CN113149146A - 利用3D技术制备Ti4O7电极的方法、多孔三维Ti4O7电极及应用 - Google Patents

利用3D技术制备Ti4O7电极的方法、多孔三维Ti4O7电极及应用 Download PDF

Info

Publication number
CN113149146A
CN113149146A CN202110388888.0A CN202110388888A CN113149146A CN 113149146 A CN113149146 A CN 113149146A CN 202110388888 A CN202110388888 A CN 202110388888A CN 113149146 A CN113149146 A CN 113149146A
Authority
CN
China
Prior art keywords
powder
electrode
printing
dimensional
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110388888.0A
Other languages
English (en)
Other versions
CN113149146B (zh
Inventor
李威
何忠艳
吕斯濠
林辉
刘倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan University of Technology
Original Assignee
Dongguan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan University of Technology filed Critical Dongguan University of Technology
Priority to CN202110388888.0A priority Critical patent/CN113149146B/zh
Publication of CN113149146A publication Critical patent/CN113149146A/zh
Application granted granted Critical
Publication of CN113149146B publication Critical patent/CN113149146B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • B28B17/02Conditioning the material prior to shaping
    • B28B17/026Conditioning ceramic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Civil Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开一种利用3D技术制备Ti4O7电极的方法,包括有以下步骤;(1)选材;(2)预处理;(3)混料;(4)3D建模;(5)铺设打印粉末;(6)激光扫描;(7)平台下降;(8)余料清除。通过使用本发明3D打印技术打印出的三维Ti4O7电极,其实现了微生物电化学系统中具有孔隙结构的三维电极的制造,表面活性点排布更多,具有更高的孔隙率和比表面积,更有利于微生物的附着和生长。该三维Ti4O7电极作为阳极应用到污水处理时,相较二维Ti4O7电极作为阳极对废水的降解率大大提升。

Description

利用3D技术制备Ti4O7电极的方法、多孔三维Ti4O7电极及应用
技术领域
本发明涉及电化学电极制造领域技术,尤其是指一种利用3D技术制备 Ti4O7电极的方法与应用。
背景技术
电化学氧化技术在废水处理方面的应用最大优势在于处理效率高、操作条件温和、自控方便等。阳极产生的羟基自由基可以在电极表面无选择性的与各种难降解有机物以不同的扩散速率发生氧化反应。电化学氧化对有机污染物的去除率在很大程度上取决于阳极材料的性质,因此,提高阳极材料的电化学性能尤为重要。
阳极作为电化学氧化装置的重要组件极大地影响污染物降解性能。
亚氧化钛具有卓越的电化学性能,因此把其作为阳极材料应用于电化学高级氧化中对难降解有机物具有促进作用,但电极的质量较大程度上受到人为操作因素和外界实验条件的影响。如何提高亚氧化钛电极的制作效率及增加电极表面活性位点成为改进该技术的主要问题。
发明内容
有鉴于此,本发明针对现有技术存在之缺失,其主要目的是提供利用 3D技术制备Ti4O7电极的方法、多孔三维Ti4O7电极及应用,其解决了如何提高亚氧化钛电极的制作效率及增加电极表面活性位点的问题。
为实现上述目的,本发明采用如下之技术方案:
一种利用3D技术制备Ti4O7电极的方法,包括有以下步骤;
(1)选材:选取纳米级的Ti4O7粉末为原料;
(2)预处理:以重量分计,取2份Ti4O7粉末,0.2-0.5份无水乙醇,放入容器中混合;再利用加热磁力搅拌器在90℃的条件下将容器中混合液体加热至干燥;然后放入烘箱,并设定烘箱温度为60°并烘烤10h;接着将烘烤完成的粉剂放入球磨仪进行研磨,所得到的粉末为经过预处理的Ti4O7粉末;
(3)混料:以质量百分数计,预处理的Ti4O7粉体质量百分数为50%~ 90%,高分子粘结剂环氧树脂质量百分数为10%~50%;将所述预处理的 Ti4O7粉体和高分子粘结剂环氧树脂按照质量百分数进行混合,再放入球磨仪进行机械混合和研磨,使预处理Ti4O7粉体与高分子粘结剂环氧树脂达到完全均匀混合;
(4)3D建模:使用三维制图软件绘制出所需要打印的三维模型电极并设定3D打印参数;
(5)铺设打印粉末:将(3)中得的混合粉末铺设于3D打印机中的升降平台与刮料板之间的区域,待混合粉末完成铺设后,利用刮料板将超过设定厚度的混合粉末刮除得到设定厚度的打印粉末层,每层打印粉末层厚度一致,其厚度为0.1mm-0.2mm;
(6)激光扫描:3D打印机中的激光头发出激光光束按照设定的程序扫描打印粉末层,使区域内扫描的打印粉末相互结合在一起,激光预热温度为50-70℃,烧结温度为1200-1600℃,激光功率为5-10W,扫描间距为 0.1mm-0.2mm,扫描速度为1500-2000mm/s;
(7)平台下降:扫描完一层打印粉末层后,3D打印机中的升降平台按照设定的程序下降单一打印粉末层的高度;然后,依次重复步骤“铺设打印粉末-激光扫描-平台下降”,直至使多层打印粉末层烧结成(4)中绘制的三维模型电极;
(8)余料清除:将3D打印完成的电极取出用水冲洗,清除电极上未打印的粉末,获得三维Ti4O7电极。
一种利用3D技术制备Ti4O7电极的方法,包括有以下步骤;
(1)选材:选取纳米级的Ti4O7粉末为原料;
(2)预处理:以重量分计,取2份Ti4O7粉末,0.2-0.5份无水乙醇,放入容器中混合;再利用加热磁力搅拌器在90℃的条件下将容器中混合液体加热至干燥;然后放入烘箱,并设定烘箱温度为60°并烘烤10h;接着将烘烤完成的粉剂放入球磨仪进行研磨,所得到的粉末为经过预处理的Ti4O7粉末;
(3)混料:以质量百分数计,预处理Ti4O7粉末的质量百分数为45%~ 85%,聚合物尼龙12的质量百分数为10%~45%,无水乙醇的质量百分数为5%~10%;将所述预处理的Ti4O7粉末、聚合物尼龙12和无水乙醇按照质量百分数进行混合,并受热熔合且搅拌,使聚合物尼龙12充分溶解于无水乙醇中;在混合物冷却过程中,聚合物尼龙12在无水乙醇中的溶解度下降,并以陶瓷颗粒为核析出,最后将剩余的无水乙醇进行抽滤回收,剩余混合物烘干、过筛获得聚合物覆膜陶瓷粉末;
(4)3D建模:使用三维制图软件绘制出所需要打印的三维模型电极并设定3D打印参数;
(5)铺设打印粉末:将(3)中的聚合物覆膜陶瓷粉末铺设于3D打印机中的升降平台与刮料板之间的区域,待聚合物覆膜陶瓷粉末完成进料后,利用刮料板将超过设定厚度的聚合物覆膜陶瓷粉末刮除得到设定厚度的打印粉末层,每层打印粉末层厚度一致,其厚度为0.1mm-0.2mm;
(6)激光扫描:3D打印机中的激光头发出激光光束按照设定的程序扫描打印粉末层,使区域内扫描的打印粉末相互结合在一起,激光预热温度为50-70℃,烧结温度为1200-1600℃,激光功率为5-10W,扫描间距 0.1mm-0.2mm,扫描速度为1500-2000mm/s;
(7)平台下降:扫描完一层打印粉末层后,3D打印机中的升降平台按照设定的程序下降单一打印粉末层的高度,依次重复步骤“铺设打印粉末- 激光扫描-平台下降”,直至使多层打印粉末层烧结成(4)中绘制的三维模型电极;
(8)余料清除:将3D打印完成的电极取出用水冲洗,清除电极上未打印的粉末,获得三维Ti4O7电极。
一种利用3D技术制备Ti4O7电极的方法,包括有以下步骤;
(1)选材:选取纳米级的Ti4O7粉末为原料;
(2)预处理:以重量分计,取2份Ti4O7粉末,0.2-0.5份无水乙醇,放入容器中混合;再利用加热磁力搅拌器在90℃的条件下将烧杯中混合液体加热至干燥;然后放入烘箱,并设定烘箱温度为60°并烘烤10h;接着将烘烤完成的粉剂放入球磨仪进行研磨,所得到的新粉末为经过预处理的 Ti4O7粉末;
(3)混料:以质量百分数计,预处理的Ti4O7粉末的质量百分数为 45%~85%,硬脂酸粉体的质量百分数为10%~45%,无水乙醇的质量百分数为5%~10%;将所述预处理的Ti4O7粉末、硬脂酸粉体和无水乙醇按照质量百分数进行混合,并放入球磨仪高速球磨,使硬脂酸充分溶于无水乙醇,对得到的混合物加热并搅拌,使混合物蒸发至剩下所需混料,再将混料经过烘干、碾磨、过筛获得硬脂酸覆膜Ti4O7复合粉末;
(4)3D建模:使用三维制图软件绘制出所需要打印的电极三维模型并设定3D打印参数;
(5)铺设打印粉末:将(3)中的硬脂酸覆膜Ti4O7复合粉末铺设于3D 打印机中的升降平台与刮料板之间的区域,待硬脂酸覆膜Ti4O7复合粉末完成进料后,利用刮料板将超过设定厚度的硬脂酸覆膜Ti4O7复合粉末刮除得到设定厚度的打印粉末层,每层打印粉末层厚度一致,其厚度为0.1-0.2mm;
(6)激光扫描:3D打印机中的激光头发出激光光束按照设定的程序扫描打印粉末层,使区域内扫描的打印粉末相互结合在一起,激光预热温度为50-70℃,烧结温度为1200-1600℃,激光功率为5-10W,扫描间距为 0.1mm-0.2mm,扫描速度为1500-2000mm/s;
(7)平台下降:扫描完一层打印粉末层后,3D打印机中的升降平台按照设定的程序下降单一打印粉末层的高度,依次重复步骤“铺设打印粉末- 激光扫描-平台下降”,直至使多层打印粉末层烧结成(4)中绘制的三维模型电极;
(8)余料清除:将3D打印完成的电极取出用水冲洗,清除电极上未打印的粉末,获得三维Ti4O7电极。
作为一种优选方案,打印的所述三维Ti4O7电极浸泡氨水中处理获得丰富的孔结构。
作为一种优选方案,所述氨水浓度为0.2wt%~20wt%,浸泡处理时间为1~40小时。
一种多孔三维Ti4O7电极,使用一种利用3D技术制备Ti4O7电极的方法制成。
作为一种优选方案,在其表面和截面存在5微米到50微米的介孔,其孔隙率约为94.0-97.8%。
一种多孔三维Ti4O7电极在污水处理中作为阳极的应用。
本发明与现有技术相比具有明显的优点和有益效果,具体而言,由上述技术方案可知,
通过使用本发明3D打印技术打印出的三维Ti4O7电极,其实现了微生物电化学系统中具有孔隙结构的三维电极的制造,表面活性点排布更多,具有更高的孔隙率和比表面积,更有利于微生物的附着和生长。该三维Ti4O7电极作为阳极应用到污水处理时,相较二维Ti4O7电极作为阳极对废水的降解率大大提升。
为更清楚地阐述本发明的结构特征和功效,下面结合附图与具体实施例来对本发明进行详细说明。
附图说明
图1是本发明多孔三维Ti4O7电极结构示意图及局部放大图。
具体实施方式
第一实施例:
一种利用3D技术制备Ti4O7电极的方法,包括有以下步骤;
(1)选材:选取纳米级的Ti4O7粉末为原料;其纯度达99.99%以上,且Ti4O7粉末为60~100μm孔径大小的Ti4O7多孔粉末。
(2)预处理:以重量分计,取2份Ti4O7粉末,0.2-0.5份无水乙醇,放入容器中混合;再利用加热磁力搅拌器在90℃的条件下将容器中混合液体加热至干燥;然后放入烘箱,并设定烘箱温度为60°并烘烤10h;接着将烘烤完成的粉剂放入球磨仪进行研磨,所得到的粉末为经过预处理的Ti4O7粉末;研磨后的Ti4O7粉末更加的细腻。
(3)混料:以质量百分数计,预处理的Ti4O7粉体质量百分数为50%~ 90%,高分子粘结剂环氧树脂质量百分数为10%~50%;将所述预处理的 Ti4O7粉体和高分子粘结剂环氧树脂按照质量百分数进行混合,再放入球磨仪进行机械混合和研磨,使预处理Ti4O7粉体与高分子粘结剂环氧树脂达到完全均匀混合。该方法操作简单,对设备要求低,制粉周期短,在充分混合时可制备出满足SLS成型要求的混合粉末。
(4)3D建模:使用三维制图软件绘制出所需要打印的三维模型电极并设定3D打印参数;
(5)铺设打印粉末:将(3)中得的混合粉末铺设于3D打印机中的升降平台与刮料板之间的区域,待混合粉末完成铺设后,利用刮料板将超过设定厚度的混合粉末刮除得到设定厚度的打印粉末层,每层打印粉末层厚度一致,其厚度为0.1mm-0.2mm。利于3D打印机,可完成自动铺粉,且铺设的粉末层厚度可精准控制。
(6)激光扫描:3D打印机中的激光头发出激光光束按照设定的程序扫描打印粉末层,使区域内扫描的打印粉末相互结合在一起,激光预热温度为50-70℃,烧结温度为1200-1600℃,激光功率为5-10W,扫描间距为 0.1mm-0.2mm,扫描速度为1500-2000mm/s。激光对扫描的粉末烧结,烧结的粉末烧结连接。
(7)平台下降:扫描完一层打印粉末层后,3D打印机中的升降平台按照设定的程序下降单一打印粉末层的高度,即下降0.1mm-0.2mm高度;然后,依次重复步骤“铺设打印粉末-激光扫描-平台下降”,直至使多层打印粉末层烧结成(4)中绘制的三维模型电极;
(8)余料清除:将3D打印完成的电极取出用水冲洗,清除电极上未打印的粉末,获得三维Ti4O7电极。
第二实施例:
一种利用3D技术制备Ti4O7电极的方法,包括有以下步骤;
(1)选材:选取纳米级的Ti4O7粉末为原料;
(2)预处理:以重量分计,取2份Ti4O7粉末,0.2-0.5份无水乙醇,放入容器中混合;再利用加热磁力搅拌器在90℃的条件下将容器中混合液体加热至干燥;然后放入烘箱,并设定烘箱温度为60°并烘烤10h;接着将烘烤完成的粉剂放入球磨仪进行研磨,所得到的粉末为经过预处理的Ti4O7粉末;
(3)混料:以质量百分数计,预处理Ti4O7粉末的质量百分数为45%~ 85%,聚合物尼龙12的质量百分数为10%~45%,无水乙醇的质量百分数为5%~10%;将所述预处理的Ti4O7粉末、聚合物尼龙12和无水乙醇按照质量百分数进行混合,并受热熔合且搅拌,使聚合物尼龙12充分溶解于无水乙醇中;在混合物冷却过程中,聚合物尼龙12在无水乙醇中的溶解度下降,并以陶瓷颗粒为核析出,最后将剩余的无水乙醇进行抽滤回收,剩余混合物烘干、过筛获得聚合物覆膜陶瓷粉末;
(4)3D建模:使用三维制图软件绘制出所需要打印的三维模型电极并设定3D打印参数;
(5)铺设打印粉末:将(3)中的聚合物覆膜陶瓷粉末铺设于3D打印机中的升降平台与刮料板之间的区域,待聚合物覆膜陶瓷粉末完成进料后,利用刮料板将超过设定厚度的聚合物覆膜陶瓷粉末刮除得到设定厚度的打印粉末层,每层打印粉末层厚度一致,其厚度为0.1mm-0.2mm;
(6)激光扫描:3D打印机中的激光头发出激光光束按照设定的程序扫描打印粉末层,使区域内扫描的打印粉末相互结合在一起,激光预热温度为50-70℃,烧结温度为1200-1600℃,激光功率为5-10W,扫描间距 0.1mm-0.2mm,扫描速度为1500-2000mm/s;
(7)平台下降:扫描完一层打印粉末层后,3D打印机中的升降平台按照设定的程序下降单一打印粉末层的高度,依次重复步骤“铺设打印粉末- 激光扫描-平台下降”,直至使多层打印粉末层烧结成(4)中绘制的三维模型电极;
(8)余料清除:将3D打印完成的电极取出用水冲洗,清除电极上未打印的粉末,获得三维Ti4O7电极。
第二实施例与第一实施例不同在于步骤(3)混料的不同,第二实施例混料采用“溶解沉淀法”制备的覆膜Ti4O7粉体流动性更好,成分更加均匀,在铺粉、烧结过程中,不易出现偏聚现象,电极在后处理时收缩变形小,内部组织也更均匀。
第三实施例:
一种利用3D技术制备Ti4O7电极的方法,包括有以下步骤;
(1)选材:选取纳米级的Ti4O7粉末为原料;
(2)预处理:以重量分计,取2份Ti4O7粉末,0.2-0.5份无水乙醇,放入容器中混合;再利用加热磁力搅拌器在90℃的条件下将烧杯中混合液体加热至干燥;然后放入烘箱,并设定烘箱温度为60°并烘烤10h;接着将烘烤完成的粉剂放入球磨仪进行研磨,所得到的新粉末为经过预处理的 Ti4O7粉末;
(3)混料:以质量百分数计,预处理的Ti4O7粉末的质量百分数为 45%~85%,硬脂酸粉体的质量百分数为10%~45%,无水乙醇的质量百分数为5%~10%;将所述预处理的Ti4O7粉末、硬脂酸粉体和无水乙醇按照质量百分数进行混合,并放入球磨仪高速球磨,使硬脂酸充分溶于无水乙醇,对得到的混合物加热并搅拌,使混合物蒸发至剩下所需混料,再将混料经过烘干、碾磨、过筛获得硬脂酸覆膜Ti4O7复合粉末;
(4)3D建模:使用三维制图软件绘制出所需要打印的电极三维模型并设定3D打印参数;
(5)铺设打印粉末:将(3)中的硬脂酸覆膜Ti4O7复合粉末铺设于3D 打印机中的升降平台与刮料板之间的区域,待硬脂酸覆膜Ti4O7复合粉末完成进料后,利用刮料板将超过设定厚度的硬脂酸覆膜Ti4O7复合粉末刮除得到设定厚度的打印粉末层,每层打印粉末层厚度一致,其厚度为0.1-0.2mm;
(6)激光扫描:3D打印机中的激光头发出激光光束按照设定的程序扫描打印粉末层,使区域内扫描的打印粉末相互结合在一起,激光预热温度为50-70℃,烧结温度为1200-1600℃,激光功率为5-10W,扫描间距为 0.1mm-0.2mm,扫描速度为1500-2000mm/s;
(7)平台下降:扫描完一层打印粉末层后,3D打印机中的升降平台按照设定的程序下降单一打印粉末层的高度,依次重复步骤“铺设打印粉末- 激光扫描-平台下降”,直至使多层打印粉末层烧结成(4)中绘制的三维模型电极;
(8)余料清除:将3D打印完成的电极取出用水冲洗,清除电极上未打印的粉末,获得三维Ti4O7电极。
第三实施例与第一实施例、第二实施例不同在于步骤(3)混料的不同,实施例三采用的“溶剂蒸发法”制得的复合粉体接近球状,硬脂酸均匀地包覆在每颗Ti4O7粉体上,因此制备得到的复合陶瓷粉体流动性好。
通过3D打印技术可控制打印电极层数,可以制备不同厚度电极;通过调整打印速度,可以获得不同宽度电极;通过3D打印技术,可以实现丰富的孔道结构,有利于电解液渗透;且3D打印陶瓷材料目前得到迅速发展,具有精度高、周期短、个性化制作成本相对较低等优势,为投入到工程生产中提供了巨大的方便。
在第一实施例机械混合粉体的激光烧结过程中,由于Ti4O7粉体与高分子粘结剂是随机分布的,故既存在高分子熔体向Ti4O7粉体表面的浸润和铺展过程,也存在高分子同类表面之间的粘结过程。而在第二实施例溶解沉淀法的激光烧结过程中,由于Ti4O7粉体颗粒完全被高分子粘接剂所包覆,故在激光扫描时基本为高分子粘结剂本身接受扫描,因此仅发生高分子同类表面间的粘结。由于同类物质间的粘结速率远大于异相物质间的浸润与粘接速率,因而在使用相同种类和含量的粘接剂时,溶解沉淀法的烧结速率大于机械混合粉体。此外,相对于机械混合粉体,溶解沉淀法粉体激光选区烧结的成型效果较好,但其粉体的制备周期长,对设备要求高。而在第三实施例溶剂蒸发法得到的Ti4O7粉体更接近球状更饱满,且流动性更好,后续制作成的电极表面活性点更多。
打印的所述三维Ti4O7电极浸泡氨水中处理获得丰富的孔结构。可选地,所述氨水浓度为0.2wt%~20wt%,浸泡处理时间为1~40小时。其一实施例中将打印的三维Ti4O7电极放入20wt%氨水中并浸泡7小时。
如图1是一种多孔三维Ti4O7电极,使用一种利用3D技术制备Ti4O7电极的方法制成。且在其表面和截面存在5微米到50微米的介孔,其孔隙率约为 94.0-97.8%。孔隙结构具有良好的导电性,良好的生物相容性;能够显著提高微生物电化学系统载菌量和电子传输速率。
且一种多孔三维Ti4O7电极在污水处理中作为阳极的应用,用于对污水进行去污处理。
比较例:
对比例一:使用二维Ti4O7电极作为阳极。
将上述三个实施方式得到的三维Ti4O7电极作为阳极和对比例一中的二维Ti4O7电极作为阳极用于处理含有0.5mM的1,4-二氧六环(1,4-D)模拟有机废水,支撑电解质为20mM的硫酸钠,阴极为不锈钢,在电流密度为 10mA/cm2的条件下电解一小时,第一实施得到的三维Ti4O7电极作为阳极对 1,4-D的平均降解率为94.3%。第二实施得到的三维Ti4O7电极作为阳极对1, 4-D的平均降解率为99.7%。第三实施得到的三维Ti4O7电极作为阳极对1,4-D的平均降解率为99.9%,对比例一中的二维Ti4O7电极作为阳极对1,4-D 的平均降解率为58.8%。这说明3D打印后的三维Ti4O7电极作为阳极反应活性位点明显增加,催化活性提升很多。
以上所述,仅是本发明的较佳实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (8)

1.一种利用3D技术制备Ti4O7电极的方法,其特征在于:包括有以下步骤;
(1)选材:选取纳米级的Ti4O7粉末为原料;
(2)预处理:以重量分计,取2份Ti4O7粉末,0.2-0.5份无水乙醇,放入容器中混合;再利用加热磁力搅拌器在90℃的条件下将容器中混合液体加热至干燥;然后放入烘箱,并设定烘箱温度为60°并烘烤10h;接着将烘烤完成的粉剂放入球磨仪进行研磨,所得到的粉末为经过预处理的Ti4O7粉末;
(3)混料:以质量百分数计,预处理的Ti4O7粉体质量百分数为50%~90%,高分子粘结剂环氧树脂质量百分数为10%~50%;将所述预处理的Ti4O7粉体和高分子粘结剂环氧树脂按照质量百分数进行混合,再放入球磨仪进行机械混合和研磨,使预处理Ti4O7粉体与高分子粘结剂环氧树脂达到完全均匀混合;
(4)3D建模:使用三维制图软件绘制出所需要打印的三维模型电极并设定3D打印参数;
(5)铺设打印粉末:将(3)中得的混合粉末铺设于3D打印机中的升降平台与刮料板之间的区域,待混合粉末完成铺设后,利用刮料板将超过设定厚度的混合粉末刮除得到设定厚度的打印粉末层,每层打印粉末层厚度一致,其厚度为0.1mm-0.2mm;
(6)激光扫描:3D打印机中的激光头发出激光光束按照设定的程序扫描打印粉末层,使区域内扫描的打印粉末相互结合在一起,激光预热温度为50-70℃,烧结温度为1200-1600℃,激光功率为5-10W,扫描间距为0.1mm-0.2mm,扫描速度为1500-2000mm/s;
(7)平台下降:扫描完一层打印粉末层后,3D打印机中的升降平台按照设定的程序下降单一打印粉末层的高度;然后,依次重复步骤“铺设打印粉末-激光扫描-平台下降”,直至使多层打印粉末层烧结成(4)中绘制的三维模型电极;
(8)余料清除:将3D打印完成的电极取出用水冲洗,清除电极上未打印的粉末,获得三维Ti4O7电极。
2.一种利用3D技术制备Ti4O7电极的方法,其特征在于:包括有以下步骤;
(1)选材:选取纳米级的Ti4O7粉末为原料;
(2)预处理:以重量分计,取2份Ti4O7粉末,0.2-0.5份无水乙醇,放入容器中混合;再利用加热磁力搅拌器在90℃的条件下将容器中混合液体加热至干燥;然后放入烘箱,并设定烘箱温度为60°并烘烤10h;接着将烘烤完成的粉剂放入球磨仪进行研磨,所得到的粉末为经过预处理的Ti4O7粉末;
(3)混料:以质量百分数计,预处理Ti4O7粉末的质量百分数为45%~85%,聚合物尼龙12的质量百分数为10%~45%,无水乙醇的质量百分数为5%~10%;将所述预处理的Ti4O7粉末、聚合物尼龙12和无水乙醇按照质量百分数进行混合,并受热熔合且搅拌,使聚合物尼龙12充分溶解于无水乙醇中;在混合物冷却过程中,聚合物尼龙12在无水乙醇中的溶解度下降,并以陶瓷颗粒为核析出,最后将剩余的无水乙醇进行抽滤回收,剩余混合物烘干、过筛获得聚合物覆膜陶瓷粉末;
(4)3D建模:使用三维制图软件绘制出所需要打印的三维模型电极并设定3D打印参数;
(5)铺设打印粉末:将(3)中的聚合物覆膜陶瓷粉末铺设于3D打印机中的升降平台与刮料板之间的区域,待聚合物覆膜陶瓷粉末完成进料后,利用刮料板将超过设定厚度的聚合物覆膜陶瓷粉末刮除得到设定厚度的打印粉末层,每层打印粉末层厚度一致,其厚度为0.1mm-0.2mm;
(6)激光扫描:3D打印机中的激光头发出激光光束按照设定的程序扫描打印粉末层,使区域内扫描的打印粉末相互结合在一起,激光预热温度为50-70℃,烧结温度为1200-1600℃,激光功率为5-10W,扫描间距0.1mm-0.2mm,扫描速度为1500-2000mm/s;
(7)平台下降:扫描完一层打印粉末层后,3D打印机中的升降平台按照设定的程序下降单一打印粉末层的高度,依次重复步骤“铺设打印粉末-激光扫描-平台下降”,直至使多层打印粉末层烧结成(4)中绘制的三维模型电极;
(8)余料清除:将3D打印完成的电极取出用水冲洗,清除电极上未打印的粉末,获得三维Ti4O7电极。
3.一种利用3D技术制备Ti4O7电极的方法,其特征在于:包括有以下步骤;
(1)选材:选取纳米级的Ti4O7粉末为原料;
(2)预处理:以重量分计,取2份Ti4O7粉末,0.2-0.5份无水乙醇,放入容器中混合;再利用加热磁力搅拌器在90℃的条件下将烧杯中混合液体加热至干燥;然后放入烘箱,并设定烘箱温度为60°并烘烤10h;接着将烘烤完成的粉剂放入球磨仪进行研磨,所得到的新粉末为经过预处理的Ti4O7粉末;
(3)混料:以质量百分数计,预处理的Ti4O7粉末的质量百分数为45%~85%,硬脂酸粉体的质量百分数为10%~45%,无水乙醇的质量百分数为5%~10%;将所述预处理的Ti4O7粉末、硬脂酸粉体和无水乙醇按照质量百分数进行混合,并放入球磨仪高速球磨,使硬脂酸充分溶于无水乙醇,对得到的混合物加热并搅拌,使混合物蒸发至剩下所需混料,再将混料经过烘干、碾磨、过筛获得硬脂酸覆膜Ti4O7复合粉末;
(4)3D建模:使用三维制图软件绘制出所需要打印的电极三维模型并设定3D打印参数;
(5)铺设打印粉末:将(3)中的硬脂酸覆膜Ti4O7复合粉末铺设于3D打印机中的升降平台与刮料板之间的区域,待硬脂酸覆膜Ti4O7复合粉末完成进料后,利用刮料板将超过设定厚度的硬脂酸覆膜Ti4O7复合粉末刮除得到设定厚度的打印粉末层,每层打印粉末层厚度一致,其厚度为0.1-0.2mm;
(6)激光扫描:3D打印机中的激光头发出激光光束按照设定的程序扫描打印粉末层,使区域内扫描的打印粉末相互结合在一起,激光预热温度为50-70℃,烧结温度为1200-1600℃,激光功率为5-10W,扫描间距为0.1mm-0.2mm,扫描速度为1500-2000mm/s;
(7)平台下降:扫描完一层打印粉末层后,3D打印机中的升降平台按照设定的程序下降单一打印粉末层的高度,依次重复步骤“铺设打印粉末-激光扫描-平台下降”,直至使多层打印粉末层烧结成(4)中绘制的三维模型电极;
(8)余料清除:将3D打印完成的电极取出用水冲洗,清除电极上未打印的粉末,获得三维Ti4O7电极。
4.根据权利要求1-3任一项所述的利用3D技术制备Ti4O7电极的方法,其特征在于:打印的所述三维Ti4O7电极浸泡氨水中处理获得丰富的孔结构。
5.根据权利要求4所述的利用3D技术制备Ti4O7电极的方法,其特征在于:所述氨水浓度为0.2wt%~20wt%,浸泡处理时间为1~40小时。
6.一种多孔三维Ti4O7电极,其特征在于:使用1-5任一项所述的利用3D技术制备Ti4O7电极的方法制成。
7.根据权利要求6所述的多孔三维Ti4O7电极,其特征在于:在其表面和截面存在5微米到50微米的介孔,其孔隙率约为94.0-97.8%。
8.根据权利要求6或7所述的多孔三维Ti4O7电极在污水处理中作为阳极的应用。
CN202110388888.0A 2021-04-12 2021-04-12 利用3D技术制备Ti4O7电极的方法、多孔三维Ti4O7电极及应用 Active CN113149146B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110388888.0A CN113149146B (zh) 2021-04-12 2021-04-12 利用3D技术制备Ti4O7电极的方法、多孔三维Ti4O7电极及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110388888.0A CN113149146B (zh) 2021-04-12 2021-04-12 利用3D技术制备Ti4O7电极的方法、多孔三维Ti4O7电极及应用

Publications (2)

Publication Number Publication Date
CN113149146A true CN113149146A (zh) 2021-07-23
CN113149146B CN113149146B (zh) 2022-04-01

Family

ID=76889890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110388888.0A Active CN113149146B (zh) 2021-04-12 2021-04-12 利用3D技术制备Ti4O7电极的方法、多孔三维Ti4O7电极及应用

Country Status (1)

Country Link
CN (1) CN113149146B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929185A (zh) * 2021-09-26 2022-01-14 中国原子能科学研究院 一种通过电解池处理含有硝酸的放射性废液的方法
CN114149057A (zh) * 2021-12-15 2022-03-08 厦门秀澈环保科技有限公司 一种难生化废水电化学高级氧化EAOPs多孔电极制备方法及多孔电极板
CN115947614A (zh) * 2022-06-09 2023-04-11 松山湖材料实验室 亚氧化钛陶瓷电极及其制备方法、应用和电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103303971A (zh) * 2013-06-24 2013-09-18 四川大学 一种用Ti4O7系粉体制备电极材料的方法
CN106242585A (zh) * 2016-09-29 2016-12-21 四川大学 一种亚氧化钛球形粉末及其制备方法
CN106735176A (zh) * 2017-01-18 2017-05-31 成都锦钛精工科技有限公司 亚氧化钛‑金属复合球形或类球形粉末及其制备方法
KR20200003311A (ko) * 2018-06-19 2020-01-09 전자부품연구원 3d 프린팅을 이용한 스트레처블 전도성 소자 및 그 제조방법
CN110752354A (zh) * 2019-09-24 2020-02-04 中国地质大学(武汉) 普适性的3d打印纳米电极浆料及其制备方法
CN111217354A (zh) * 2020-01-09 2020-06-02 福建师范大学 一种基于3d打印的自支撑钠离子电池负极材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103303971A (zh) * 2013-06-24 2013-09-18 四川大学 一种用Ti4O7系粉体制备电极材料的方法
CN106242585A (zh) * 2016-09-29 2016-12-21 四川大学 一种亚氧化钛球形粉末及其制备方法
CN106735176A (zh) * 2017-01-18 2017-05-31 成都锦钛精工科技有限公司 亚氧化钛‑金属复合球形或类球形粉末及其制备方法
KR20200003311A (ko) * 2018-06-19 2020-01-09 전자부품연구원 3d 프린팅을 이용한 스트레처블 전도성 소자 및 그 제조방법
CN110752354A (zh) * 2019-09-24 2020-02-04 中国地质大学(武汉) 普适性的3d打印纳米电极浆料及其制备方法
CN111217354A (zh) * 2020-01-09 2020-06-02 福建师范大学 一种基于3d打印的自支撑钠离子电池负极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KRAIROP CHAROENSOPA ET AL.: "3D Printed Titanium Dioxide Thin Films for Optoelectronic Applications", 《KEY ENGINEERING MATERIALS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929185A (zh) * 2021-09-26 2022-01-14 中国原子能科学研究院 一种通过电解池处理含有硝酸的放射性废液的方法
CN114149057A (zh) * 2021-12-15 2022-03-08 厦门秀澈环保科技有限公司 一种难生化废水电化学高级氧化EAOPs多孔电极制备方法及多孔电极板
CN114149057B (zh) * 2021-12-15 2023-09-01 厦门华澈环保科技有限公司 一种难生化废水电化学高级氧化EAOPs多孔电极制备方法及多孔电极板
CN115947614A (zh) * 2022-06-09 2023-04-11 松山湖材料实验室 亚氧化钛陶瓷电极及其制备方法、应用和电设备
CN115947614B (zh) * 2022-06-09 2024-05-03 松山湖材料实验室 亚氧化钛陶瓷电极及其制备方法、应用和电设备

Also Published As

Publication number Publication date
CN113149146B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
CN113149146B (zh) 利用3D技术制备Ti4O7电极的方法、多孔三维Ti4O7电极及应用
CN110028335B (zh) 一种3d打印多孔陶瓷组织工程制件的方法
CA1065112A (en) Spinning polymeric suspension in electric field and collecting fibres on electrode
Lee et al. Effect of scaffold architecture and pore size on smooth muscle cell growth
JP4886026B2 (ja) 3次元形状セラミック体を製造するためのプロセスおよび装置
CN109498844B (zh) 一种低成本制备高复合孔隙率骨组织支架材料的方法
EP2025657A2 (de) Verfahren zur Herstellung von kohlenstoffbasierten Formkörpern und deren Verwendung als Zellkulturträger- und Aufzuchtsysteme
CN108525014B (zh) 一种3d凝胶打印多结构ha陶瓷复合材料支架的方法
CN112663057B (zh) 一种微弧氧化钛表面羟基磷灰石/载药水凝胶复合涂层的制备方法
CN105563841A (zh) 一种多孔三维部件的3d打印制作方法及设备
CN105749354A (zh) 一种含海藻酸钠的三维支架的常态成型方法
CN113101410B (zh) 一种具有均匀中孔的三维连通多级孔结构的磷酸三钙支架及其制备方法和应用
CN112206353B (zh) 一种甲壳素晶须液晶弹性体修饰的聚乳酸复合材料及其制备方法与应用
CN109647221A (zh) 一种基于3d打印技术正渗透膜的制备方法
CN108553684A (zh) 一种复合气凝胶微球及其制备方法
CN110302429B (zh) 一种Ag-DBT/PVDF复合骨支架及其制备方法
CN103490073A (zh) 一种微生物燃料电池的空气阴极及其制备方法
CN113500194B (zh) 一种有序多级孔结构钽骨植入体的制备方法
CN108840402B (zh) 一种Ti/炭气凝胶/MnO2电极及其制备方法和应用
CN107051231A (zh) 聚氯乙烯均质多孔膜的制备方法
CN117800655A (zh) 一种高精度互连多孔结构羟基磷灰石/壳聚糖复合支架室温一步法3d打印成型方法
CN113517446B (zh) 利用3D技术制备活性多孔Co-Cu-Ti4O7复合三维电极的方法及应用
CN114870075B (zh) 一种用于原位增强组织再生的膜及其制备方法
CN113426492A (zh) 一种非晶态多孔陶瓷纳米纤维膜及其制备方法和应用
CN115671384A (zh) 一种骨修复支架及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant