CN113150249A - 一种二炔类共轭微孔聚合物、制备方法及其应用 - Google Patents

一种二炔类共轭微孔聚合物、制备方法及其应用 Download PDF

Info

Publication number
CN113150249A
CN113150249A CN202110440804.3A CN202110440804A CN113150249A CN 113150249 A CN113150249 A CN 113150249A CN 202110440804 A CN202110440804 A CN 202110440804A CN 113150249 A CN113150249 A CN 113150249A
Authority
CN
China
Prior art keywords
conjugated microporous
microporous polymer
reaction
polymer
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110440804.3A
Other languages
English (en)
Other versions
CN113150249B (zh
Inventor
谭必恩
刘庆民
金尚彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute Of New Energy Wuhan Co ltd
Wuhan Huake Zhongying Nano Technology Co ltd
Huazhong University of Science and Technology
Original Assignee
Institute Of New Energy Wuhan Co ltd
Wuhan Huake Zhongying Nano Technology Co ltd
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of New Energy Wuhan Co ltd, Wuhan Huake Zhongying Nano Technology Co ltd, Huazhong University of Science and Technology filed Critical Institute Of New Energy Wuhan Co ltd
Priority to CN202110440804.3A priority Critical patent/CN113150249B/zh
Publication of CN113150249A publication Critical patent/CN113150249A/zh
Application granted granted Critical
Publication of CN113150249B publication Critical patent/CN113150249B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/063Polymers comprising a characteristic microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/695Pore distribution polymodal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/10Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using catalysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3328Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms alkyne-based
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3422Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms conjugated, e.g. PPV-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种二炔类共轭微孔聚合物、制备方法及其应用,属于共轭微孔聚合物材料领域。所述制备方法包括:将一种或多种含有多元卤代炔基的芳香族化合物作为单体,将该单体分散于有机溶剂中,加入含碘化合物作为催化剂,进行单体自聚反应,反应完成后得到所述二炔类共轭微孔聚合物。本发明采用无过渡金属催化的方式在温和的条件下制备二炔类共轭微孔聚合物,得到的聚合物具有高比表面积和高吸附容量。本发明解决了残余贵金属或稀有金属催化剂会影响CMPs本征性质以及生产成本昂贵的技术问题。

Description

一种二炔类共轭微孔聚合物、制备方法及其应用
技术领域
本发明属于共轭微孔聚合物材料领域,更具体地,涉及一种二炔类共轭微孔聚合物、制备方法及其应用。
背景技术
自1977年导电性的聚乙烯发现以来,大量的共轭聚合物(CPs)被合成且广泛应用。其中一类共轭聚合物具有特殊的微孔结构,被称为共轭微孔聚合物(CMPs)。其孔径一般小于2nm,与传统的有机多孔聚合物相比,对于CMPs的研究,广大研究者更加关注它们的高比表面积和共轭大π体系以及应用前景。与常见的有机多孔材料相比,CMP具有以下独特性质:1)通过选取不同的目标单体其比表面积和孔径可调;2)优异的化学稳定性,不溶于任何酸碱及有机溶剂;3)良好的热稳定性,通常分解温度大于300℃;4)结构可调性,合成方法多样;5)共轭体系与微孔结构有机结合在一起。Cooper等的研究证实CMPs的比表面积和微孔大小可通过单体结构变换进行精确的调节。由于CMPs具有以上多种性质,使得其在吸附、分离、催化、气体储存方面存在着广泛的应用前景。2007年Cooper等报道了第一例共轭微孔聚合物的合成,其比表面积高达834m2/g,由于其独特的性能及潜在应用前景,这类共轭微孔材料引起了广泛关注和研究。特别地,二炔基共轭微孔聚合物由于其优异的电子通道和强的络合效应引起了广大研究者的兴趣,自从其被Cooper在2008年第一次合成报道以来,此类聚合物被广泛的研究。2010年Deng课题组在二炔基共轭微孔聚合物应用方面取得了长足进展,通过进行Li的掺杂其储氢量在1bar,77K下高达6.1%,为当时条件下之最。2017年徐等证明了二炔基共轭微孔聚合物在光催化全解水的应用中展现了巨大的潜力。2019年Ma课题组再一次合成二炔基共轭微孔聚合物,比表面积达1080m2/g,用于后修饰进行重金属放射性物质吸附,达到了快的吸附动力学效果和高的吸附容量。
但是目前对于CMPs的研究尚未成熟,并且面临着许多问题,如少量残余的贵或稀有金属催化剂会影响CMPs本征性质和生产成本昂贵问题,这就带来了一个“卡脖子”问题-难以进行实际大规模生产等。如今,CMPs的合成与应用已经成为研究领域的焦点,其微孔大小、比表面积、共轭程度等在不同的CMPs中变化非常显著,但是进一步研究开发新型无过度金属催化条件下大规模合成基于高比表面积共轭微孔聚合物是广大科研工作者亟待解决的问题。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种二炔类共轭微孔聚合物、制备方法及其应用,其目的在于采用无过渡金属催化的方式和温和的条件下制备共轭微孔聚合物,由此解决残余的贵或稀有金属催化剂会影响CMPs本征性质和生产成本昂贵的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种二炔类共轭微孔聚合物的制备方法,所述方法包括:将一种或多种含有多元卤代炔基的芳香族化合物作为单体,将该单体分散于有机溶剂中,加入含碘化合物作为催化剂,进行单体自缩聚反应,反应完成后得到所述二炔类共轭微孔聚合物。此处,多元卤代炔基是指二元及二元以上卤代炔基。
优选地,所述含有多元卤代炔基的芳香环化合物包括:三(4-溴代乙炔基苯基)胺、1,3,6,8-四(溴代乙炔基)芘、1,3,5-三(溴代乙炔基)苯、1,3,5-三(对溴代乙炔基)苯基苯、四(溴代乙炔基)四苯甲烷、1,1,2,2-四(4-溴代乙炔基)四苯乙烯、1,2,4,5-四(溴代乙炔基)苯、2,4,6-(对溴代乙炔基苯基)-1,3,5-三嗪或2,2',7,7'-四(溴代乙炔基)-9,9'-螺二芴。本领域技术人员可以理解的是,上述化合物的溴代基团可以为卤素元素中的任意一个元素取代基团,例如,三(4-溴代乙炔基苯基)胺可以为三(4-氯代乙炔基苯基)胺、三(4-碘代乙炔基苯基)胺等,依次类推。
优选地,所述单体与催化剂的摩尔比为1:(9-63);优选地,所述单体与催化剂的摩尔比为1:(45-63)。
优选地,所述含碘化合物为碘化钾、碘化钠、碘化锂、碘化镁和四丁基碘化铵中的一种或多种。
上述单体的结构式如下所示:
Figure BDA0003034896420000031
优选地,所述有机溶剂为甲苯、二甲苯、三甲苯、二氯苯、1,4-二氧六环、乙腈、N,N-二甲基甲酰胺、N,N,-二甲基乙酰胺、二甲亚砜和N-甲基吡咯烷酮、间甲酚中的一种或多种。
优选地,所述加入含碘化合物作为催化剂,进行单体自缩聚反应,反应完成后得到所述共轭微孔聚合物,具体包括:加入含碘化合物作为催化剂并超声处理,在无水无氧条件下,在120-150℃的温度下进行单体自缩聚反应,反应时间为48-72h;反应完成后依次用甲醇、蒸馏水、DMF、丙酮洗涤,然后依次用甲醇、四氢呋喃索氏提取纯化,最后干燥得到所述共轭微孔聚合物。
优选地,所述在无水无氧条件下,具体包括:将装有所述单体、有机溶剂和催化剂的容器在液氮环境中进行骤冻,内部抽真空后用火焰密封。
优选地,所述单体可以直接通过市售渠道得到,也可以制备得到,作为一种可行的方式,单体的合成步骤如下:将卤代苯类单体(例如溴代苯类化合物)、三甲基硅乙炔、三苯基膦化钯和碘化亚铜,置于三颈圆底烧瓶中,加入适量三乙胺和四氢呋喃作为反应溶剂,通入氮气,混合物在80℃下发生Sonogashira偶联反应12h。用TLC检测跟踪反应的进程,检测反应完全后,减压下除去溶剂,进行SiO2柱分离,在CHCl2中重结晶得到中间纯产物。称取所得中间纯产物于圆底烧瓶,加入甲醇和四氢呋喃(V:V/1:1)搅拌使之溶解,之后加入四丁基氟化铵(TBAF)作为去保护试剂,混合物于25℃下搅拌12小时,跟踪检测反应程度,待反应完全后,减压蒸除溶剂,加入甲醇抽滤,用甲醇洗涤数次,收集产物干燥。此产物溶解于丙酮中,加入NBS作为溴化试剂,加入痕量硝酸银引发反应,此反应在室温下避光搅拌12小时,移除溶剂,柱层析分离纯化,得到最终单体。
按照本发明的另一方面,提供了一种根据上述制备方法制备得到的二炔类共轭微孔聚合物,所述聚合物包括骨架和形成于骨架之间的孔通道,所述骨架为具有芳香性且以二炔为连接单元。
优选地,所述聚合物为层状结构,所述孔通道包括孔径小于2nm的微孔、孔径为2-50nm的介孔和孔径大于50nm的大孔。
按照本发明的又一方面,提供了一种所述二炔类共轭微孔聚合物的应用,用于气体的吸附或存储,或在光电领域的应用;该气体包括氢气、二氧化碳或甲烷,该污染物包括放射性物质、废油或染料。将本发明二炔类共轭微孔聚合物用于光电领域,可以将其作为光催化剂载体,例如:光催化产氢产氧,光催化有机小分子的合成等。或者应用到发光检测上,用于检测爆炸性物质、有毒物质或重金属离子等,例如,硝基类化合物的发光检测。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,至少能够取得下列有益效果。
(1)本发明中采用含碘化合物作为催化剂,使得一种含有二元或多元卤代炔基的芳香族化合物单体发生自聚合反应,得到以二炔为连接单元的共轭微孔聚合物。由于现有技术中通常采用过渡金属作为催化剂,而残余的贵或稀有金属催化剂会影响CMPs本征性质。本发明中则摒弃了过渡金属的使用,而是采用无过渡金属催化剂,实现了无金属残留,更加突出了聚合物的本征性质,为进一步研究结构-性能关系提供了有效的手段,为其在结构性能领域开辟了新的路径。并且最终得到的聚合物具有比通过过渡金属催化得到的聚合物更高的比表面积,丰富的孔道结构,高的稳定性,优异的气体吸附和存储性能。
(2)本发明中此制备方法灵活可控,可以通过改变反应单体种类,尤其是改变含有不同官能度的单体制得具有不同比表面积的二炔基共轭微孔聚合物,并且可以大规模制备,向实际生产迈出了巨大步幅。其比表面积高达1477m2g-1,1388m2g-1,远高于用一般过渡金属催化的偶联反应所得到的聚合物比表面积。在此基础上,选取扭曲或非共平面结构的单体,其比表面积可达更高数值。
(3)本发明提供的制备方法可以在无过度金属催化等温和的条件下进行,相比于传统的方法极大的改善了反应条件,节约了实验生产成本,简化了后处理操作,这就为其大规模制备共轭微孔聚合物提供了可行性。
(4)本发明中的催化剂优选为含碘化合物,这是由于碘离子是一个很好的取代基团和离去基团,在本发明的制备方法中催化效率高。本发明中的有机溶剂优选为N,N-二甲基甲酰胺、N,N,-二甲基乙酰胺、二甲亚砜、N-甲基吡咯烷酮、间甲酚,这是由于这些有机溶液具有高的沸点,而高的沸点有助于聚合反应的发生,并且这些有机溶剂极性大,有利于单体的分散的溶解完全。本发明中优选地采用在在无水无氧条件下进行单体自缩聚反应,这是由于在无水无氧的条件下更有利于高的聚合度,反应更彻底。
(5)本发明提供的共轭微孔聚合物含有大量的不饱和三键和相对高的比表面积,丰富的孔道结构有助于气体的吸附和存储,其次碳碳三键也有助于进行聚合物后修饰已达到特定应用。
附图说明
图1是本发明实施例1制备得到的二炔类共轭微孔聚合物的扫描电镜图;
图2是本发明实施例8制备得到的二炔类共轭微孔聚合物的扫描电镜图;
图3是本发明实施例1和实施例8制备得到的二炔类共轭微孔聚合物的红外谱图;
图4是本发明实施例1和实施例8制备得到的二炔类共轭微孔聚合物的固体13C NMR谱图;
图5是实施例1和实施例8制备得到的二炔类共轭微孔聚合物的氮气吸附-解吸附图;
图6是实施例1和实施例8制备得到的二炔类共轭微孔聚合物的孔径分布图;
图7是实施例1和实施例8制备得到的二炔类共轭微孔聚合物的紫外可见光吸收谱图;
图8是实施例1和实施例8制备得到的二炔类共轭微孔聚合物的XRD图;
图9是实施例1和实施例8制备得到的二炔类共轭微孔聚合物的TGA图;
图10是实施例1和实施例8制备得到的二炔类共轭微孔聚合物的常压二氧化碳吸附图;
图11是实施例1和实施例8制备得到的二炔类共轭微孔聚合物的常压氢气吸附图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1
本实施例提供一种二炔类共轭微孔聚合物的制备方法及通过该方法制备得到的二炔类共轭微孔聚合物,该方法具体步骤如下:
(1)将均三溴苯1g,三甲基硅乙炔1.4mL,三苯基膦化钯0.2g和碘化亚铜0.06g,置于100mL三颈圆底烧瓶中,加入9mL三乙胺和18mL四氢呋喃,通入氮气,脱气30min,混合物在80℃下反应12h。用TLC检测跟踪反应的进程,检测反应完全后,减压下除去溶剂,用30mL乙醚萃取,减压下除去溶剂,用石油醚/乙酸乙酯(100:1)进行SiO2柱分离,在CHCl2中重结晶给出0.7g中间产物,FT-IR(KBr):2201cm-1,2984cm-11H NMR(400MHz,ppm,CDCl3):0.08(s,18H);7.48(d,4H)。
称取所得上述中间产物0.2g于100ml圆底烧瓶,加入甲醇和四氢呋喃(V:V/1:1)搅拌使之溶解,之后加入四丁基氟化铵10ml作为去保护试剂,混合物于25℃下搅拌12小时,用检测反应程度,待反应完全后,减压蒸除溶剂,加入20ml甲醇抽滤,用甲醇洗涤数次,收集产物干燥,得到0.18g产物。此产物溶解于丙酮中,加入0.4g NBS作为溴化试剂,加入0.01g硝酸银引发反应,此反应在室温下搅拌12小时,移除溶剂,柱层析分离纯化,得到单体1,3,5-三(溴代乙炔基)苯,FT-IR(KBr):2214cm-11H NMR(400MHz,ppm,CDCl3):7.48(d,4H)。
(2)将0.1g单体1,3,5-三(溴代乙炔基)苯至于测得的外径×内径=10mm*8mm的耐热玻璃管中,加入0.5mL的DMF溶液或者上述大极性溶剂,能将目标单体很好的分散并溶解完全,将管子在超声波浴中浸泡5分钟。之后加入0.4g的碘化钾固体(单体与催化剂碘化钾的摩尔比1:9),超声处理5分钟。在77K(液氮环境)温度下将管子骤冻,内部抽真空到并用火焰密封。密封状态下,管的长度减少到15-18厘米。将反应混合物在150℃温度下加热72小时后,打破反应玻璃管,收集所得固体物质,并依次用DMF,水,甲醇洗涤,然后用索氏提取法以四氢呋喃为溶剂进一步提纯,干燥得到目标共轭微孔聚合物,并将其记为:CMP-HUST-1,其扫描电镜图参见图1。
其合成路径如下所示:
Figure BDA0003034896420000081
实施例2-7
实施例2-7采用与实施例1相同的制备方法制备共轭微孔聚合物,不同之处在于单体与催化剂碘化钾的摩尔比依次为1:18、1:27、1:36、1:45、1:54、1:63。
将通过实施例1-7的制备方法制备得到的共轭微孔聚合物进行比表面积和产率测定,得到结果如下表1所示:
表1实施例1-7二炔共轭微孔聚合物性能表
Figure BDA0003034896420000091
从该表1中可以看出,改变单体与催化剂的摩尔比,对最终共轭微孔聚合物的比表面积和产率影响较大,其中单体与催化剂碘化钾摩尔比例为1:45时,效果最佳,其目标聚合物比表面积最大以及产率最高。继续增加催化剂用量对目标聚合物比表面积以及产率影响不大。
实施例8
本实施例提供一种二炔类共轭微孔聚合物的制备方法即通过该方法制备得到的二炔类共轭微孔聚合物,该方法具体步骤如下:
(1)将2,4,6,-三(4-溴苯基)1,3,5-三嗪1g,三甲基硅乙炔1.8mL,三苯基膦化钯0.6g和碘化亚铜0.067g,置于100ml三颈圆底烧瓶中,加入10mL三乙胺和四氢呋喃20mL,通入氮气,脱气30min,此混合物在80℃下反应12h。用TLC检测跟踪反应的进程,检测反应完全后,减压下除去溶剂,用30ml乙醚萃取,减压下除去溶剂,用石油醚/乙酸乙酯(100:1)进行SiO2柱分离,在CHCl2中重结晶给出0.85g中间产物,FT-IR(KBr):2225cm-1,2934cm-1,1530cm-1,1306cm-11H NMR(400MHz,CDCl3):0.08(s,27H);7.70(d,6H);7.74(d,6H)。
称取所得上述中间产物0.2g于100ml圆底烧瓶,加入50ml甲醇和50ml四氢呋喃,搅拌使之溶解,之后加入四丁基氟化铵10ml作为脱保护试剂,此反应混合物于25℃下搅拌12小时,用检测反应程度,待反应完全后,减压蒸除溶剂,加入20ml甲醇抽滤,用甲醇洗涤3次,收集产物干燥,得到0.18g产物。此产物悬浮于30ml丙酮中,加入0.4g NBS作为溴化试剂,加入0.01g硝酸银引发反应,此反应在室温下搅拌12小时,移除溶剂,用石油醚柱层析分离纯化,得到2,4,6-对(溴代乙炔基苯基)-1,3,5-三嗪单体0.13g,FT-IR(KBr):2198cm-1,1505cm-1,1376cm-11H NMR(400MHz,CDCl3):7.70(d,6H);7.74(d,6H)。
(2)将0.1g单体2,4,6-对(溴代乙炔基苯基)-1,3,5-三嗪至于测得的外径×内径=10mm*8mm的耐热玻璃管中,加入0.5mL的DMF溶液,将管子在超声波浴中浸泡5分钟。之后加入相应剂量的碘化钾固体,超声处理5分钟。在77K(液氮环境)温度下将管子骤冻,内部抽真空到并用火焰密封。密封状态下,管的长度减少到15-18厘米。将反应混合物在150℃温度下加热72小时后,打破管子,收集所得固体物质,并依次用DMF,水,甲醇洗涤,然后用索氏提取法以四氢呋喃为溶剂进一步提纯,干燥给出共轭微孔聚合物,并将其记为:CMP-HUST-2其扫描电镜图参见图2。
其合成路径如下所示:
Figure BDA0003034896420000111
结果与分析:
通过实施例1和实施例8制备得到的共轭微孔聚合物的红外谱图和NMR谱图请参见图3和图4,从图中可以看出,实施例聚合物的特征峰,2200cm-1归属于碳碳三键的伸缩振动峰,80ppm和73ppm的化学位移归因于碳碳三键中的碳的位移值,表明成功制备了目标聚合物。
对通过实施例1和实施例8制备得到的共轭微孔聚合物进行氮气吸附-解吸附实验,结果参见图5,从图中可以看出,实施例聚合物显现了明显的微孔介孔性质,高的比表面积,1477m2 g-1和1388m2 g-1
通过实施例1和实施例8制备得到的共轭微孔聚合物的孔径分布请参见图6,从图中可以看出,实施例聚合物孔径分布在微孔、介孔区域,有利于气体的吸附和存储。
通过实施例1和实施例8制备得到的共轭微孔聚合物的紫外可见光吸收谱图请参见图7,从图中可以看出,实施例聚合物和相应的单体相比,显示了明显的红移现象,表明了聚合物中形成了大的共轭结构,在光电领域有潜在的应用。
通过实施例1和实施例8制备得到的共轭微孔聚合物的XRD图请参见图8,从图中可以看出,实施例聚合物是无定型结构。
通过实施例1和实施例8制备得到的共轭微孔聚合物的TGA图请参见图9,从图中可以看出,实施例聚合物优良的热力学稳定性,加热到800℃仅有50%的重量损失。
采用气体吸附仪对通过实施例1的制备方法制备得到的共轭微孔聚合物分别进行二氧化碳和氢气吸附测试,结果参见图10和图11。
可以看出,在273K下,二氧化碳吸附量为11wt%,10.5wt%(图10),在77K下氢气吸附量为1.30wt%,0.92wt%(图11),均显示了通过本发明提供的制备方法制备得到的共轭微孔聚合物本优异的吸附能力。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种二炔类共轭微孔聚合物的制备方法,其特征在于,所述方法包括:
将一种或多种含有多元卤代炔基的芳香族化合物作为单体,将该单体分散于有机溶剂中,加入含碘化合物作为催化剂,进行单体自聚反应,反应完成后得到所述二炔类共轭微孔聚合物。
2.根据权利要求1所述的制备方法,其特征在于,所述含有多元卤代炔基的芳香环化合物包括:三(4-溴代乙炔基苯基)胺、1,3,6,8-四(溴代乙炔基)芘、1,3,5-三(溴代乙炔基)苯、1,3,5-三(对溴代乙炔基)苯基苯、四(溴代乙炔基)四苯甲烷、1,1,2,2-四(4-溴代乙炔基)四苯乙烯、1,2,4,5-四(溴代乙炔基)苯、2,4,6-(对溴代乙炔基苯基)-1,3,5-三嗪或2,2',7,7'-四(溴代乙炔基)-9,9'-螺二芴。
3.根据权利要求1或2所述的制备方法,其特征在于,所述单体与催化剂的摩尔比为1:(9-63);优选地,所述单体与催化剂的摩尔比为1:(45-63)。
4.根据权利要求1或2所述的制备方法,其特征在于,所述含碘化合物为碘化钾、碘化钠、碘化锂、碘化镁和四丁基碘化铵中的一种或多种。
5.根据权利要求1或2所述的制备方法,其特征在于,所述有机溶剂为甲苯、二甲苯、三甲苯、二氯苯、1,4-二氧六环、乙腈、N,N-二甲基甲酰胺、N,N,-二甲基乙酰胺、二甲亚砜和N-甲基吡咯烷酮、间甲酚中的一种或多种。
6.根据权利要求1所述的制备方法,其特征在于,所述加入含碘化合物作为催化剂,进行单体自聚反应,反应完成后得到所述二炔类共轭微孔聚合物,具体包括:
加入含碘化合物作为催化剂并超声处理,在无水无氧条件下,在120-150℃的温度下进行单体自缩聚反应,反应时间为48-72h;
反应完成后依次用甲醇、蒸馏水、DMF、丙酮洗涤,然后依次用甲醇、四氢呋喃索氏提取纯化,最后干燥得到所述共轭微孔聚合物。
7.根据权利要求6所述的制备方法,其特征在于,所述在无水无氧条件下,具体包括:
将装有所述单体、有机溶剂和催化剂的容器在液氮环境中进行骤冻,内部抽真空后用火焰密封。
8.一种根据权利要求1-7任一项所述的制备方法制备得到的二炔类共轭微孔聚合物,其特征在于,所述聚合物包括骨架和形成于骨架之间的孔通道,所述骨架为具有芳香性且以二炔为连接单元。
9.根据权利要求8所述的聚合物,其特征在于,所述聚合物为层状结构,所述孔通道包括孔径小于2nm的微孔、孔径为2-50nm的介孔和孔径大于50nm的大孔。
10.一种权利要求8或9所述的二炔类共轭微孔聚合物的应用,其特征在于,用于气体或污染物的吸附和存储,或在光电领域的应用;该气体包括氢气、二氧化碳或甲烷,该污染物包括放射性物质、废油或染料。
CN202110440804.3A 2021-04-23 2021-04-23 一种二炔类共轭微孔聚合物、制备方法及其应用 Active CN113150249B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110440804.3A CN113150249B (zh) 2021-04-23 2021-04-23 一种二炔类共轭微孔聚合物、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110440804.3A CN113150249B (zh) 2021-04-23 2021-04-23 一种二炔类共轭微孔聚合物、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN113150249A true CN113150249A (zh) 2021-07-23
CN113150249B CN113150249B (zh) 2022-08-05

Family

ID=76870050

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110440804.3A Active CN113150249B (zh) 2021-04-23 2021-04-23 一种二炔类共轭微孔聚合物、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN113150249B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831512A (zh) * 2021-09-22 2021-12-24 中山大学 一种多氮共轭微孔聚合物及其制备方法与应用
CN114149569A (zh) * 2021-11-30 2022-03-08 华中科技大学 一种共轭碳碘聚合物及制备与用于制备定位标记物的应用
CN115521441A (zh) * 2022-09-13 2022-12-27 东华理工大学 一种共轭微孔聚合物及其制备方法和应用
CN115926118A (zh) * 2022-11-22 2023-04-07 宁夏大学 一种钯/共轭微孔聚合物的制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140066533A1 (en) * 2011-12-19 2014-03-06 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Conjugated microporous macromolecule catalyst complexed with cobalt, chromium, zinc, copper or aluminium, preparation and use thereof
CN107151313A (zh) * 2017-06-08 2017-09-12 吉林师范大学 一种含氮的共轭有机微孔聚合物、制备方法及应用
CN107297196A (zh) * 2017-08-29 2017-10-27 吉林师范大学 一种含氟多孔碳材料及其制备方法和应用
CN110016126A (zh) * 2019-03-04 2019-07-16 华南理工大学 一种共轭微孔聚合物及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140066533A1 (en) * 2011-12-19 2014-03-06 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Conjugated microporous macromolecule catalyst complexed with cobalt, chromium, zinc, copper or aluminium, preparation and use thereof
CN107151313A (zh) * 2017-06-08 2017-09-12 吉林师范大学 一种含氮的共轭有机微孔聚合物、制备方法及应用
CN107297196A (zh) * 2017-08-29 2017-10-27 吉林师范大学 一种含氟多孔碳材料及其制备方法和应用
CN110016126A (zh) * 2019-03-04 2019-07-16 华南理工大学 一种共轭微孔聚合物及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUN ZHANG ET AL.: "Development of a transition metal-free polymerization route to functional conjugated polydiynes from a haloalkyne-based organic reaction", 《POLYMER CHEMISTRY》 *
ZHENGWANG CHEN: "Transition-Metal-Free Homocoupling of 1-Haloalkynes: A Facile Synthesis of Symmetrical 1,3-Diynes", 《J. ORG. CHEM》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831512A (zh) * 2021-09-22 2021-12-24 中山大学 一种多氮共轭微孔聚合物及其制备方法与应用
CN114149569A (zh) * 2021-11-30 2022-03-08 华中科技大学 一种共轭碳碘聚合物及制备与用于制备定位标记物的应用
CN115521441A (zh) * 2022-09-13 2022-12-27 东华理工大学 一种共轭微孔聚合物及其制备方法和应用
CN115521441B (zh) * 2022-09-13 2024-05-31 东华理工大学 一种共轭微孔聚合物及其制备方法和应用
CN115926118A (zh) * 2022-11-22 2023-04-07 宁夏大学 一种钯/共轭微孔聚合物的制备方法及其应用

Also Published As

Publication number Publication date
CN113150249B (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
CN113150249B (zh) 一种二炔类共轭微孔聚合物、制备方法及其应用
CN104371112B (zh) 一类基于三蝶烯骨架的有机多孔聚合物及其制备和应用
CN114292374B (zh) 一种含氟基多结构单元共价有机框架材料、其制备方法及油水分离应用
CN110606940B (zh) 一种含咔唑结构单元的多孔芳香骨架材料及其制备方法和应用
CN107033346B (zh) 一种二茂铁基聚席夫碱多孔聚合物和多孔聚合物材料及制备方法和应用
CN113683740A (zh) 卤素离子功能化有机多孔材料及其制备方法和用途
Lin et al. Luminescent BODIPY-based porous organic polymer for CO2 adsorption
CN113831512B (zh) 一种多氮共轭微孔聚合物及其制备方法与应用
CN109232886A (zh) 一种基于咔唑基团的共轭微孔聚合物的制备方法和应用
CN115505103B (zh) 一种共轭微孔聚合物、其有机胺催化合成方法和应用
CN111004103B (zh) 一种化合物、共价有机框架材料及其制备方法与应用
CN111171331B (zh) 一种卟啉-蒽基共价有机框架材料及其制备方法和应用
CN109762142B (zh) 一种基于光热效应调控二氧化碳吸附的共轭高分子材料
CN114605602B (zh) 一种多级孔共价有机框架化合物及其制备方法与应用
CN112898540B (zh) 含柱芳烃或去柱芳烃的多孔共轭聚合物及其制备方法和应用
Popa et al. Crosslinked polysulfone obtained by Wittig‐Horner reaction in biphase system
CN111848928B (zh) 一种共轭微孔咔唑聚合物及其制备方法和应用以及一种荧光薄膜及其制备方法
CN105885015A (zh) 并噻唑交联多孔有机聚合物及其制备方法
CN117327243B (zh) 烯烃链接的二维共价有机框架及其制备方法和应用
CN118005919A (zh) 一种基于氟硼荧的离子型多孔有机聚合物及其制备方法和光催化应用
CN117467145A (zh) 一种基于bodipy的多孔有机聚合物的制备方法及其光催化应用
WO2023240437A1 (zh) 一种双金属配位卟啉基d-a型共轭聚合物及制备方法与应用
CN117304454A (zh) 一种基于卟啉共轭微孔聚合物的制备方法及其在污水中的应用
CN118240207A (zh) 芳胺基共轭微孔聚合物及其制备方法和应用
CN114789045A (zh) 一种用于电子特气分离纯化的有机多孔材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant