CN113178497A - Ultraviolet detector based on quantum dots and manufacturing method - Google Patents

Ultraviolet detector based on quantum dots and manufacturing method Download PDF

Info

Publication number
CN113178497A
CN113178497A CN202110453125.XA CN202110453125A CN113178497A CN 113178497 A CN113178497 A CN 113178497A CN 202110453125 A CN202110453125 A CN 202110453125A CN 113178497 A CN113178497 A CN 113178497A
Authority
CN
China
Prior art keywords
quantum dot
concave lens
film
photodiode
plano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110453125.XA
Other languages
Chinese (zh)
Other versions
CN113178497B (en
Inventor
张家雨
周祥燕
项文斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202110453125.XA priority Critical patent/CN113178497B/en
Publication of CN113178497A publication Critical patent/CN113178497A/en
Application granted granted Critical
Publication of CN113178497B publication Critical patent/CN113178497B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type
    • H01L31/1055Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type the devices comprising amorphous materials of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System

Abstract

The invention discloses an ultraviolet detector based on quantum dots and a manufacturing method thereof. The ultraviolet detector based on the quantum dots provided by the invention can realize the cutoff of visible light through the short-pass film, can realize the conversion from ultraviolet light to visible light by utilizing the fluorescence down-conversion characteristic of the quantum dots, further realizes the detection of the ultraviolet light, and has the characteristics of low cost, high responsivity and low dark current.

Description

Ultraviolet detector based on quantum dots and manufacturing method
Technical Field
The invention relates to an ultraviolet detector based on quantum dots and a manufacturing method thereof, belonging to the technical field of photoelectric detection.
Background
The photoelectric detector is a device for converting non-conductive charges into conductive charges under the action of light radiation, and the detection technology of visible light is mature, but ultraviolet light with high frequency and large single photon energy is easier to absorb and is difficult to directly detect.
Common ultraviolet detectors may be classified into a photoconductive type, a schottky type, a metal-semiconductor-metal (MSM) type, a metal-insulator-semiconductor (MIS) type, a PN type, a PIN type, and the like.
Two electrodes in the photoconductive detector form ohmic contact with a semiconductor film, the conductivity emission of the semiconductor film changes under the irradiation of incident light, the detection performance of the device mainly depends on the photoresistance characteristic of a semiconductor, and the device has the characteristics of high responsivity, slow response speed and poor signal-to-noise ratio. The Schottky type photoelectric detector is based on a Schottky barrier at an interface of an electrode and a semiconductor material, is a Schottky diode, and has the characteristics of high response speed, low dark current and low photoresponse gain.
The MSM type structure is improved on the basis of a schottky junction type detector and is composed of two back-to-back metal-semiconductor contacts. The MSM structure photodetector generally has very fast responsivity and high sensitivity. In addition, the symmetrical electrode structure can well reduce parasitic junction capacitance of the Schottky junction, and the optical corresponding performance of the device can be changed by changing the parameters of the interdigital structure, including the width, the distance, the length and the like of the electrodes, so that the device obtains larger optical response gain.
The PN junction type photodiode is different from a schottky type in that a PN junction type is a minority carrier device in which minority carrier transmission is dominant, and since the minority carrier concentration is low, the change of photogenerated carriers to the minority carrier concentration is often in magnitude, a PN junction detector generally has high detection sensitivity and a high signal-to-noise ratio. But the PN junction photodiode has poor high frequency response characteristics due to the charge storage effect in the minority device.
The PIN photodetector is grown on a PN junction structure, and is prepared by interposing an insulating layer i between p-type and n-type semiconductors. The PIN type structure increases the width of a depletion region, photogenerated carriers are rapidly scanned to electrodes on two sides by a strong electric field due to the existence of an i layer, the collection efficiency of photogenerated electrons is increased, and the PIN type structure has higher sensitivity and photoresponse than a PN junction type structure.
In summary, photodetectors of different structures exhibit large performance differences, and the device structure is selected according to the required detection performance and application environment.
The use of fluorescent materials to convert ultraviolet light, which is not readily detected directly, into visible light has been studied for half a century to achieve detection of ultraviolet light. The available fluorescent materials are proved by scientific researches to be sodium salicylate, tetraphenyl-butadiene and the like, but the organic materials have poor stability and are easy to sublimate, and a protective film needs to be plated on the surface of the organic materials, so that the photosensitive effect of the detector can be reduced. The quantum dot belongs to one of nano fluorescent materials, and the application research of the quantum dot in ultraviolet detection is relatively less, but the application of a quantum dot film in a solar cell is a big hot spot in the field of nano materials in recent years based on the fluorescence down-conversion characteristic of the quantum dot. In addition, the commonly used ultraviolet detector is based on semiconductor materials with large forbidden band width, such as SiC materials, GaN materials, AlGaN materials, ZnO materials and diamond materials.
Disclosure of Invention
The technical problem is as follows: the invention aims to provide an ultraviolet detector based on quantum dots and a manufacturing method thereof.
The technical scheme is as follows: in order to achieve the purpose, the invention adopts the following technical scheme:
the ultraviolet detector comprises a packaging shell, a quartz plano-concave lens, a short through film, a quantum dot film and a photodiode, wherein the packaging shell is arranged on the photodiode, the quartz plano-concave lens is arranged in a light through hole of the packaging shell, the short through film is uniformly deposited on the concave surface of the quartz plano-concave lens, and the quantum dot film is uniformly coated on the short through film.
Furthermore, the short-pass film is a multilayer film structure formed by alternately plating a high-refractive-index material and a low-refractive-index material.
Further, the high-refractive-index material adopts HfO2Said low isThe refractive index material adopts SiO2
Furthermore, the quantum dot film is a film prepared by mixing the doped quantum dots and the film forming agent PMMA.
Further, the doped quantum dots are ZnCdS/Mn/ZnCdS/ZnS thick shell quantum dots.
A manufacturing method of an ultraviolet detector based on quantum dots comprises the following steps:
step S1, preparation of a photodiode: the photodiode is a back-illuminated PIN photodiode working in a visible light band;
s2, preparing a quartz plano-concave lens: the quartz plano-concave lens is a plano-concave lens, the plane of the plano-concave lens faces the light source, and the concave surface of the plano-concave lens faces the detector;
s3, preparing a packaging shell: the quartz plano-concave lens is fixed on the photodiode by the packaging shell, the size of a light through hole of the packaging shell needs to be matched with that of the quartz plano-concave lens, the position of the light through hole is in the center of a photosensitive surface of the photodiode, and the quartz plano-concave lens is attached to the surface of the photodiode;
s4, preparing a short-pass membrane: the short-pass film adopts HfO which can be transparent in ultraviolet band2As high refractive index material, SiO2As a low refractive index material, the material is alternately plated on the concave surface of the quartz plano-concave lens;
s5, preparing the quantum dot film: the method comprises the steps of mixing Mn/ZnCdS/ZnS thick shell quantum dots with a film forming agent PMMA, performing ultrasonic treatment to obtain a solution, coating the solution on a short-pass film, and drying to obtain the quantum dot film capable of converting ultraviolet light into visible light.
Further, in the step S4, the short-pass film is plated on the concave surface of the quartz plano-concave lens by using physical vapor deposition.
Further, in step S5, the quantum dots are grown by an alternating ion layer adsorption method, wherein the quantum dot core portion is grown by a co-nucleation method.
Has the advantages that: compared with the prior art, the invention has the following beneficial effects:
the photodiode used by the invention is a PIN diode working in a visible light wave band, so that the invention has the advantages of low dark current, high response speed and the like of the PIN diode; meanwhile, the ultraviolet light is converted into the visible light, and the responsivity of the photodiode in the visible light band is high, so that the ultraviolet light-emitting diode has high responsivity in the ultraviolet band.
Drawings
FIG. 1 is a block diagram of an ultraviolet detector based on quantum dot fluorescence down-conversion in accordance with an embodiment of the present invention.
Description of reference numerals:
the device comprises a packaging shell 1, a quartz plano-concave lens 2, a short-pass film 3, a quantum dot film 4 and a photodiode 5.
Detailed Description
The present invention will be described in further detail with reference to the accompanying drawings and examples. It is to be understood that the specific embodiments described herein are merely illustrative of the invention and are not limiting of the invention.
The invention provides an ultraviolet detector based on quantum dots and a manufacturing method thereof, wherein the ultraviolet detector based on quantum dots is shown in figure 1 and comprises a packaging shell 1, a quartz plano-concave lens 2, a short-pass film 3, a quantum dot film 4 and a photodiode 5, wherein the packaging shell 1 is arranged on the photodiode 5, the quartz plano-concave lens 2 is arranged in a light-passing hole of the packaging shell 1, the short-pass film 3 is deposited on the concave surface of the quartz plano-concave lens 2, and the quantum dot film 4 is coated on the short-pass film 3. The photodiode 5 adopts a traditional PIN diode made of silicon-based materials, visible light in incident light is cut off through the short-pass film 3, the ultraviolet light is converted into visible light through the quantum dot film 4, the advantage of high responsivity of the PIN diode in the visible light part is fully utilized, the dominant detection waveband is transferred to the ultraviolet waveband, and high responsivity detection in the ultraviolet waveband is realized.
The short-pass film 3 is a multilayer film structure formed by alternately plating high-refractive-index materials and low-refractive-index materials, and adopts HfO which can be transparent in an ultraviolet band2、SiO2As high and low refractive index materials.
The photodiode 5 is a PIN photodiode operating in the visible band.
The quantum dot film 4 is a film prepared by mixing doped quantum dots and a film forming agent, namely polymethyl methacrylate (PMMA);
the doped quantum dots are ZnCdS/Mn/ZnCdS/ZnS thick shell quantum dots, the ZnCdS/Mn/ZnCdS/ZnS thick shell quantum dots are a green and nontoxic semiconductor material, the performance is stable, a single fluorescence peak position is arranged in a sensitive region of a PIN diode at about 570nm, an absorption spectrum is before 400nm, the absorption spectrum corresponds to an insensitive region of the PIN diode, and the visible light part cannot excite the fluorescence of the quantum dots.
Stokes shift is the difference between the strongest wavelengths in the absorption and emission spectra of the same electronic transition and is a physical constant that characterizes the luminescence of a molecule. The quantum dots are manganese-doped quantum dots, and the wide-bandgap semiconductor material is coated, so that larger stokes shift can be generated, the self-absorption of the quantum dots is effectively avoided, and the spectrum conversion efficiency is higher.
The preparation method of the doped quantum dots adopts an alternating ion layer adsorption method. To increase Mn in the quantum dot core2+The doping proportion of the quantum dot is increased to improve the quantum yield, and a co-nucleation method is adopted to grow the quantum dot core. Compared with the common alternating ion layer adsorption method, the quantum dots grown by the co-nucleation doping method have improved quantum yield.
Since the quantum dots used in the present invention convert uv light into visible light and then are absorbed by the diode, the operating band of the diode must include the visible band. In this embodiment, the PIN diode is a photodiode of the type LSSPD-10 of the beijing-sensitive optical technology, which is a photovoltaic detector sensitive in the visible and infrared bands and having a detection responsivity of approximately 0 in the ultraviolet part.
The invention provides a manufacturing method of an ultraviolet detector based on quantum dots, which comprises the following steps:
step s1. preparation of the photodiode 5:
the photodiode 5 is a back-illuminated PIN photodiode working in a visible light band;
step S2, preparation of the quartz plano-concave lens 2:
the quartz plano-concave lens 2 is a plano-concave lens, the plane of the plano-concave lens faces the light source, the concave surface of the plano-concave lens faces the detector, and the clear aperture of the quartz plano-concave lens 2 is smaller than the photosensitive surface of the photodiode 5;
step S3, preparation of the packaging shell 1:
the packaging shell 1 has the function that the quartz plano-concave lens 2 is fixed on the photodiode 5, the size of a light through hole of the packaging shell 1 needs to be matched with that of the quartz plano-concave lens 2, the position of the light through hole is in the center of a light sensing surface of the photodiode 5, and the quartz plano-concave lens 2 is attached to the surface of the photodiode 5;
s4, preparing a short-pass membrane 3:
the short-pass film 3 is plated on the concave surface of the quartz plano-concave lens 2 by using a physical vapor deposition method, and the short-pass film 3 adopts HfO which can be transparent in an ultraviolet band2As a high refractive index material, SiO2The low-refractive-index material is alternatively plated on the concave surface of the substrate, namely the quartz plano-concave lens 2, and preparation parameters such as the temperature, the deposition speed, the vacuum degree and the like of the substrate are controlled to be adjusted to optimal parameters. Theoretically, thicker multilayer films have higher performance, but in actual plating, the thicker the plated film layer is, the higher the deviation is, the performance of the short-pass film is reduced, the preparation process and the performance of the short-pass film are balanced, and the plating period is preferably 5-6;
s5, preparing the quantum dot film 4:
when the quantum dot film 4 is prepared, the purified quantum dots are dissolved in a toluene solution and mixed with a film forming agent PMMA solution dissolved in toluene, the solution is applied to the short-pass film 3 after ultrasonic treatment, and the quantum dot film 4 capable of converting ultraviolet light into visible light is obtained after drying.
The embodiments of the present invention are not described in detail, which belongs to the known technology in the field, and can be implemented by referring to the known technology.
The above-mentioned specific implementation is a specific support for the technical ideas of the quantum dot fluorescence down-conversion-based ultraviolet detector and the manufacturing method thereof, and the protection scope of the present invention is not limited thereby, and any equivalent changes or equivalent modifications made on the basis of the technical scheme according to the technical ideas presented by the present invention belong to the protection scope of the technical scheme of the present invention.

Claims (8)

1. The utility model provides an ultraviolet detector based on quantum dot, its characterized in that, ultraviolet detector is including encapsulation shell (1), quartzy plano-concave lens (2), short logical membrane (3), quantum dot membrane (4), photodiode (5), wherein encapsulation shell (1) is placed in on photodiode (5), quartzy plano-concave lens (2) are placed in the logical unthreaded hole of encapsulation shell (1), short logical membrane (3) evenly deposit is in the concave surface of quartzy plano-concave lens (2), quantum dot membrane (4) evenly coats on short logical membrane (3).
2. A quantum dot based uv detector according to claim 1, wherein the short-pass film (3) is a multilayer film structure with alternating layers of high and low refractive index materials.
3. The quantum dot-based ultraviolet detector as claimed in claim 2, wherein the high refractive index material is HfO2The low refractive index material adopts SiO2
4. The ultraviolet detector based on quantum dots according to claim 1, characterized in that the quantum dot film (4) is a thin film made of doped quantum dots mixed with a film forming agent PMMA.
5. The quantum dot-based ultraviolet detector according to claim 4, wherein the doped quantum dots are ZnCdS: Mn/ZnCdS/ZnS thick shell quantum dots.
6. A method of fabricating a quantum dot based uv detector according to claim 1, comprising the steps of:
step S1, preparation of a photodiode (5): the photodiode (5) is a back-illuminated PIN photodiode working in a visible light wave band;
s2, preparing the quartz plano-concave lens (2): the quartz plano-concave lens (2) is a plano-concave lens, the plane faces to the light source, and the concave surface faces to the detector;
s3, preparing a packaging shell (1): the quartz plano-concave lens (2) is fixed on the photodiode (5) by the packaging shell (1), the size of a light through hole of the packaging shell (1) needs to be matched with that of the quartz plano-concave lens (2), the position of the light through hole is in the center of a light sensing surface of the photodiode (5), and the quartz plano-concave lens (2) is attached to the surface of the photodiode (5);
s4, preparing a short-pass membrane (3): the short-pass film (3) adopts HfO which can be transparent in ultraviolet band2As high refractive index material, SiO2As a low refractive index material, the material is alternately plated on the concave surface of the quartz plano-concave lens (2);
s5, preparing the quantum dot film (4): the method comprises the steps of mixing Mn/ZnCdS/ZnS thick shell quantum dots with a film forming agent PMMA, performing ultrasonic treatment to obtain a solution, coating the solution on a short-pass film (3), and drying to obtain a quantum dot film (4) for converting ultraviolet light into visible light.
7. The method for manufacturing the quantum dot based ultraviolet detector as claimed in claim 6, wherein in the step S4, the short-pass film (3) is plated on the concave surface of the quartz plano-concave lens (2) by physical vapor deposition.
8. The method of claim 6, wherein in step S5, the quantum dots are grown by an alternating ionic layer adsorption method, and the quantum dot core part is grown by a co-nucleation method.
CN202110453125.XA 2021-04-26 2021-04-26 Ultraviolet detector based on quantum dots and manufacturing method Active CN113178497B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110453125.XA CN113178497B (en) 2021-04-26 2021-04-26 Ultraviolet detector based on quantum dots and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110453125.XA CN113178497B (en) 2021-04-26 2021-04-26 Ultraviolet detector based on quantum dots and manufacturing method

Publications (2)

Publication Number Publication Date
CN113178497A true CN113178497A (en) 2021-07-27
CN113178497B CN113178497B (en) 2022-11-01

Family

ID=76926143

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110453125.XA Active CN113178497B (en) 2021-04-26 2021-04-26 Ultraviolet detector based on quantum dots and manufacturing method

Country Status (1)

Country Link
CN (1) CN113178497B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023829A (en) * 2021-10-13 2022-02-08 淮阴工学院 Ultraviolet band response improved silicon photodiode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105372801A (en) * 2015-11-25 2016-03-02 北京环境特性研究所 Solar blind ultraviolet optical lens and system
CN105589123A (en) * 2016-03-03 2016-05-18 舜宇光学(中山)有限公司 Infrared and ultraviolet cutoff filtering film structure for large curvature lens surface and manufacture method thereof
CN105895594A (en) * 2015-02-13 2016-08-24 台医光电科技股份有限公司 Optical sensing module, optical sensing accessory, and optical sensing device
CN106549076A (en) * 2016-11-04 2017-03-29 北京理工大学 A kind of quantum dot light emitting thin film strengthens ultraviolet imagery detector
CN108123008A (en) * 2017-12-04 2018-06-05 东南大学 A kind of ultraviolet detection system and method based on doped quantum dot wavelength convert
CN109935608A (en) * 2019-03-04 2019-06-25 东南大学 A kind of day blind ultraviolet detection structure and preparation method thereof introducing quantum dot

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895594A (en) * 2015-02-13 2016-08-24 台医光电科技股份有限公司 Optical sensing module, optical sensing accessory, and optical sensing device
CN105372801A (en) * 2015-11-25 2016-03-02 北京环境特性研究所 Solar blind ultraviolet optical lens and system
CN105589123A (en) * 2016-03-03 2016-05-18 舜宇光学(中山)有限公司 Infrared and ultraviolet cutoff filtering film structure for large curvature lens surface and manufacture method thereof
CN106549076A (en) * 2016-11-04 2017-03-29 北京理工大学 A kind of quantum dot light emitting thin film strengthens ultraviolet imagery detector
CN108123008A (en) * 2017-12-04 2018-06-05 东南大学 A kind of ultraviolet detection system and method based on doped quantum dot wavelength convert
CN109935608A (en) * 2019-03-04 2019-06-25 东南大学 A kind of day blind ultraviolet detection structure and preparation method thereof introducing quantum dot

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
袁玉芬: "掺杂量子点的光频转换性质及其在紫外探测上的应用研究", 《中国优秀博硕士学位论文全文数据库 (硕士) 《中国优秀博硕士学位论文全文数据库 (硕士) 信息科技辑》》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023829A (en) * 2021-10-13 2022-02-08 淮阴工学院 Ultraviolet band response improved silicon photodiode

Also Published As

Publication number Publication date
CN113178497B (en) 2022-11-01

Similar Documents

Publication Publication Date Title
CN108281554B (en) Photoelectric detector with quantum dot structure and preparation method thereof
KR100877817B1 (en) Solar Cell of High Efficiency and Process for Preparation of the Same
JP2002111031A (en) Solid hetero junction and solid sensitization (photosensitive) photovoltaic cell
CN102187469B (en) Electromagnetic radiation converter and a battery
KR20080086753A (en) Backside surface passivation and reflection layer for si solar cell by high-k dielectrics
Wang et al. Organic-inorganic hybrid Sn-based perovskite photodetectors with high external quantum efficiencies and wide spectral responses from 300 to 1000 nm
CN105720197A (en) Self-driven wide-spectral-response silicon-based hybrid heterojunction photoelectric sensor and preparation method therefor
CN108878576B (en) Gallium oxide-based ultraviolet detector
CN111952384B (en) Photoelectric detector and preparation method thereof
Zhang et al. n-ZnO/p-Si 3D heterojunction solar cells in Si holey arrays
CN109256471A (en) A kind of unleaded full-inorganic perovskite caesium bismuth iodine film/n-type silicon heterojunction photoelectric detector and preparation method thereof
WO2014101601A1 (en) Photoelectric detector and manufacturing method therefor, and radiation detector
CN113178497B (en) Ultraviolet detector based on quantum dots and manufacturing method
CN111211186A (en) MoS for improving photoelectric detection performance2Phototransistor and method of manufacturing the same
CN111863981A (en) Gallium oxide solar blind photoelectric detector and preparation method thereof
CN111863979B (en) Gallium oxide photoelectric detector and preparation method thereof
CN111710734B (en) Gallium oxide photoelectric detector and preparation method thereof
CN114709279A (en) Ultraviolet detector chip with inverted structure
US20120180855A1 (en) Photovoltaic devices and methods of forming the same
CN210182399U (en) Spin coating on MoS by using gold particles2Photoelectric detector of/graphite alkene
Devi et al. Internal versus external quantum efficiency of luminescent materials, photovoltaic cells, photodetectors and photoelectrocatalysis
CN110828670A (en) Multiplication type organic photoelectric detector based on AIE material and preparation method
CN117219689B (en) Method for improving performance of MXene heterojunction photoelectric detector through doping
CN211455704U (en) Silicon-based array laminated solar cell
KR102546927B1 (en) Self-powered Transparent Photodetector and Manufacturing Method Thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant