CN113151302B - 白菜B型响应调节因子基因BrRR12及其应用 - Google Patents

白菜B型响应调节因子基因BrRR12及其应用 Download PDF

Info

Publication number
CN113151302B
CN113151302B CN202110557914.8A CN202110557914A CN113151302B CN 113151302 B CN113151302 B CN 113151302B CN 202110557914 A CN202110557914 A CN 202110557914A CN 113151302 B CN113151302 B CN 113151302B
Authority
CN
China
Prior art keywords
brrr12
regulatory factor
type response
cabbage
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110557914.8A
Other languages
English (en)
Other versions
CN113151302A (zh
Inventor
余小林
周芳园
孔李俊
章艺
宋建伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Dimode Biological Seed Industry Technology Co ltd
Zhejiang University ZJU
Original Assignee
Wuxi Dimode Biological Seed Industry Technology Co ltd
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Dimode Biological Seed Industry Technology Co ltd, Zhejiang University ZJU filed Critical Wuxi Dimode Biological Seed Industry Technology Co ltd
Priority to CN202110557914.8A priority Critical patent/CN113151302B/zh
Publication of CN113151302A publication Critical patent/CN113151302A/zh
Application granted granted Critical
Publication of CN113151302B publication Critical patent/CN113151302B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/827Flower development or morphology, e.g. flowering promoting factor [FPF]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明提供了白菜B型响应调节因子基因BrRR12及其应用,属于植物基因工程技术领域。所述白菜B型响应调节因子基因BrRR12的DNA序列如SEQ ID No.1所示。通过农杆菌浸花转化法将该基因转化至哥伦比亚型拟南芥中,得到BrRR12异源表达拟南芥株系,结果发现,白菜B型响应调节因子基因BrRR12的异源表达会导致拟南芥开花时间推迟、初生根的根长显著变短。这表明白菜B型响应调节因子基因BrRR12在开花时间调控及初生根发育方面发挥重要的调控作用,可将该基因应用于白菜类蔬菜及其他园艺植物育种,具有良好的应用前景。

Description

白菜B型响应调节因子基因BrRR12及其应用
技术领域
本发明属于植物基因工程技术领域,具体的说,白菜B型响应调节因子基因BrRR12、其编码蛋白及其在植物育种过程中的应用。
背景技术
白菜(Brassica rapa L.syn.B.campestris L.)属十字花科芸薹属芸薹种作物,营养丰富,并且对低温的抵抗能力很强,在生产上具有极高的经济价值。其中,结球白菜和小白菜是我国栽培面积和消费量最大的蔬菜作物。且其与同为十字花科的模式植物拟南芥有较近的亲缘关系,在植物基础科学中也有重要研究意义。不同作物产品器官不一样,按食用部位可以分别根菜类、茎菜类、叶菜类、花菜类和果菜类,白菜为重要的叶菜类蔬菜,其中芜菁也是重要的根菜类蔬菜。植物的初生根是根系的基本组成部分,对植物早期的生长和存活至关重要,并且也可以是重要的产品器官。植物的开花时间涉及植物的生殖发育,同时也与营养器官的发育和根的膨大密切相关。
细胞分裂素是一类重要的植物激素,涉及植物生长发育的方方面面,包括细胞分裂、芽的起始、光响应、根和茎的发育、分生组织活性的调控等等。植物中细胞分裂素的信号转导通过多步磷酸化途径感知和反应,类似于细菌中的双组分系统(TCS)。在拟南芥中,植物对细胞分裂素的即时早期响应主要是由组氨酸激酶(AHKs),组氨酸磷酸转移蛋白(AHPs),A型响应调节因子(Type-A ARRs),B型响应调节因子(Type-B ARRs)等形成的多步骤磷酸转移信号途径传导的。细胞分裂素受体组氨酸激酶感知信号,并磷酸化含有组氨酸的磷酸转移中间体(AHPs),磷酸化的AHPs进入细胞核,并将磷酸基团提供给B型响应调节因子(Type-B ARRs),磷酸化的B型ARRs作为转录激活因子,诱导下游细胞分裂素相关靶基因转录,最典型的就是A型响应调节因子(Type-A ARRs),A型响应调节因子累积可以通过某种方式负调节细胞分裂素信号转导。迄今为止,在很多植物中均发现了与拟南芥相似的TCS相关基因,但对白菜中B型响应调节因子的功能所知十分有限。
发明内容
本发明的目的是针对现有育种资源的不足,提供B型响应调节因子基因BrRR12功能和表达分析。
本发明提供了一种B型响应调节因子基因,该基因为:从大白菜‘Chiifu-401-42’克隆得到的基因,其具有:
1)SEQ ID No.1所示的核苷酸序列;或
2)SEQ ID No.1所示的核苷酸序列经取代、缺失和/或增加一个或几个核苷酸;
本发明提供了含有上述白菜B型响应调节因子基因BrRR12的生物材料,所述生物材料为表达载体,表达盒,宿主细胞或工程菌。
本发明提供了白菜B型响应调节因子基因BrRR12在调控开花时间及初生根发育中的应用,具体为:在植物中过表达或敲除白菜B型响应调节因子基因BrRR12从而调控开花时间及初生根发育,其中,过表达时植物的开花时间推迟,初生根的根长显著变短。
本发明提供了白菜B型响应调节因子基因BrRR12在制备转基因植物中的应用。
本发明提供的白菜B型响应调节因子基因BrRR12序列如SEQ ID No.1所示。通过农杆菌介导法将该基因导入拟南芥中,获得白菜B型响应调节因子基因BrRR12异源表达的转基因拟南芥株系,结果发现,白菜B型响应调节因子基因BrRR12的异源过表达会导致拟南芥开花时间推迟,初生根的根长显著变短。这表明白菜B型响应调节因子基因BrRR12与植物开花时间及初生根的发育关系密切,将该基因应用于白菜或其他十字花科蔬菜育种,具有良好的应用前景。
附图说明
图1为白菜B型响应调节因子基因BrRR12的CDS克隆PCR电泳图。其中M为DNAmarker,1泳道为目的片段扩增产物;
图2为BrRR12过表达载体、亚细胞定位载体示意图。(A)为BrRR12过表达载体示意图;(B)为BrRR12亚细胞定位载体示意图。
图3为BrRR12亚细胞定位结果。
图4为BrRR12异源表达拟南芥植株的筛选。其中A图为转基因拟南芥植株的PCR阳性检测。B图为BrRR12异源表达拟南芥植株的相对表达量检测。
图5为BrRR12异源表达植株与对照植株营养生长状况比较。(A-B)播种后4周的对照和BrRR12过表达植株。(C-D)播种后第7d的对照和BrRR12过表达植株T2代根系生长情况。(E)播种后第7d的对照和BrRR12过表达植株T2代根长统计(n≥20)。*代表较CK有显著性差异(p<0.05)。比例尺代表2cm。
图6为BrRR12异源表达植株与对照植株播种后5周的生长情况比较。左侧为对照植株,右侧为BrRR12异源表达植株。
具体实施方式
下面通过具体实施例对本发明进行说明,实施例中未作详细描述的技术手段属于本领域专业技术人员熟知的常规技术。实施例只用于说明本发明,但不限制本发明的范围,任何本领域的技术人员在不付出创造性劳动的情况下,以本发明的实施例为基础所获得的其他实施例均属于本发明的保护范围。
本发明提供了一种白菜B型响应调节因子基因BrRR12,该基因为:从来源于品种为‘Chiifu-401-42’的白菜中克隆到的基因,其基因序列如SEQ ID No.1所示。
本发明实施例还提供了上述白菜B型响应调节因子基因BrRR12在调控初生根发育及开花时间方面的应用,下面对其进行具体描述。
实施例1:白菜BrRR12亚细胞定位载体的构建
1、植物花序总RNA提取
采用Omega Plant RNA Kit试剂盒从白菜‘Chiifu-401-42’的花序组织样品提取总RNA,具体步骤如下:液氮研磨样品约100mg,移入1.5ml离心管中,并立即加入500μL RBBuffer(已加入β-巯基乙醇),剧烈涡旋;14000rpm离心5min,取上清移入gDNA FilterColumn,14000rpm离心2min;往滤液中加入0.5倍体积的无水乙醇,颠倒混匀;混匀后的溶液移入HiBind RNA mini column,10000rpm离心1min,弃滤液;加入400μLRWF Wash Buffer,10000rpm离心1min,弃滤液;加入500μL RNA Wash Buffer II,10000rpm离心1min,弃滤液,重复一次;10000rpm离心2min,弃滤液,干燥column;将column放入干净的1.5mL离心管中,加入30μLDEPC水静置3min,10000rpm离心1min,弃column,将得到的RNA保存至-75℃冰箱。
2、cDNA合成
采用TaKaRa PrimeScriptTM RT reagent Kit with gDNA Eraser,具体步骤如下:先去除基因组DNA,2μL 5×gDNA Eraser Buffer,1μL gDNA Eraser,1μg RNA,RNaseFree H2O补足至10μL,42℃反应2min。然后进行cDNA的合成,在上一步的反应液中加入4μL5×Primer Script Buffer,1μL RT Primer Mix,1μL Primer Script RT Enzyme Mix,4μLRNase Free H2O,混匀,37℃反应20min,85℃反应5s即完成cDNA的合成,cDNA保存在-20℃冰箱。
3、目的基因及线性化载体的获得
设计特异引物(表1)通过高保真酶扩增获得BrRR12基因目的片段(图1),电泳后凝胶回收目的基因片段。将PFGC载体用Bam H I和Xba I双酶切,电泳后凝胶回收线性化载体片段。
表1亚细胞定位载体构建及检测所用引物
Figure BDA0003077989420000031
Figure BDA0003077989420000041
4、同源重组法构建载体
采用诺唯赞ClonExpress II One Step Cloning Kit,具体步骤如下:取4μL 5×CEII Buffer,2μL Exnase II,线性化载体200ng,BrRR12基因目的片段20ng,ddH2O补足至20μL;37℃金属浴反应30min获得同源重组产物。
5、冻融法转化大肠杆菌感受态DH5α
将DH5α置于冰上融化,加入同源重组产物,冰上静置30min;42℃金属浴热激90s,冰上冷却5min;加入1mL LB液体培养基,37℃摇床1.5h;5000rpm离心1min,弃滤液,剩余100μL左右菌液吸打混匀,涂板于含卡那霉素的LB固体培养基中;培养基倒置放于37℃培养箱中过夜,第二天挑取单菌落做菌液PCR(引物见表1),然后送测。送测检测正确后,提取质粒-20℃保存备用。验证比对正确的亚细胞定位载体质粒(图2B)以及PFGC空载质粒采用冻融法转化农杆菌感受态GV3101,长出单菌落后挑斑进行菌液PCR(引物见表2),验证成功的菌液保存菌种并留母液4℃储藏备用。
6、烟草瞬时表达实验观察亚细胞定位
将农杆菌菌种在含有50mg/ml的Rif、Str、Kan抗生素的固体LB培养基上进行划线,待长出斑后挑单菌落摇菌做PCR检测,在30mL含有50mg/ml的Rif、Str、Kan的液体LB培养基中加入100μL已经活化的农杆菌菌液,28℃摇床振摇过夜。待菌液培养至OD600为1.0左右,5000rpm离心15min,弃上清。用等体积的重悬液(10mmol/L MES、10mmol/L MgCl2、150μmol/L乙酰丁香酮)重悬农杆菌,室温静置3h。
选取4周大,生长健壮的烟草,每株选取3片较为平展的叶片。用一次性1mL注射器,在叶背面将菌液注射进叶片中,避开叶脉位置,使菌液在叶片中扩散至2/3叶片,做好标记。注射后的烟草正常培养38h后,剪取针孔附近1cm见方的叶片,背面朝上制片,在激光共聚焦显微镜下观察荧光信号及分布。
亚细胞定位实验结果表明BrRR12定位在细胞核上(图3),与其作为转录因子发挥作用相匹配。
实施例2:白菜BrRR12异源表达载体的构建
以白菜花cDNA为模版扩增基因片段并采用凝胶回收片段(引物见表2),利用同源重组法连入经Kpn I和Bam H I双酶切的pAC007-3*FLAG载体,转化大肠杆菌感受态DH5α,经菌液PCR验证并测序证明基因片段及连接正确后,提取载体质粒保存-20℃备用,具体步骤见实施例1。
表2异源表达载体构建所用引物
引物名称 引物序列(5’-3’)
BrRR12-F GGGCGCGCCGGTACCATGACTGTTGAACAACAA(SEQ ID No.4)
BrRR12-R ATAGTCCATGGATCCTATGCATGTTCTAAG(SEQ ID No.5)
验证比对成功的异源表达载体质粒采用冻融法转化农杆菌感受态GV3101,长出单菌落后挑斑进行菌液PCR(引物见表3),验证成功的菌液保存菌种并留母液4℃储藏备用。
表3异源表达载体检测及转基因拟南芥PCR检测所用引物
引物名称 引物序列(5’-3’)
BrRR12-OE-F GATGAGACCCTTCCCTCCAAATG(SEQ ID No.6)
BrRR12-OE-R AGGCGTCTCGCATATCTCATT(SEQ ID No.7)
实施例3:浸花法转化拟南芥及阳性转化株的筛选
1、浸花法转化拟南芥
取100μL活化的含有异源表达载体质粒(图2A)及pAC007-3*FLAG空载质粒农杆菌菌液分别加入30mL含有50mg/ml的Rif、Str、Cmr的液体LB培养基中,28℃摇床振摇过夜。待菌液培养至OD600为1.0左右时,8000rpm离心10min,弃上清,用等体积的重悬液(5wt%蔗糖、200μL/L Silwet L-77)重悬,充分搅拌2min。将野生型拟南芥去除角果和开放花,花序浸没于菌液中约30s,取出用吸水纸吸干多余菌液,保湿黑暗培养24h后,再放入培养箱进行正常培养。一周后,重复浸花一次获取更多转基因种子。
2、配制潮霉素筛选培养基
取2.215g的MS519干粉,10g的蔗糖(分析纯),溶于水。用2M的NaOH调pH至5.8,加入4g的琼脂粉(纯化生化试剂),定容至500mL。在121℃高压蒸汽灭菌20min后,于超净工作台中,冷却到50-60℃,加入潮霉素至终浓度为90mg/L,倒固体平板培养基。
3、阳性转化株初筛
将浸花转化得到的拟南芥种子放入1.5mL离心管中,在超净工作台中进行洗涤种子进行杀菌,依次1mLddH2O洗涤一次、1mL75vol%酒精洗涤一次,1mLddH2O洗涤三次,重复一次全部洗涤步骤。将洗涤完的种子均匀铺于潮霉素筛选培养基,正常培养约两周后将正常生长的植株移出培养基,PCR检测验证(引物见表3)。
4、实时荧光定量PCR检测转基因拟南芥植株中BrRR12基因的相对表达量
分株取样,每株选取第3片叶子,做好标记后在液氮中固定,用Omega Plant RNAKit试剂盒提取总RNA后,用采用TaKaRa PrimeScriptTM RT reagent Kit with gDNAEraser合成cDNA,进行qRT-PCR分析。实时荧光定量PCR体系:SYBR Green Master Mix 7.5μL,上下游引物(SEQ ID No.10-SEQ ID No.11)各0.3μL,模板cDNA 1μL,ddH2O 5.9μL。qRT-PCR反应程序:95℃:30s;(95℃:5s;57℃:45s)40个循环。内参基因选择AtActin7(qRT-PCR引物见表4)。
表4BrRR12转基因植株阳性检测荧光定量PCR引物
引物名称 引物序列(5’-3’)
q-AtActin7-F GGAACTGGAATGGTGAAGGCTG(SEQ ID No.8)
q-AtActin7-R CGATTGGATACTTCAGAGTGAGGA(SEQ ID No.9)
q-BrRR12-F TGGGGCAGCAGAAGTTACAG(SEQ ID No.10)
q-BrRR12-R CCGACAAGTCTCCTTGGCTC(SEQ ID No.11)
结果表明,潮霉素筛选培养基筛到的23株拟南芥植株均为BrRR12异源表达阳性转化株,且异源表达量均较高(图4)。
实施例4BrRR12异源表达植株开花时间及初生根根长观察统计
筛选得到的BrRR12过表达阳性植株与空载转化的阳性植株(对照植株)在培养箱中培养(温度25℃/22℃;光周期L/D:16h/8h),观察播种后4周、5周的BrRR12过表达阳性植株与空载转化的阳性植株的生长差异。对T1阳性植株收种,T2代BrRR12过表达植株与空载转化的对照植株播种到90mg/L潮霉素的MS播种培养基上进行根系差异比较。拍照记录并统计分析。
结果表明,播种后4周BrRR12过表达植株的叶片及叶片数目较对照植株无明显差异(图5)。播种后5周的观察发现BrRR12过表达植株较对照植株抽薹开花时间推迟(图6)。对T2代植株根系的观察发现,播种于同一培养皿的对照植株与BrRR12过表达植株根系长势差异极大,播种后第7天BrRR12过表达植株的初生根根长显著短于对照植株(图5)。
以上所述为本发明较佳的具体实施方式,但在其基础上可以进行一些改进或修改,这对任何熟悉本领域的技术人员而言是显而易见的。因此,在本发明基础上所作的这些修改和改进,均属于本发明要求保护的范围。
序列表
<110> 浙江大学
无锡迪茉得生物种业科技有限公司
<120> 白菜B型响应调节因子基因BrRR12及其应用
<160> 11
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1746
<212> DNA
<213> Brassica rapa
<400> 1
atgactgttg aacaacaaga ttgtgtagcc ttggaccagt ttcctgtcgg aatgagagtt 60
cttgctgttg acgatgacca gacttgtctt cgtatcctcg aatccttgct tcatcgttgc 120
caatatcatg ttacaacgac gaaccaggcc caaaaggctc tagagttatt gagagagaac 180
aagaacaagt ttgatctggt tattagcgat gttgacatgc ctgacatgga tggtttcaaa 240
ctgcttgagc ttgttggtct tgaaatggac ctacctgtca ttatgttgtc cgcgcatagc 300
gatccaaagt atgtgatgaa aggagttact catggggctt gtgactatct actgaaaccg 360
gttcgtatcg aggagctgaa aaacatatgg caacatgtgg tgagaaagaa ccgtgggagt 420
aataacggtg acaagaaaga tggatcgggt aatgaaggtg ttgcaaactc cgatcagaac 480
aacgggagag caaatagaaa acgtaaagat cagtacaatg aagatgaaga cgaggaaaga 540
gatgataacg atgatccgtc atctcaaaag aagcctcgtg ttgtttggac ggttgagctt 600
cacaagaaat ttgtagcagc tgttaaccaa ttggggtttg agaaggcaat gcctaaaaag 660
attcttgatc tgatgaatgt tgagaagctg actagagaga atgtggctag tcatcttcag 720
aagtttcgcc tgtacttgaa gaggatcagt gggaatcaac aagctattat ggccaactct 780
gacttacatt tcttgcaaat gagcaatgga cttgacggtt ttcaccaccg accaattccc 840
gttggaaccg gtcagttcca tggtggagcc gccgctgcgg ggatgagacc cttccctcca 900
aatgggattc ttggccgact caacactcct tctggaatga gtggtgtccg taacctttct 960
tcttctcctt cttcaggaat gttcttgcaa aacccgaccg atcttggaaa gtttcaccat 1020
gtctcatcac ttcctcttaa ccacattgat ggaggaaaca tacttcaagg gttaccaatg 1080
cctttagagt tcgaccagct tcagacaaac aacaacaaga gcatcatcgc cgggaactca 1140
atggcttttc ctatcttccc tacacaacaa caaagctccc ttcctaataa caacaatcac 1200
ttggttctag aaggtcaccc acaagcacct ccttcagcct tccctggtca ccagatcaat 1260
aaacgtttgg aacattggtc aaacgctgta tcatcatcat cgtccactct tcctcctcct 1320
ggtcagaaca gtaatagcct catcagtcat cagttcgatg cctcctcatc aagctattcc 1380
atcccattct gtgactctac aattccattg aatccagcgt tggatcatac aaatccccga 1440
gctttctaca gagccacgga catggattca agtgcaaatg tgcagcctgg agtctattat 1500
gattcattgc agatgagaaa atcaggcaac tacggtccaa ccacggatgc tatgctgagt 1560
agtaataacc ccaaggaagg gttcaccgtg gggcagcaga agttacagag tggattcatg 1620
ggaggagaag ctggttcttt agatgatata gtcaactcca ctatgaaaca ggaacagagc 1680
caaggagact tgtcggaagg tgatttggga tatggaggct ttagctcact tagaacatgc 1740
atatga 1746
<210> 2
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
gctgtacaag ggatccatga ctgttgaaca acaa 34
<210> 3
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
taattaactc tctagatcat atgcatgttc taag 34
<210> 4
<211> 33
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
gggcgcgccg gtaccatgac tgttgaacaa caa 33
<210> 5
<211> 30
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
atagtccatg gatcctatgc atgttctaag 30
<210> 6
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
gatgagaccc ttccctccaa atg 23
<210> 7
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
aggcgtctcg catatctcat t 21
<210> 8
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
ggaactggaa tggtgaaggc tg 22
<210> 9
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
cgattggata cttcagagtg agga 24
<210> 10
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
tggggcagca gaagttacag 20
<210> 11
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
ccgacaagtc tccttggctc 20

Claims (2)

1.一种白菜B型响应调节因子基因BrRR12在调控植物开花时间及初生根发育中的应用,所述白菜B型响应调节因子基因BrRR12的核苷酸序列如SEQ ID No.1所示。
2.一种白菜B型响应调节因子基因BrRR12在植物种质资源改良中的应用,所述应用为:白菜B型响应调节因子基因BrRR12调控植物开花时间及初生根发育,所述白菜B型响应调节因子基因BrRR12的核苷酸序列如SEQ ID No.1所示。
CN202110557914.8A 2021-05-21 2021-05-21 白菜B型响应调节因子基因BrRR12及其应用 Active CN113151302B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110557914.8A CN113151302B (zh) 2021-05-21 2021-05-21 白菜B型响应调节因子基因BrRR12及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110557914.8A CN113151302B (zh) 2021-05-21 2021-05-21 白菜B型响应调节因子基因BrRR12及其应用

Publications (2)

Publication Number Publication Date
CN113151302A CN113151302A (zh) 2021-07-23
CN113151302B true CN113151302B (zh) 2022-07-05

Family

ID=76877016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110557914.8A Active CN113151302B (zh) 2021-05-21 2021-05-21 白菜B型响应调节因子基因BrRR12及其应用

Country Status (1)

Country Link
CN (1) CN113151302B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106047893A (zh) * 2016-07-20 2016-10-26 中国水稻研究所 OsCOL16基因在控制水稻抽穗期中的应用
CN110295179A (zh) * 2019-08-05 2019-10-01 浙江大学 芜菁抗病相关基因BrPGIP8及其应用
CN110699360A (zh) * 2019-08-23 2020-01-17 浙江大学 白菜抗病相关基因BrPGIP4及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9796985B2 (en) * 2013-03-20 2017-10-24 Trustees Of Dartmouth College Compositions and method for modulating the sensitivity of plants to cytokinin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106047893A (zh) * 2016-07-20 2016-10-26 中国水稻研究所 OsCOL16基因在控制水稻抽穗期中的应用
CN110295179A (zh) * 2019-08-05 2019-10-01 浙江大学 芜菁抗病相关基因BrPGIP8及其应用
CN110699360A (zh) * 2019-08-23 2020-01-17 浙江大学 白菜抗病相关基因BrPGIP4及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Genome-Wide Identification, Phylogeny, Duplication, and Expression Analyses of Two-Component System Genes in Chinese Cabbage (Brassica rapa ssp. pekinensis";ZHENNING Liu 等;《DNA RESEARCH》;20140227;第21卷;第379-396页 *
"PREDICTED: Brassica rapa two-component response regulator ARR12 (LOC103864613), transcript variant X2, mRNA,Accession No: XM_009142380.3";GenBank;《GenBank》;20201207;第1-2页 *
"PREDICTED: Brassica rapa two-component response regulator ARR12 (LOC103864613),transcript variant X1, mRNA,Accession NO: XM_009142379.3";GenBank;《GenBank》;20201207;第2-3页 *
"植物双组分信号系统调控雌配子体发育的研究及其相关基因家族在白菜中的鉴定、进化和表达分析";刘振宁;《中国优秀博硕士学位论文全文数据库(博士) 基础科学辑》;20170815(第8期);第1-21页 *

Also Published As

Publication number Publication date
CN113151302A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
US6946586B1 (en) Genetic trait breeding method
CN113151303B (zh) 白菜干细胞决定相关基因BrWUS1及其应用
CN112125966B (zh) 抗逆相关蛋白bHLH85在调控植物抗逆性中的应用
CN110872598A (zh) 一种棉花抗旱相关基因GhDT1及其应用
WO2011049243A1 (ja) バイオマスが増大し、かつ環境ストレス耐性が向上した形質転換植物およびその作出方法
CN114560919A (zh) 一种与植物耐旱相关的转录因子VcMYB108及其编码基因与应用
CN113061617B (zh) 白菜B型响应调节因子基因BrRR10及其应用
CN112522283B (zh) 一种花粉发育相关基因及其应用
CN112342236A (zh) 水稻组蛋白甲基转移酶在增强作物干旱抗性及改善单株产量中的应用
CN116003546B (zh) 一种紫花苜蓿nac转录因子及其应用
CN117004614A (zh) 调控棉纤维伸长的基因GhTPR_A12及其应用
CN113151302B (zh) 白菜B型响应调节因子基因BrRR12及其应用
CN107973844B (zh) 小麦抽穗期相关蛋白Ta-Hd4A及其应用
CN113774059B (zh) 一种铁皮石斛花组织偏好性和胁迫诱导型的启动子ProDoWOX4及其应用
CN115976039A (zh) 软枣猕猴桃光响应基因AaHY5like9及其应用
CN110343159B (zh) 一种绿豆开花基因VrELF3的表达载体的应用
CN110387376B (zh) 一种含有绿豆开花基因VrFT5a的表达载体的应用
KR101687106B1 (ko) 감귤 유래 CuCRTISO-like 프로모터 및 이를 포함하는 재조합 벡터
CN114672498B (zh) 蜻蜓凤梨AfCAL基因、克隆方法、表达载体及应用
CN103614385A (zh) 一个基因kt525在提高植物耐逆性上的应用
CN115786361B (zh) 小麦TaCBF14B基因的新用途
CN118147175B (zh) MtCOMT13基因在调控植物耐盐抗旱性中的应用
KR101486825B1 (ko) 벼 꽃 발달단계 중 초기단계에서 특이적으로 발현하는 유전자의 프로모터 및 이의 용도
KR101820925B1 (ko) 뿌리 조직 특이적 발현 프로모터
CN110699362B (zh) Afp5基因及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant