CN113184894A - 一种硫化银和硫化钴的一维异质纳米材料及制备方法 - Google Patents

一种硫化银和硫化钴的一维异质纳米材料及制备方法 Download PDF

Info

Publication number
CN113184894A
CN113184894A CN202110499538.1A CN202110499538A CN113184894A CN 113184894 A CN113184894 A CN 113184894A CN 202110499538 A CN202110499538 A CN 202110499538A CN 113184894 A CN113184894 A CN 113184894A
Authority
CN
China
Prior art keywords
sulfide
cobalt
silver
dimensional heterogeneous
nano material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110499538.1A
Other languages
English (en)
Inventor
蔡婧
王成
陈威
刘佩丰
吕珺
汪嘉恒
鲍智勇
吴玉程
魏思雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202110499538.1A priority Critical patent/CN113184894A/zh
Publication of CN113184894A publication Critical patent/CN113184894A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G5/00Compounds of silver
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/30Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及硫化银和硫化钴的一维异质纳米材料,属于纳米材料制备技术领域。本发明一维异质纳米材料可作为电极材料用于能量存储与转换装置中,或作为磁性材料应用于磁性器件中。一维异质纳米材料的结构式为Ag2S‑CoS,一维异质纳米材料为纳米线状;当二丁基二硫代氨基甲酸银和二丁基二硫代氨基甲酸钴的质量比为1:1时,在2mol/L的氢氧化钾溶液中,当放电电流密度为1A/g时,质量比电容为600~640F/g;在放电电流密度10A/g下,质量比电容480~500F/g。本发明制备操作是:将二丁基二硫代氨基甲酸银和二丁基二硫代氨基甲酸钴溶解于溶剂中,制得前驱体的分散液;在空气条件下,升温、保温,制得硫化银和硫化钴的一维异质纳米材料。本发明的制备工艺性好,产物环境友好。

Description

一种硫化银和硫化钴的一维异质纳米材料及制备方法
技术领域
本发明属于纳米材料制备技术领域,具体涉及一种尺寸分布均匀且可调控的硫化银和硫化钴的一维异质纳米结构的制备方法。
背景技术
在纳米材料领域,单一组分的纳米材料越来越难满足人们对高性能材料日益增长的需求,因此拓展新颖的纳米材料体系迫在眉睫。一维异质纳米结构可以结合不同组分及异质结界面的优势,在能源转换与存储、催化、光电器件材料的开发方面尤为重要。钴基硫化物的化学组成丰富、价态以及晶体形态多样化,且相较于相应氧化物,硫元素的电负性低,因而拥有更高的反应活性和导电性、更好的热稳定性和机械性能,在能源存储与转化装置中如电化学电容器、锂离子电池、燃料电池催化剂和染料敏化太阳能电池被广泛研究。钴基硫化物的电化学活性与其形貌、尺寸和微观结构密切相关,因而近年来对钴基硫化物的研究主要集中在对其形貌与微观结构设计、界面调控以及复合材料制备等方面。目前,一系列过渡金属杂化物如镍-钴、铁-钴、锰-钴硫化物被制备并广泛研究,但是对于银-钴硫化物体系的研究较少。已报道的银-钴硫化物一维异质纳米结构的制备方法为水热法或真空热分解的方法,如采用水热法制备银和硫化钴异质纳米结构,采用真空热分解法制备硫化银和硫化钴异质纳米结构,但这些方法制备的材料可控度不高,简易的合成硫化银和硫化钴一维异质纳米结构工艺仍亟待开发。
基于此,本发明在空气状态下通过热解分子骨架结构类似的二丁基二硫代氨基甲酸银和二丁基二硫代氨基甲酸钴分别作银和钴的前驱体,制备硫化银和硫化钴的一维异质纳米结构,为构建能源转换与存储以及光电器件提供一种新材料。
发明内容
解决了背景技术中关于硫化银和硫化钴的一维异质纳米结构制备困难的问题,本发明提供了一种硫化银和硫化钴的一维异质纳米材料,同时提供硫化银和硫化钴的一维异质纳米材料的制备方法。
一种硫化银和硫化钴的一维异质纳米材料的结构式为Ag2S-CoS,所述一维异质纳米材料为纳米线状;当二丁基二硫代氨基甲酸银和二丁基二硫代氨基甲酸钴的质量比为1:1时,在2mol/L的氢氧化钾(KOH)溶液中,当放电电流密度为1A/g时,质量比电容为600~640F/g;在放电电流密度10A/g下,质量比电容480~500F/g。
所述纳米线状为火柴状的纳米线,其中火柴的头部为硫化银(Ag2S)纳米颗粒,纳米颗粒直径为10~20nm,火柴的杆部为硫化钴(CoS)纳米线,纳米线的直径为10~20nm,长度为20~400nm。
一维异质纳米材料的制备操作步骤如下:
(1)制备前驱体的分散液
在8~10mL溶剂中加入0.10~0.20g 二丁基二硫代氨基甲酸银(Ag(ddtc))和0.10~0.80g二丁基二硫代氨基甲酸钴(Co(ddtc)2),搅拌均匀,得到前驱体的分散液;
所述溶剂为体积比为1:1的十二胺和十二硫醇的混合液;
(2)制备硫化银和硫化钴的一维异质纳米材料
在空气条件下,升温至150~170 ℃,保温30~60 min,得到硫化银和硫化钴的一维异质纳米材料。
步骤(2)中,升温反应结束,用乙醇离心洗涤5次,干燥。
本发明的有益技术效果体现在以下方面:
1. 本发明硫化银和硫化钴的一维异质纳米材料的长度可通过调节二丁基二硫代氨基甲酸银(Ag(ddtc))和二丁基二硫代氨基甲酸钴(Co(ddtc)2)前驱体的比例,实现调节。硫化银和硫化钴的一维异质纳米材料为火柴杆状的结构,头部为硫化银纳米颗粒,茎部为硫化钴纳米线。反应过程可描述为:二丁基二硫代氨基甲酸银(Ag(ddtc))首先分解形成硫化银纳米颗粒,然后该纳米颗粒作为催化剂,二丁基二硫代氨基甲酸钴(Co(ddtc)2)前驱体在硫化银催化剂表面解离、溶解,析出一维纳米结构。因此,当固定二丁基二硫代氨基甲酸银(Ag(ddtc))的用量,增加二丁基二硫代氨基甲酸钴(Co(ddtc)2)前驱体的用量时,硫化钴纳米线的长度变得越来越长。
2. 本发明制备工艺采用的原料简单,空气状态即可合成,工艺可控性好,产物质量优,有利于硫化银-硫化钴一维异质纳米结构的批量生产及产业化。
附图说明
图1是实施例1制得的硫化银/硫化钴一维异质纳米结构的X射线衍射(XRD)。
图2是实施例1制得的硫化银/硫化钴一维异质纳米结构的扫描电子显微镜(SEM)图。
图3是实施例1制得的硫化银/硫化钴一维异质纳米结构在不同放电电流密度下的容量变化图。
图4是实施例2制得的硫化银/硫化钴一维异质纳米结构的XRD图。
图5是实施例2制得的硫化银/硫化钴一维异质纳米结构的SEM图。
图6是实施例3制得的硫化银/硫化钴一维异质纳米结构的HRTEM图。
具体实施方式
下面结合实施例,对本发明作进一步地描述。
实施例1
一种硫化银和硫化钴的一维异质纳米材料的制备操作步骤如下:
(1)制备前驱体的混合液
在圆底烧瓶中,加入8mL混合液、0.20g二丁基二硫代氨基甲酸银(Ag(ddtc))和0.20g二丁基二硫代氨基甲酸钴(Co(ddtc)2);搅拌均匀,得到前驱体的混合液;
混合液由5 mL十二胺和5 mL十二硫醇的混合均匀制成。
(2)制备硫化银和硫化钴的一维异质纳米材料
将前驱体的混合液快速升温至160℃,反应1 h;用乙醇离心洗涤5次,干燥,得到硫化银和硫化钴的一维异质纳米材料。
一维异质纳米材料的结构式为Ag2S-CoS,且为火柴状纳米线,其中火柴的头部为硫化银(Ag2S)纳米颗粒,纳米颗粒直径为15nm,火柴的杆部为硫化钴(CoS)纳米线,纳米线的直径为12~18nm,长度为20~50nm。
由图1可见,本实施例1制得的产物XRD谱图中特征衍射峰对应单斜相的硫化银(PDF:14-0072)和六方相的硫化钴组成(PDF:76-0605)。
由图2可见,实施例1制得的产物结构为较短的纳米线,纳米线呈火柴状。
由图3可见,产物在放电电流密度1A/g下,容量可达到640F/g;在放电电流密度10A/g下,容量为500F/g,性能较优。
实施例2
制备其他组成的硫化银/硫化钴一维异质纳米结构
(1)在圆底烧瓶中,8mL混合液、0.20g二丁基二硫代氨基甲酸银(Ag(ddtc))和0.40g二丁基二硫代氨基甲酸钴(Co(ddtc)2);
混合液同实施例1。
(2)搅拌均匀,并快速升温至160℃,反应1 h;将产物采用乙醇离心洗涤5次,干燥,得到硫化银和硫化钴的一维异质纳米结构。
由图4可见,产物XRD谱图中特征衍射峰对应单斜相的硫化银(PDF:14-0072)和六方相的硫化钴组成(PDF:76-0605),且与实施例1制得的产物XRD相比,六方相的硫化钴的衍射峰的强度明显增加。
由图5可见,产物SEM图可见产物结构为火柴状的纳米线,且与图2相比,纳米线的长度随着二丁基二硫代氨基甲酸钴(Co(ddtc)2)前体的加入量增加而增加;火柴头部的大小基本不变,杆部变得越来越长。
实施例3
制备其他组成的硫化银/硫化钴一维异质纳米结构
(1)在圆底烧瓶中,10mL混合液、0.10g二丁基二硫代氨基甲酸银(Ag(ddtc))和0.40g二丁基二硫代氨基甲酸钴(Co(ddtc)2);
混合液同实施例1。
(2)搅拌均匀,并快速升温至160℃,反应1 h;将产物采用乙醇离心洗涤5次,干燥,得到硫化银和硫化钴的一维异质纳米结构。
由图6可见,产物的HRTEM谱图表明火柴状纳米线的头部为单斜相的硫化银纳米颗粒,见图6中的a,b,杆部为六方相的硫化钴纳米线,见图6中的a,b。

Claims (4)

1.一种硫化银和硫化钴的一维异质纳米材料,其特征在于:所述一维异质纳米材料的结构式为Ag2S-CoS,一维异质纳米材料为纳米线状;当二丁基二硫代氨基甲酸银和二丁基二硫代氨基甲酸钴的质量比为1:1时,在2mol/L的氢氧化钾溶液中,当放电电流密度为1A/g时,质量比电容为600~640F/g;在放电电流密度10A/g下,质量比电容480~500F/g。
2.根据权利要求1所述的一种硫化银和硫化钴的一维异质纳米材料,其特征在于:所述一维异质纳米材料为火柴状纳米线,其中火柴的头部为硫化银纳米颗粒,纳米颗粒直径为10~20nm,火柴的杆部为硫化钴纳米线,纳米线的直径为10~20nm,长度为20~400nm。
3.根据权利要求1所述的一种硫化银和硫化钴的一维异质纳米材料的制备方法,其特征在于操作步骤如下:
(1)制备前驱体的分散液
在8~10mL溶剂中加入0.10~0.20g二丁基二硫代氨基甲酸银和0.10~0.80g二丁基二硫代氨基甲酸钴,搅拌均匀,得到前驱体的分散液;
所述溶剂为体积比为1:1的十二胺和十二硫醇的混合液;
(2)制备硫化银和硫化钴的一维异质纳米材料
在空气条件下,升温至150~170 ℃,保温30~60 min,得到硫化银和硫化钴的一维异质纳米材料。
4.根据权利要求3所述的制备方法,其特征在于:步骤(2)中,升温反应结束,用乙醇离心洗涤5次,干燥。
CN202110499538.1A 2021-05-08 2021-05-08 一种硫化银和硫化钴的一维异质纳米材料及制备方法 Pending CN113184894A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110499538.1A CN113184894A (zh) 2021-05-08 2021-05-08 一种硫化银和硫化钴的一维异质纳米材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110499538.1A CN113184894A (zh) 2021-05-08 2021-05-08 一种硫化银和硫化钴的一维异质纳米材料及制备方法

Publications (1)

Publication Number Publication Date
CN113184894A true CN113184894A (zh) 2021-07-30

Family

ID=76984397

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110499538.1A Pending CN113184894A (zh) 2021-05-08 2021-05-08 一种硫化银和硫化钴的一维异质纳米材料及制备方法

Country Status (1)

Country Link
CN (1) CN113184894A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102814185A (zh) * 2011-07-21 2012-12-12 温州大学 一种硫化银-硫化锌半导体纳米异质结的制备方法
CN103212426A (zh) * 2013-03-25 2013-07-24 温州大学 一种纳米异质结及其制备方法
CN105110303A (zh) * 2015-07-23 2015-12-02 中国科学技术大学 一种纳米线及其制备方法
CN107349938A (zh) * 2017-09-06 2017-11-17 北京邮电大学 一种硫化镍‑硫化镉纳米线异质结构及其制备方法
CN111362321A (zh) * 2020-04-10 2020-07-03 浙江大学 一种金属硫化物的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102814185A (zh) * 2011-07-21 2012-12-12 温州大学 一种硫化银-硫化锌半导体纳米异质结的制备方法
CN103212426A (zh) * 2013-03-25 2013-07-24 温州大学 一种纳米异质结及其制备方法
CN105110303A (zh) * 2015-07-23 2015-12-02 中国科学技术大学 一种纳米线及其制备方法
CN107349938A (zh) * 2017-09-06 2017-11-17 北京邮电大学 一种硫化镍‑硫化镉纳米线异质结构及其制备方法
CN111362321A (zh) * 2020-04-10 2020-07-03 浙江大学 一种金属硫化物的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHANGSOO LEE ET AL.: "Ag2S-CoS hetero-nanowires terminated with stepped surfaces for improved oxygen evolution reaction", 《CATALYSIS COMMUNICATIONS》 *
CHANGSOO LEE ET AL.: "Ag2S-CoS hetero-nanowires terminated with stepped surfaces for improved oxygen evolution reaction", 《CATALYSIS COMMUNICATIONS》, vol. 129, 2 July 2019 (2019-07-02), pages 105749, XP085777561, DOI: 10.1016/j.catcom.2019.105749 *
SHIQING CHENG ET AL.: "CoS nanowires mediated by superionic conductor Ag2S for boosted oxygen evolution", 《APPLIED SURFACE SCIENCE》 *
SHIQING CHENG ET AL.: "CoS nanowires mediated by superionic conductor Ag2S for boosted oxygen evolution", 《APPLIED SURFACE SCIENCE》, vol. 518, 18 March 2020 (2020-03-18), pages 146106, XP086149088, DOI: 10.1016/j.apsusc.2020.146106 *

Similar Documents

Publication Publication Date Title
Kumar et al. Facile and fast microwave-assisted formation of reduced graphene oxide-wrapped manganese cobaltite ternary hybrids as improved supercapacitor electrode material
CN107954483B (zh) 一种α相氢氧化镍超薄纳米片及其制备方法
CN110444413B (zh) 一种双金属纳米氢氧化物与氧化物复合物的制备方法
US8110173B2 (en) Fabrication of NIO nanoparticles and chip-like nanoflakes by solvothermal technique
Guo et al. Sandwich-like porous MXene/Ni3S4/CuS derived from MOFs as superior supercapacitor electrode
Wang et al. Application of MOFs-derived mixed metal oxides in energy storage
CN107099880B (zh) 一种氧化钴镍/二氧化锡复合纳米管及其制备方法和用途
CN110976901A (zh) 一种纳米铜粉的制备方法
CN113745009B (zh) 二元纳米复合材料Co3S4/NiCo2S4的制备方法及其应用于超级电容器电极
CN112691691A (zh) 改性ZIFs衍生Co-N-C-MT/EA催化剂的制备方法
CN111129468A (zh) 一种一维金属氧化物/碳化物复合材料及其制备方法
CN108598399B (zh) 一种氧化钴/氧化钼分级异质结构纳米片及其制备方法
Pan et al. Application of transition metal (Ni, Co and Zn) oxides based electrode materials for ion-batteries and supercapacitors
Jiang et al. 2D coordination polymer-derived CoSe 2–NiSe 2/CN nanosheets: the dual-phase synergistic effect and ultrathin structure to enhance the hydrogen evolution reaction
Pang et al. Synthesis of functional nanomaterials for electrochemical energy storage
Munawar et al. Surfactant-assisted facile synthesis of petal-nanoparticle interconnected nanoflower like NiO nanostructure for supercapacitor electrodes material
CN113428890B (zh) 一种二级结构CuS中空球、制备方法及其应用
CN113594427B (zh) 一种MoS2-MoP量子点@碳复合钠离子电池负极材料及其制备方法
CN111105935A (zh) 一种一维金属氧化物/碳化物复合材料及其制备方法
CN111804313B (zh) Fe2O3@Co9S8双中空核壳结构纳米复合材料制备方法及其应用
CN111362316B (zh) 一种非晶硫化钴纳米线及其制备方法
CN111199834B (zh) 一种硫化钴/多层石墨烯复合材料及其制备方法
Tuo et al. An efficient and stable coral-like CoFeS 2 for wearable flexible all-solid-state asymmetric supercapacitor applications
CN113184894A (zh) 一种硫化银和硫化钴的一维异质纳米材料及制备方法
CN111383848A (zh) 一种超级电容器用石墨烯-CoNi2S4纳米复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210730

RJ01 Rejection of invention patent application after publication