CN113185280A - 一种高Qf微波介质材料制备方法 - Google Patents

一种高Qf微波介质材料制备方法 Download PDF

Info

Publication number
CN113185280A
CN113185280A CN202110461576.8A CN202110461576A CN113185280A CN 113185280 A CN113185280 A CN 113185280A CN 202110461576 A CN202110461576 A CN 202110461576A CN 113185280 A CN113185280 A CN 113185280A
Authority
CN
China
Prior art keywords
parts
microwave dielectric
strontium titanate
sintering
dielectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110461576.8A
Other languages
English (en)
Other versions
CN113185280B (zh
Inventor
杜正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Haixiang Electronic Technology Co ltd
Original Assignee
Sichuan Haixiang Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Haixiang Electronic Technology Co ltd filed Critical Sichuan Haixiang Electronic Technology Co ltd
Priority to CN202110461576.8A priority Critical patent/CN113185280B/zh
Publication of CN113185280A publication Critical patent/CN113185280A/zh
Application granted granted Critical
Publication of CN113185280B publication Critical patent/CN113185280B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高Qf微波介质材料制备方法,包括钛酸锶合成步骤、钛酸锶改性步骤及烧结步骤;其中,钛酸锶合成步骤具体包括如下步骤:S101:按重量称取二氧化钛28‑32份、碳酸锶68‑72份以及水75‑85份;S102:将称取的物料放置在球磨机中充分研磨,研磨时间为1.5‑2.5h;S103:将经过研磨后的混合物料放入不锈钢盘中在烘箱内150‑170℃及一个标准大气压条件下烘干1.5‑2.5h,控制含水量低于2%;S104:将烘干后的物料过70‑90目筛,然后放入莫来石刚玉匣钵,在1250‑1270℃条件下烧结2小时,并自然降温至室温即可合成钛酸锶;通过该方法制备的微波介质材料具有生产成本低,烧结温度低,工艺稳定的优点,在实际的使用中能够实现大规模生产的目的。

Description

一种高Qf微波介质材料制备方法
技术领域
本发明涉及一种信息功能材料技术领域,具体涉及一种高Qf微波介质材料制备方法。
背景技术
微波介质陶瓷是实现微波波导、屏蔽和谐振的关键材料,具有低损耗、高介电常数、高谐振频率稳定性等优点,为微波技术的迅速发展提供了重要的材料支撑。微波技术中的振荡器、谐振器、滤波器、移相器、微波基板以及微波天线等元器件广泛采用微波介质陶瓷。其中,介质谐振功能是采用微波介质陶瓷实现的主要功能,采用微波介质陶瓷制作的介质谐振器具有很多优点,比如体积小、重量轻以及损耗小等,相应地可以实现微波技术设备的小型化、轻便化以及高品质化。
随着微波技术的快速发展,微波介质陶瓷在新兴领域的应用持续涌现,如全球定位系统、无线局域网、数字电视以及第五代移动通信等。因此,微波介质陶瓷方兴未艾,其发展前景仍然非常广阔。目前,微型化、低损耗化、高稳定性、片式化和低成本化是微波介质陶瓷元器件的发展方向,也是介质谐振器的发展方向,而器件的发展离不开高性能微波介质材料的支撑。
在现有微波通讯中,对介电数为30的高Qf材料主要有钛酸镁体系、钡钛钐体系、钽钡锌系、钡钛镧体系,但是,钛酸镁体系的介电系数低,一般只有20-25;钡钛镧体系Qf值低,一般小于50000,钡钛钐体系的温度系数大,其大于10个ppm;钽钡锌系中钽为贵金属,生产成本很高,无法实现工业化生产。四种体系均不能实现均衡发展,其指标不能全部达到要求,缺乏竞争优势,不能进行大规模生产。
发明内容
本发明的目的在于提供一种高Qf微波介质材料制备方法,通过该方法制备的微波介质材料具有生产成本低,烧结温度低,工艺稳定的优点,在实际的使用中能够实现大规模生产的目的。
为解决上述技术问题,本发明所采用的技术方案是:
一种高Qf微波介质材料制备方法,包括钛酸锶合成步骤、钛酸锶改性步骤及烧结步骤;
其中,钛酸锶合成步骤具体包括如下步骤:
S101:按重量称取二氧化钛28-32份、碳酸锶68-72份以及水75-85份;
S102:将称取的物料放置在球磨机中充分研磨,研磨时间为1.5-2.5h;
S103:将经过研磨后的混合物料放入不锈钢盘中在烘箱内150-170℃及一个标准大气压条件下烘干1.5-2.5h,控制含水量低于2%;
S104:将烘干后的物料过70-90目筛,然后放入莫来石刚玉匣钵,在1250-1270℃条件下烧结2小时,并自然降温至室温即可合成钛酸锶;
钛酸锶改性步骤具体包括如下步骤:
S201:称取二氧化钛45-65份,氧化镧30-45份,钛酸锶15-30份,将上述三者原料混合后加入水后放入球磨机中研磨2-3h,其中,料与水的比值为:1:0.8;
S202:研磨完进行烘干及过筛,并放入莫来石刚玉匣钵在1200℃烧结2h,合成钛酸锶改性后的钛酸镧基础烧块。
进一步优化,烧结步骤为将S202步骤得到的钛酸镧础烧块加入重量比0.1-1.2%的二氧化硅,0.5-1.8%的二氧化锰,1-3%的氧化锌,80%水,加入星型球磨机磨1h后放入不锈钢盘中烘干,直到瓷料的水分小于1%后,按每100克加入浓度为15%的PVA(聚乙希醇)胶20克过筛造粒,用2T/cm2的压制机压制成直径0.5-1.5cm,厚度,1-1.5cm的圆柱,并在1300-1350℃烧制2-3小时,自然降温到室温即可。
进一步优化,S103中烘烤温度为160℃。
其中,S104中使用80目过筛。
其中,S104中烧结温度为1200℃。
进一步限定,S101中二氧化钛纯度99.3%,碳酸锶的纯度98.6%。
与现有技术相比,本发明具有以下有益效果:
本发明通过合成钛酸锶,然后将合成的钛酸锶进行改性,最后进行烧结来实现高Qf微波介质材料的制备,在制备的过程中对各组分原料进行精确的配比、以及对个各工艺流程中的温度进行控制;通过本发明制备的微波介质材料其介电系数达30;Qf值大于60000;温度系数小于3ppm,烧结温度小于1340℃,使得三个主要指标都达到了要求。
因烧结温度低,才使生产陶瓷滤波器时避免产生开裂、变形等工艺问题;高的Qf值可以使滤波器的性能更好,达到使用要求。
本发明有生产成本低,烧结温度低,工艺稳定的优点,在实际的使用中能够实现大规模生产的目的。
具体实施方式
下面结合实施例对本发明作进一步的描述,所描述的实施例仅仅是本发明一部分实施例,并不是全部的实施例。基于本发明中的实施例,本领域的普通技术人员在没有做出创造性劳动前提下所获得的其他所用实施例,都属于本发明的保护范围。
实施例一
本发明公开了一种高Qf微波介质材料制备方法,包括钛酸锶合成步骤、钛酸锶改性步骤及烧结步骤;
其中,钛酸锶合成步骤具体包括如下步骤:
S101:按重量称取二氧化钛28-32份、碳酸锶68-72份以及水75-85份;
S102:将称取的物料放置在球磨机中充分研磨,研磨时间为1.5-2.5h;
S103:将经过研磨后的混合物料放入不锈钢盘中在烘箱内150-170℃及一个标准大气压条件下烘干1.5-2.5h,控制含水量低于2%;
S104:将烘干后的物料过70-90目筛,然后放入莫来石刚玉匣钵,在1250-1270℃条件下烧结2小时,并自然降温至室温即可合成钛酸锶;
钛酸锶改性步骤具体包括如下步骤:
S201:称取二氧化钛45-65份,氧化镧30-45份,钛酸锶15-30份,将上述三者原料混合后加入水后放入球磨机中研磨2-3h,其中,料与水的比值为:1:0.8;
S202:研磨完进行烘干及过筛,并放入莫来石刚玉匣钵在1200℃烧结2h,合成钛酸锶改性后的钛酸镧基础烧块。
其中,烧结步骤为将S202步骤得到的钛酸镧础烧块加入重量比0.1-1.2%的二氧化硅,0.5-1.8%的二氧化锰,1-3%的氧化锌,80%水,加入星型球磨机磨1h后放入不锈钢盘中烘干,直到瓷料的水分小于1%后,按每100克加入浓度为15%的PVA(聚乙希醇)胶20克过筛造粒,用2T/cm2的压制机压制成直径压制成直径0.5-1.5cm,厚度,1-1.5cm的圆柱,并在1300-1350℃烧制2-3小时,自然降温到室温即可。
进一步优化,SS103中烘烤温度为160℃。
其中,S104中使用80目过筛。
进一步优化,S104中烧结温度为1200℃。
其中,S101中二氧化钛纯度99.3%,碳酸锶的纯度98.6%;原材料的纯度对产品的性能起作很关键的作用,材料杂质可能恶化产品的性能。
为了进一步阐述本发明,下面结合具体的实施例来对本发明做进一步阐述。
第一步,钛酸锶合成:按重量比二氧化钛28-32克,碳酸锶68-72克,水80克,配比称重,放入球磨机中,球磨时间为2小时,放入不锈钢盘中,在烘箱中控制温度在150-170℃、一个大气压下两小时烘干,将物料中的含水率控制在低于2%,过80目筛,加入莫来石刚玉匣钵,1260度烧结2小时,自然降温到室温,即可合成好钛酸锶;
将含水率控制在低于2%,能够使得在后续的操作更加容易,工艺的一致性容易保证。
其中,需要说明的是二氧化钛纯度99.3%,碳酸锶的纯度98.6%。
需要说明的时,在本实施例中,按重量比二氧化钛30克,碳酸锶70克,水80克;
第二步,钛酸锶改性钛酸镧,按重量称取二氧化钛45-65克、氧化镧30-45克、钛酸锶15-30克,其中,二氧化钛纯度99.3%,氧化镧纯度99.5%,混合后,按物料:水=1:0.8加入球磨机磨2小时放出,在烘箱中控制温度在150-170℃、一个大气压下两小时烘干,过80目筛,加入莫来石刚玉匣钵,1200°烧结2小时,合成钛酸锶改性后的钛酸镧基础烧块;
杂质是结材料的性能有很大的影响的,所以纯度要有大于99.3%和99.5%。采用上述料水比例,能够使得料水混合更加均匀,避免出现浪费能源的情况。
其中,烘烤温度优选160℃;
在本实施例中,二氧化钛50克、氧化镧40克、钛酸锶20克;
第三步,参杂钛酸锶改性后的钛酸镧烧块:将合成好的烧块加入重量比0.1-1.2%的二氧化硅,0.5-1.8%的二氧化锰,1-3%的氧化锌,80%水,加入星型球磨机磨1小时后放入不锈钢盘中烘干,在烘箱中控制温度在150-170℃、一个大气压下两小时烘干,直到瓷料的水分小于1%后,按每100克加入浓度为15%的PVA(聚乙希醇)胶20克过筛造粒,用2T/cm2的压制机压制成直径压制成直径1cm,厚度,1.2cm的圆柱,1320℃烧制2小时自然降温到室温,24小时后对材料进行测试,测试方法包括谐振法及网络分析仪测试法。
通过使用浓度为15%的PVA(聚乙希醇)胶在造粒过程中能够使得瓷料(物料)能够快速结团,提高结团造粒的效果。15%的浓度能够保证材料能够顺利成型,避免出现无法造粒的情况。
通过上述方法制备的高Qf微波介质材料其基本结构为:La0.85Sr0.15)Ti4O12+AO,其中AO为氧化硅,二氧化锰或其他助溶氧化物。
在实际的使用中通过旧配方制备钽钡锌系,与本采用本发明制备的钛酸锶改性钛酸镧体系两者在性能上的比较如下表所述:
Figure BDA0003042484020000061
Figure BDA0003042484020000071
通过本发明制备的微波介质材料其介电系数达30;Qf值大于60000;温度系数小于3ppm,烧结温度小于1340℃,因为使用的本发明的改性性烧块和与之相配助溶氧化物,使得烧结温度低,使得三个主要指标都达到了要求。同时,本发明制备的微波介质材料介电系数在29-31之间,其误差值更小,产品的质量更加统一。
同时,本发明有生产成本低,烧结温度低,工艺稳定的优点,在实际的使用中能够实现大规模生产的目的。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,应当指出的是,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种高Qf微波介质材料制备方法,其特征在于:包括钛酸锶合成步骤、钛酸锶改性步骤及烧结步骤;
其中,钛酸锶合成步骤具体包括如下步骤:
S101:按重量称取二氧化钛28-32份、碳酸锶68-72份以及水75-85份;
S102:将称取的物料放置在球磨机中充分研磨,研磨时间为1.5-2.5h;
S103:将经过研磨后的混合物料放入不锈钢盘中在烘箱内150-170℃及一个标准大气压条件下烘干1.5-2.5h,控制含水量低于2%;
S104:将烘干后的物料过70-90目筛,然后放入莫来石刚玉匣钵,在1250-1270℃条件下烧结2小时,并自然降温至室温即可合成钛酸锶;
钛酸锶改性步骤具体包括如下步骤:
S201:称取二氧化钛45-65份,氧化镧30-45份,钛酸锶15-30份,将上述三者原料混合后加入水后放入球磨机中研磨2-3h,其中,料与水的比值为:1:0.8;
S202:研磨完进行烘干及过筛,并放入莫来石刚玉匣钵在1200℃烧结2h,合成钛酸锶改性后的钛酸镧基础烧块。
2.根据权利要求1所述的一种高Qf微波介质材料制备方法,其特征在于:烧结步骤为将S202步骤得到的钛酸镧础烧块加入重量比0.1-1.2%的二氧化硅,0.5-1.8%的二氧化锰,1-3%的氧化锌,80%水,加入星型球磨机磨1h后放入不锈钢盘中烘干,直到瓷料的水分小于1%后进行过筛造粒,并压制成直径0.5-1.5cm,厚度,1-1.5cm的圆柱,并在1300-1350℃烧制2-3小时,自然降温到室温即可。
3.根据权利要求1所述的一种高Qf微波介质材料制备方法,其特征在于:SS103中烘烤温度为160℃。
4.根据权利要求1所述的一种高Qf微波介质材料制备方法,其特征在于:S104中使用80目过筛。
5.根据权利要求1所述的一种高Qf微波介质材料制备方法,其特征在于:S104中烧结温度为1200℃。
6.根据权利要求1所述的一种高Qf微波介质材料制备方法,其特征在于:S101中二氧化钛纯度99.3%,碳酸锶的纯度98.6%。
CN202110461576.8A 2021-04-27 2021-04-27 一种高Qf微波介质材料制备方法 Active CN113185280B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110461576.8A CN113185280B (zh) 2021-04-27 2021-04-27 一种高Qf微波介质材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110461576.8A CN113185280B (zh) 2021-04-27 2021-04-27 一种高Qf微波介质材料制备方法

Publications (2)

Publication Number Publication Date
CN113185280A true CN113185280A (zh) 2021-07-30
CN113185280B CN113185280B (zh) 2022-06-28

Family

ID=76979590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110461576.8A Active CN113185280B (zh) 2021-04-27 2021-04-27 一种高Qf微波介质材料制备方法

Country Status (1)

Country Link
CN (1) CN113185280B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1029539A (en) * 1963-12-18 1966-05-11 Ass Elect Ind Improvements relating to ceramic dielectrics
EP0375518A1 (fr) * 1988-12-23 1990-06-27 Compagnie Europeenne De Composants Electroniques Lcc Composition céramique diélectrique à haute permittivité et à stabilité élevée, et condensateur l'utilisant
US20040009863A1 (en) * 2002-01-28 2004-01-15 Kyocera Corporation Dielectric ceramic composition and dielectric ceramics
US20100328844A1 (en) * 2009-06-30 2010-12-30 Murata Manufacturing Co., Ltd. Dielectric ceramic and manufacturing method therefor and laminated ceramic capacitor
US20140256530A1 (en) * 2011-11-24 2014-09-11 Schott Ag Glass-ceramic as dielectric in the high-frequency range
CN105272216A (zh) * 2015-10-13 2016-01-27 中国人民解放军空军工程大学 可重构超材料全介质频率选择表面的设计方法
CN105601271A (zh) * 2016-01-13 2016-05-25 南京攀思特电子科技有限公司 一种中介电常数的微波介质陶瓷及其制备方法
CN107117958A (zh) * 2017-05-10 2017-09-01 蚌埠市嘉实机电设备制造有限公司 一种钛酸锶压敏陶瓷的制备工艺
CN108439973A (zh) * 2018-01-17 2018-08-24 天津大学 一种高q值高介电常数微波介质陶瓷材料及其制备方法
CN110676050A (zh) * 2019-10-30 2020-01-10 四川特锐祥科技股份有限公司 一种陶瓷电容器
CN111517758A (zh) * 2019-02-03 2020-08-11 苏州艾福电子通讯股份有限公司 一种微波介质陶瓷粉及其制备方法、及其应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1029539A (en) * 1963-12-18 1966-05-11 Ass Elect Ind Improvements relating to ceramic dielectrics
EP0375518A1 (fr) * 1988-12-23 1990-06-27 Compagnie Europeenne De Composants Electroniques Lcc Composition céramique diélectrique à haute permittivité et à stabilité élevée, et condensateur l'utilisant
US20040009863A1 (en) * 2002-01-28 2004-01-15 Kyocera Corporation Dielectric ceramic composition and dielectric ceramics
US20100328844A1 (en) * 2009-06-30 2010-12-30 Murata Manufacturing Co., Ltd. Dielectric ceramic and manufacturing method therefor and laminated ceramic capacitor
US20140256530A1 (en) * 2011-11-24 2014-09-11 Schott Ag Glass-ceramic as dielectric in the high-frequency range
CN105272216A (zh) * 2015-10-13 2016-01-27 中国人民解放军空军工程大学 可重构超材料全介质频率选择表面的设计方法
CN105601271A (zh) * 2016-01-13 2016-05-25 南京攀思特电子科技有限公司 一种中介电常数的微波介质陶瓷及其制备方法
CN107117958A (zh) * 2017-05-10 2017-09-01 蚌埠市嘉实机电设备制造有限公司 一种钛酸锶压敏陶瓷的制备工艺
CN108439973A (zh) * 2018-01-17 2018-08-24 天津大学 一种高q值高介电常数微波介质陶瓷材料及其制备方法
CN111517758A (zh) * 2019-02-03 2020-08-11 苏州艾福电子通讯股份有限公司 一种微波介质陶瓷粉及其制备方法、及其应用
CN110676050A (zh) * 2019-10-30 2020-01-10 四川特锐祥科技股份有限公司 一种陶瓷电容器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHRISTOPHER J. HOWARD: "Crystal structures and phase transition in the system SrTiO3–La2/3TiO3", 《JOURNAL OF SOLID STATE CHEMISTRY》 *
EBUBE E. OYEKA: "Synthesis of Stoichiometric SrTiO3 and Its Carrier Doping from Air-Stable Bimetallic Complexes", 《INORGANIC CHEMISTRY》 *
M.E.BOWDEN: "Determination of layer structure in Sr1-xLaxTiO3+0.5x (0<x<1)compounds by high-resolution electron microscopy", 《JOURNAL OF SOLID STATE CHEMISTRY》 *
施哲: "电子陶瓷粉体材料制备方法与国内发展动态", 《昆明理工大学学报》 *

Also Published As

Publication number Publication date
CN113185280B (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
CN101260001A (zh) 新型高q微波介质陶瓷材料及其制备方法
CN110092655B (zh) 一种钡钐钛系低损耗微波介质陶瓷及其制备方法
CN110818406A (zh) 一种高q值低温烧结的微波介质陶瓷及其制备方法
CN112552034A (zh) 低损耗低介电常数的温度稳定型微波介质陶瓷及制备方法
CN105000877A (zh) 一种高品质因数温度稳定型微波介质材料及其制备方法
CN105036741A (zh) 一种高品质因数微波介质陶瓷材料及其制备方法
CN110540420A (zh) 一种低烧结温度低介微波介质陶瓷及其制备方法
CN111943671A (zh) 一种宽烧结温区低损耗微波介质陶瓷及其制备方法
CN111517771A (zh) 一种微波介质陶瓷材料及其制备方法
CN113735580B (zh) 一种复相微波介质陶瓷及其冷烧结制备方法
CN102491744A (zh) 一种低损耗微波介质陶瓷及其制备方法
CN113185280B (zh) 一种高Qf微波介质材料制备方法
CN107253856A (zh) 一种近零谐振频率温度系数的微波介质材料及其制备方法
CN110746183A (zh) 一种中温烧结的温度稳定型微波介质陶瓷及其制备方法
CN103214244A (zh) 一种微波介质陶瓷及其制备方法
CN113956033B (zh) 一种中介高q值微波介质陶瓷及其制备方法
CN106866143B (zh) 微波复相陶瓷AWO4-TiO2及其制备方法
CN112573914B (zh) 低温烧结温度稳定型介质波导用微波介质陶瓷及制备方法
CN105294103B (zh) 一种钒基温度稳定型微波介质陶瓷及其制备方法
CN112500153A (zh) 一种温度系数可调低损耗介电常数微波介质陶瓷及其制备方法
CN104844208A (zh) 一种制备LiZnNbO4低温共烧LTCC微波介质陶瓷材料的方法
CN110627480A (zh) MgO-Al2O3-GeO2三元体系微波介质材料的制备方法
CN116969760B (zh) 一种Ca-Sm-Al-Ti基微波介质陶瓷材料及其制备方法
CN104944938A (zh) 一种中低烧结温度的微波介质陶瓷及其制备方法
CN112250436B (zh) 一种陶瓷材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant