cP的聚碳硅烷陶瓷先驱体对复合材料进行浸渍-裂解的循环操作,直到复合材料增重为1wt%,完成致密化,制备出多层吸波陶瓷基复合材料。
经分析,实施例1最终吸波陶瓷基复合材料为介电性能、磁性能组合的多层结构,反射率8~18GHz≤-3dB,最大吸波峰值为-5dB。
实施例2
请参照图1和图2所示,实施例2提供了一种多层吸波陶瓷基复合材料的制备方法,该制备方法至少包括以下步骤(1)~步骤(7):
步骤(1),选取10层连续SiC纤维编织的平纹二维织物,在100℃真空烘箱中烘干2h,取出后置于1000℃高温下真空处理0.5h除去纤维织物表面上的浆剂。
步骤(2),在经步骤(1)处理后的纤维织物表面通过沉积2h制备厚度为100nm的氮化硼界面层。
步骤(3),取黏度为100cP的聚硅氮烷陶瓷先驱体两份,通过球磨的混合方式,分别将5wt%质量分数的SiO2纳米粒子和1wt%质量分数的碳纳米管纳米粒子分散在前述的两份聚碳硅烷陶瓷先驱体中,因SiO2粒子的低介电性和碳纳米管粒子的导电性,使得混合先驱体分别具有低介电性能和高电导性能。
步骤(4),将步骤(2)制得的带有氮化硼界面层的4层纤维织物浸渍于步骤(3)制得的混合SiO2纳米粒子的陶瓷先驱体中6h,其余6层浸渍于混合碳纳米管纳米粒子的陶瓷先驱体中6h,分别得到具有介电性能和电导性能的两种电磁性能的纤维织物。
步骤(5),根据多层吸波复合材料结构设计,通过将步骤(4)制得的两种性能的纤维织物进行多层铺层叠加,再将其置于模具中,在压力4MPa,温度220℃,热压2h条件下完成热压固化。
步骤(6),将步骤(5)固化后的复合材料再次浸渍于黏度为100cP的聚硅氮烷陶瓷先驱体中8h,之后在1200℃高温真空下保持0.5h完成裂解。
步骤(7),按照步骤(6)的方法采用黏度100cP的聚硅氮烷陶瓷先驱体对复合材料进行浸渍-裂解的循环操作,直到复合材料增重为1wt%,完成致密化,制备出多层吸波陶瓷基复合材料。
经分析,实施例2最终制备的吸波陶瓷基复合材料为介电性能、电导性能组合的多层结构,反射率8~18GHz≤-6dB,最大吸波峰值为-9dB。
实施例3
请参照图1和图2所示,实施例3提供了一种多层吸波陶瓷基复合材料的制备方法,该制备方法至少包括以下步骤(1)~步骤(7):
步骤(1),选取10层连续Si3N4纤维编织的平纹二维织物,在100℃真空烘箱中烘干5h,取出后置于800℃高温下真空处理1h除去纤维织物表面上的浆剂。
步骤(2),在经步骤(1)处理后的纤维织物表面通过沉积10h制备厚度为1000nm的氮化硼界面层。
步骤(3),取黏度为200cP的聚碳硅烷陶瓷先驱体三份,通过球磨混合方式,分别将3wt%质量分数的SiO2纳米粒子、1wt%质量分数的碳纳米管纳米粒子以及5wt%质量分数的Ti3SiC2纳米粒子分散在前述的三份聚碳硅烷陶瓷先驱体中,因SiO2粒子的低介电性、碳纳米管粒子的导电性和Ti3SiC2粒子的高介电性,使得混合先驱体分别具有低介电性能、高电导性能、高介电性能。
步骤(4),将步骤(2)制得的带有氮化硼界面层的2层纤维织物浸渍于步骤(3)制得的混合SiO2纳米粒子的陶瓷先驱体中8h,2层纤维织物浸渍于混合碳纳米管纳米粒子的陶瓷先驱体中8h,其余6层浸渍于混合Ti3SiC2纳米粒子的陶瓷先驱体中8h,对应地分别得到具有介电性能、电导性能和介电性能的三种电磁性能的纤维织物。
步骤(5),根据多层吸波复合材料结构设计,通过将步骤(4)制得的三种性能的纤维织物进行多层铺层叠加,以混合SiO2、碳纳米管、Ti3SiC2的顺序从上到下依次叠放成预制体置于模具中,再将其置于模具中,在压力4MPa,温度220℃,热压2h条件下完成热压固化。
步骤(6),将步骤(5)固化后的复合材料再次浸渍于黏度为200cP的聚碳硅烷陶瓷先驱体中6h,之后在800℃高温真空下保持2h完成裂解。
步骤(7),按照步骤(6)的方法采用黏度200cP的聚碳硅烷陶瓷先驱体对复合材料进行浸渍-裂解的循环操作,直到复合材料增重为1wt%,完成致密化,制备出多层吸波陶瓷基复合材料。
经分析,实施例3最终制备的吸波陶瓷基复合材料为介电性能、电导性能、介电性能组合的多层结构,反射率8~18GHz≤-4dB,最大吸波峰值为-9dB。
实施例4
请参照图1和图2所示,实施例3提供了一种多层吸波陶瓷基复合材料的制备方法,该制备方法至少包括以下步骤(1)~步骤(7):
步骤(1),选取10层连续Al2O3纤维编织的平纹二维织物,在100℃真空烘箱中烘干1h,取出后置于800℃高温下真空处理0.5h除去纤维织物表面上的浆剂。
步骤(2),在经步骤(1)处理后的纤维织物表面通过沉积4h制备厚度为300nm的氮化硼界面层。
步骤(3),取黏度为50cP的聚硅硼氮烷陶瓷先驱体三份,通过球磨混合方式,分别将3wt%质量分数的Fe2O3纳米粒子、5wt%质量分数的SiO2纳米粒子以及10wt%质量分数的碳纳米管纳米粒子分散在前述的三份聚硅硼氮烷陶瓷先驱体中,因Fe2O3粒子的磁性、SiO2粒子的低介电性和碳纳米管粒子的导电性,使得混合先驱体分别具有磁损耗性能、低介电性能和高电导性能。
步骤(4),将步骤(2)制得的带有氮化硼界面层的3层纤维织物浸渍于步骤(3)制得的混合Fe2O3纳米粒子的陶瓷先驱体中8h,4层浸渍于混合SiO2纳米粒子的陶瓷先驱体中8h,其余3层浸渍于混合碳纳米管纳米粒子的陶瓷先驱体中8h,对应地分别得到具有磁性能、介电性能和电导性能的三种电磁性能的纤维织物。
步骤(5),根据多层吸波复合材料结构设计,通过将步骤(4)制得的三种性能的纤维织物进行多层铺层叠加,以混合Fe2O3、SiO2、碳纳米管的顺序从上到下依次叠放成预制体置于模具中,再将其置于模具中,在压力2MPa,温度150℃,热压1h条件下完成热压固化。
步骤(6),将步骤(5)固化后的复合材料再次浸渍于黏度为50cP的聚硅硼氮烷陶瓷先驱体中6h,之后在900℃高温真空下保持1h完成裂解。
步骤(7),按照步骤(6)的方法采用黏度50cP的聚硅硼氮烷陶瓷先驱体对复合材料进行浸渍-裂解的循环操作,直到复合材料增重为1wt%,完成致密化,制备多层吸波陶瓷基复合材料。
经分析,实施例4最终制备的吸波陶瓷基复合材料为磁性能、介电性能、电导性能组合的多层结构,反射率8~18GHz≤-7dB,最大吸波峰值为-15dB。
需要说明的是,本发明的方法中的电导纳米粒子可选择的种类包括但不限于碳纳米管、炭黑、石墨烯纳米粒子等;介电纳米粒子可选择的种类包括但不限于SiC、SiO2、Al2O3、Ti3SiC2纳米粒子等;磁性纳米粒子可选择的种类包括但不限于铁磁性金属粉末、铁氧体Fe2O3等。
以上所述仅为本申请的实施例而已,并不限制于本申请。在不脱离本发明的范围的情况下对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围内。

Claims (9)

1.一种多层吸波陶瓷基复合材料的制备方法,其特征在于,包括:
步骤(1),选取连续纤维编织的二维织物,在真空烘箱中烘干2~5h,取出后置于800~1000℃高温真空或惰性气氛处理0.5~1h除去纤维织物表面上的浆剂;
步骤(2),在经步骤(1)处理后的纤维织物表面制备氮化硼界面层,通过控制沉积时间使得氮化硼界面层厚度在100~1000nm;
步骤(3),取黏度为20~200cP的陶瓷先驱体,通过搅拌、球磨的混合方式将电磁纳米粒子分散在先驱体中,改变电磁纳米粒子的种类和含量,制得具有不同电磁性能的混合先驱体,以实现混合先驱体不同电磁性能的调控;
步骤(4),将步骤(2)制得的带有氮化硼界面层的纤维织物浸渍于步骤(3)制得的不同电磁性能的混合陶瓷先驱体中6~10h,得到不同电磁性能的纤维织物;
步骤(5),根据多层吸波复合材料结构设计,通过将步骤(4)制得的不同电磁性能的纤维织物进行多层铺层叠加,再将其置于模具中热压完成固化;
步骤(6),将步骤(5)固化后的复合材料再次浸渍于黏度为20~200cP的陶瓷先驱体中6~10h,之后在800~1200℃高温真空或惰性气氛下保持0.5~2h完成裂解;
步骤(7),按照步骤(6)的方法采用黏度20~200cP的陶瓷先驱体对复合材料进行浸渍-裂解的循环操作,直到复合材料增重小于2wt%,完成致密化,制备出多层吸波陶瓷基复合材料。
2.根据权利要求1所述的多层吸波陶瓷基复合材料的制备方法,其特征在于,所述步骤(1)中,所述连续纤维编织的二维织物采用吸波SiC纤维、透波SiC纤维、透波Si3N4纤维或透波Al2O3纤维的平纹或缎纹织物。
3.根据权利要求1所述的多层吸波陶瓷基复合材料的制备方法,其特征在于,所述步骤(3)、(6)、(7)中,所述陶瓷先驱体为采用适用浸渍裂解工艺的聚碳硅烷、聚硅氮烷或聚硅硼氮烷的陶瓷先驱体。
4.根据权利要求1所述的多层吸波陶瓷基复合材料的制备方法,其特征在于,所述步骤(3)中,所述电磁纳米粒子的种类包括电性能调节的电导纳米粒子、介电纳米粒子以及磁性能调节的磁性纳米粒子。
5.根据权利要求4所述的多层吸波陶瓷基复合材料的制备方法,其特征在于,所述电导纳米粒子包括碳纳米管、炭黑、石墨烯纳米粒子。
6.根据权利要求1所述的多层吸波陶瓷基复合材料的制备方法,其特征在于,所述介电纳米粒子包括SiC、SiO2、Al2O3、Ti3SiC2纳米粒子。
7.根据权利要求4所述的多层吸波陶瓷基复合材料的制备方法,其特征在于,所述磁性能调节的磁性纳米粒子包括铁磁性金属粉末、铁氧体Fe2O3
8.根据权利要求1所述的多层吸波陶瓷基复合材料的制备方法,其特征在于,所述步骤(3)中,所述电磁纳米粒子在所述混合先驱体中的含量范围在1wt%~20wt%。
9.根据权利要求1所述的多层吸波陶瓷基复合材料的制备方法,其特征在于,在所述步骤(5)中,所述多层吸波复合材料结构设计采用磁性能层、介电性能层、电导性能层的不同电磁性能的纤维织物实现多种组合设计。
CN202110366478.6A 2021-04-06 2021-04-06 一种多层吸波陶瓷基复合材料的制备方法 Pending CN113185299A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110366478.6A CN113185299A (zh) 2021-04-06 2021-04-06 一种多层吸波陶瓷基复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110366478.6A CN113185299A (zh) 2021-04-06 2021-04-06 一种多层吸波陶瓷基复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN113185299A true CN113185299A (zh) 2021-07-30

Family

ID=76974749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110366478.6A Pending CN113185299A (zh) 2021-04-06 2021-04-06 一种多层吸波陶瓷基复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN113185299A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113526973A (zh) * 2021-09-07 2021-10-22 中国人民解放军国防科技大学 一种具有双界面相的透波陶瓷基复合材料及其制备方法
CN114113245A (zh) * 2021-11-26 2022-03-01 航天特种材料及工艺技术研究所 一种聚硅硼氮烷裂解产物的介电性能测试试样及其制备方法和测试方法
CN114262235A (zh) * 2021-12-22 2022-04-01 成都成维精密机械制造有限公司 一种快速填充连续纤维增强陶瓷基复合材料的致密化方法及陶瓷基复合材料
CN114315393A (zh) * 2022-01-28 2022-04-12 淄博硅华陶瓷科技有限公司 一种碳纤维耐高温涂层及其涂覆工艺
CN115417685A (zh) * 2022-09-27 2022-12-02 西北工业大学 一种具备电磁波吸收性能的SiC/Si3N4复合物及其制备方法
CN115490529A (zh) * 2022-09-16 2022-12-20 江苏华中新材料有限公司 一种具有电磁阻抗渐变集体的陶瓷基复合材料
CN116606148A (zh) * 2023-05-12 2023-08-18 西北工业大学 一种三维梯度周期结构陶瓷基复合材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037662A (ja) * 2000-07-27 2002-02-06 Japan Science & Technology Corp 準構造SiC−フェライト系セラミックス複合型電磁波吸収体
CN102180695A (zh) * 2011-03-04 2011-09-14 中国人民解放军国防科学技术大学 碳化硅复合材料的吸波陶瓷及其制备方法
CN102211938A (zh) * 2011-03-07 2011-10-12 中国人民解放军国防科学技术大学 一种碳化硅复合材料的吸波陶瓷及其制备方法
CN103923601A (zh) * 2013-12-20 2014-07-16 西北工业大学 结构/吸波一体化复合材料的制备方法
CN104261850A (zh) * 2014-09-10 2015-01-07 航天材料及工艺研究所 一种耐高温透波氮化硅纤维增强复合材料及其制备方法
CN107556011A (zh) * 2017-08-23 2018-01-09 中国建筑材料科学研究总院 SiCf/SiC复合材料及其制备方法
CN111592371A (zh) * 2020-06-06 2020-08-28 上海大学 一种钛硅碳界面改性SiCf/SiC吸波复合材料及其制备方法
CN112436286A (zh) * 2020-11-12 2021-03-02 军事科学院系统工程研究院军需工程技术研究所 一种频带可调的柔性多层吸波材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037662A (ja) * 2000-07-27 2002-02-06 Japan Science & Technology Corp 準構造SiC−フェライト系セラミックス複合型電磁波吸収体
CN102180695A (zh) * 2011-03-04 2011-09-14 中国人民解放军国防科学技术大学 碳化硅复合材料的吸波陶瓷及其制备方法
CN102211938A (zh) * 2011-03-07 2011-10-12 中国人民解放军国防科学技术大学 一种碳化硅复合材料的吸波陶瓷及其制备方法
CN103923601A (zh) * 2013-12-20 2014-07-16 西北工业大学 结构/吸波一体化复合材料的制备方法
CN104261850A (zh) * 2014-09-10 2015-01-07 航天材料及工艺研究所 一种耐高温透波氮化硅纤维增强复合材料及其制备方法
CN107556011A (zh) * 2017-08-23 2018-01-09 中国建筑材料科学研究总院 SiCf/SiC复合材料及其制备方法
CN111592371A (zh) * 2020-06-06 2020-08-28 上海大学 一种钛硅碳界面改性SiCf/SiC吸波复合材料及其制备方法
CN112436286A (zh) * 2020-11-12 2021-03-02 军事科学院系统工程研究院军需工程技术研究所 一种频带可调的柔性多层吸波材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘海韬等: "不同碳黑填料含量2D-SiC_f/SiC复合材料介电及雷达吸波性能研究", 《航空材料学报》 *
张拦等: "双层结构型吸波复合材料的制备与吸波性能研究", 《材料导报》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113526973A (zh) * 2021-09-07 2021-10-22 中国人民解放军国防科技大学 一种具有双界面相的透波陶瓷基复合材料及其制备方法
CN113526973B (zh) * 2021-09-07 2021-11-16 中国人民解放军国防科技大学 一种具有双界面相的透波陶瓷基复合材料及其制备方法
CN114113245A (zh) * 2021-11-26 2022-03-01 航天特种材料及工艺技术研究所 一种聚硅硼氮烷裂解产物的介电性能测试试样及其制备方法和测试方法
CN114113245B (zh) * 2021-11-26 2023-11-21 航天特种材料及工艺技术研究所 一种聚硅硼氮烷裂解产物的介电性能测试试样及其制备方法和测试方法
CN114262235A (zh) * 2021-12-22 2022-04-01 成都成维精密机械制造有限公司 一种快速填充连续纤维增强陶瓷基复合材料的致密化方法及陶瓷基复合材料
CN114315393A (zh) * 2022-01-28 2022-04-12 淄博硅华陶瓷科技有限公司 一种碳纤维耐高温涂层及其涂覆工艺
CN114315393B (zh) * 2022-01-28 2023-03-10 淄博硅华陶瓷科技有限公司 一种碳纤维耐高温涂层及其涂覆工艺
CN115490529A (zh) * 2022-09-16 2022-12-20 江苏华中新材料有限公司 一种具有电磁阻抗渐变集体的陶瓷基复合材料
CN115417685A (zh) * 2022-09-27 2022-12-02 西北工业大学 一种具备电磁波吸收性能的SiC/Si3N4复合物及其制备方法
CN115417685B (zh) * 2022-09-27 2023-08-25 西北工业大学 一种具备电磁波吸收性能的SiC/Si3N4复合物及其制备方法
CN116606148A (zh) * 2023-05-12 2023-08-18 西北工业大学 一种三维梯度周期结构陶瓷基复合材料及其制备方法

Similar Documents

Publication Publication Date Title
CN113185299A (zh) 一种多层吸波陶瓷基复合材料的制备方法
Tang et al. Three-dimensional nitrogen-doped reduced graphene oxide aerogel decorated with Ni nanoparticles with tunable and unique microwave absorption
CN112876273B (zh) 一种耐高温吸波结构一体化陶瓷基复合材料及其制备方法
Xin et al. Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding
Shah et al. Enhanced microwave absorption by arrayed carbon fibers and gradient dispersion of Fe nanoparticles in epoxy resin composites
WO2022007377A1 (zh) 一种混编纤维预制体增强的复合材料及其制备方法
EP1911990A2 (en) Carbon-carbon friction material with improved wear life
CN115108844B (zh) 一种梯度自适应碳纤维/石英纤维复合增强金属磷酸盐基复合材料及其制备方法
CN107698271A (zh) 耐高温高强韧性氮化硅基透波复合材料及制备方法
Luo et al. Dielectric properties of Cf–Si3N4 sandwich composites prepared by gelcasting
CN112341229B (zh) 一种梯度C/ZrC-SiC超高温陶瓷基复合材料及其制备方法
CN113773098B (zh) 一种高电磁波屏蔽碳化硅陶瓷基复合材料及其制备方法
US11891338B2 (en) Ceramic composite material
CN113896555A (zh) 一种颗粒增强的纤维编织复合材料及其制备方法
CN116082060B (zh) 一种具有取向微孔的梯度吸波复合陶瓷超材料及制备方法
Duan et al. Electromagnetic interference shielding and mechanical properties of Si3N4–SiOC composites fabricated by 3D-printing combined with polymer infiltration and pyrolysis
RU2744611C2 (ru) Получение композиционных материалов с керамической матрицей, содержащих углеродные нанотрубки и графен
Bu et al. Enhanced antioxidation and microwave absorbing properties of SiC/SiO 2 coating on carbon fiber
KR101993453B1 (ko) 미세패턴 인쇄를 통한 복합재료의 유전율 제어 방법
小谷政規 et al. Fabrication and oxidation-resistance property of allylhydridopolycarbosilane-derived SiC/SiC composites
Zhou et al. Gradient carbonyl-iron/carbon-fiber reinforced composite metamaterial for ultra-broadband electromagnetic wave absorption by multi-scale integrated design
Ha et al. Feasibility of as-prepared reticulated porous barium titanate without additional radar-absorbing material coating in potential military applications
Wen et al. Investigation on electromagnetic wave absorption of SiCw/Si3N4 composites exposed to short-time oxidation
Ha et al. A cobalt-coated reticulated porous alumina for radar-absorption applications
Zhu et al. Nanoparticles‐doped polymer‐derived SiCN ceramic with enhanced mechanical properties and electromagnetic wave absorption

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210730

RJ01 Rejection of invention patent application after publication