CN113136641B - 一种氮、硼掺杂非晶碳中空纤维膜的制备方法 - Google Patents

一种氮、硼掺杂非晶碳中空纤维膜的制备方法 Download PDF

Info

Publication number
CN113136641B
CN113136641B CN202110275151.8A CN202110275151A CN113136641B CN 113136641 B CN113136641 B CN 113136641B CN 202110275151 A CN202110275151 A CN 202110275151A CN 113136641 B CN113136641 B CN 113136641B
Authority
CN
China
Prior art keywords
nitrogen
amorphous carbon
doped amorphous
boron
bubbler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110275151.8A
Other languages
English (en)
Other versions
CN113136641A (zh
Inventor
吕燕飞
彭雪
蔡庆锋
赵士超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202110275151.8A priority Critical patent/CN113136641B/zh
Publication of CN113136641A publication Critical patent/CN113136641A/zh
Application granted granted Critical
Publication of CN113136641B publication Critical patent/CN113136641B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明公开了一种氮、硼掺杂非晶碳中空纤维膜的制备方法,本发明采用氨硼烷作为氮、硼掺杂剂,苯甲醚作为非晶碳源,铜纤维为生长基底,通过气相法在基底上制备出氮、硼掺杂非晶碳纤维膜,纤维膜厚度从数纳米厚度到100纳米。表面生长有碳纤维膜的铜纤维,经过氯化铁溶解去除后,制备成氮、硼掺杂非晶碳中空纤维膜。本发明以氮、硼为掺杂剂,氮、硼原子的引入,易于非晶碳在铜纤维表面的异质成核;苯甲醚作为碳源,苯甲醚中的氧原子高温下对铜氧化刻蚀,在还原性气体氢的作用下,铜纤维表面粗糙度增加促进非晶碳的生长。制备的氮、硼掺杂非晶碳中空纤维,膜厚度可控、尺寸均匀、膜连续无气孔且表面粗糙度小。

Description

一种氮、硼掺杂非晶碳中空纤维膜的制备方法
技术领域
本发明属于材料技术领域,具体涉及一种硼、氮掺杂非晶碳中空纤维膜的制备方法。
背景技术
非晶碳材料具有较好的机械性能、电学性能、耐氧化抗腐蚀,近些年引起人们的关注,它可用于电极材料、光刻刻蚀掩膜版、电传感、固态润滑、超级电容器等领域,通过氮、硼掺杂后还有抑制细菌繁殖、吸收电磁波等性能。氮、硼掺杂非晶碳可通过固相烧结法,如硼砂、尿素和碳源共烧,溅射法等合成。但这些方法无法制备中空纤维膜。
发明内容
本发明针对现有技术的不足,提出了一种氮、硼掺杂非晶碳中空纤维膜的制备方法,本发明通过氮、硼掺杂制备了非晶碳中空纤维膜,可用于固体粉末、气体、液体过滤净化,电极制备等领域。
本发明采用氨硼烷作为氮、硼掺杂剂,苯甲醚作为非晶碳源,铜纤维为生长基底,通过气相法在基底上制备出氮、硼掺杂非晶碳纤维膜,纤维膜厚度从数纳米厚度到100纳米。纤维内径取决于铜纤维直径,从0.5微米至1000微米。表面生长有碳纤维膜的铜纤维,经过氯化铁溶解去除后,制备成氮、硼掺杂非晶碳中空纤维膜。
本发明一种硼、氮掺杂非晶碳中空纤维膜制备方法的具体步骤是:
步骤(1).以铜纤维为衬底,放入化学气相沉积系统中的石英管中;
步骤(2).将氨硼烷装入石英鼓泡器中,鼓泡器一端连接载气氩氢,其中氢气体积占5%,一端连接化学气相沉积系统,通过载气将氨硼烷蒸气载入化学气相沉积系统中;载有氨硼烷蒸气的载气流量通过气体质量流量计控制,载气流速为10-50sccm;装有氨硼烷的石英鼓泡器加热温度为40-90℃;
步骤(3).将苯甲醚装入石英鼓泡器中,鼓泡器一端连接载气氩氢,其中氢气体积占5%,一端连接化学气相沉积系统,通过载气将苯甲醚蒸气载入化学气相沉积系统中;载有苯甲醚蒸气的载气流量通过气体质量流量计控制,流速为20-100sccm;所述的氨硼烷与苯甲醚的质量比为0.025:5;
步骤(4).将化学气相沉积系统中的石英管,升温至900~1100℃,升温速率为20~30℃/min;温度升至900~1100℃后保温,保温时间为20~60min;
步骤(6).管式电炉、石英管停止加热,开启管式炉,将石英管室温环境下快速冷却到室温,然后取出基底,在铜纤维表面获得氮、硼掺杂的非晶碳薄膜;氮、硼掺杂浓度相同,掺杂浓度原子比为0.5-40%;
步骤(7).步骤(6)产物通过三氯化铁的盐酸溶液浸泡,溶解去除铜,获得硼、氮掺杂非晶碳中空纤维膜,膜厚度0.5μm-1000μm。
作为优选,所述的铜纤维的尺寸为0.5μm至1000μm。
作为优选,所述的铜纤维替换为镍纤维或铜镍合金纤维。
作为优选,石英管替换为刚玉管。
本发明以氮、硼为掺杂剂,氮、硼原子的引入,易于非晶碳在铜纤维表面的异质成核;苯甲醚作为碳源,苯甲醚中的氧原子高温下对铜氧化刻蚀,在还原性气体氢的作用下,铜纤维表面粗糙度增加促进非晶碳的生长。制备的氮、硼掺杂非晶碳中空纤维,膜厚度可控、尺寸均匀、膜连续无气孔且表面粗糙度小。
附图说明
图1为本发明实施的装置图。
具体实施方式
实施一:一种硼、氮掺杂非晶碳中空纤维膜制备方法的具体步骤是:
步骤(1).将直径为0.5μm铜纤维作为衬底,放入化学气相沉积系统中的石英管中;
步骤(2).将0.5g氨硼烷装入石英鼓泡器中,鼓泡器一端连接载气氩氢,其中氢气体积占5%,一端连接化学气相沉积系统,通过载气将氨硼烷蒸气载入化学气相沉积系统中;载有氨硼烷蒸气的载气流量通过气体质量流量计控制,载气流速为10sccm;装有氨硼烷的石英鼓泡器加热温度为40℃;
步骤(3).将1g苯甲醚装入石英鼓泡器中,鼓泡器一端连接载气氩氢,其中氢气体积占5%,一端连接化学气相沉积系统,通过载气将苯甲醚蒸气载入化学气相沉积系统中;载有苯甲醚蒸气的载气流量通过气体质量流量计控制,流速为20sccm;
步骤(4).将化学气相沉积系统中的石英管,升温至900℃,升温速率为20℃/min;温度升至900℃后保温,保温时间为20min;
步骤(6).管式电炉、石英管停止加热,开启管式炉,将石英管室温环境下快速冷却到室温,然后取出基底,在铜纤维表面获得氮、硼掺杂的非晶碳薄膜;氮、硼掺杂浓度相同,掺杂浓度原子比为2%;
步骤(7).步骤(6)产物通过三氯化铁的盐酸溶液浸泡,溶解去除铜,获得硼、氮掺杂非晶碳中空纤维膜,膜厚度1μm。
实施例二:一种硼、氮掺杂非晶碳中空纤维膜制备方法的具体步骤是:
步骤(1).将直径为1000μm镍纤维作为衬底,放入化学气相沉积系统中的刚玉管中;
步骤(2).将氨硼烷装入石英鼓泡器中,鼓泡器一端连接载气氩氢,其中氢气体积占5%,一端连接化学气相沉积系统,通过载气将氨硼烷蒸气载入化学气相沉积系统中;载有氨硼烷蒸气的载气流量通过气体质量流量计控制,载气流速为30sccm;装有氨硼烷的石英鼓泡器加热温度为60℃;
步骤(3).将10g苯甲醚装入石英鼓泡器中,鼓泡器一端连接载气氩氢,其中氢气体积占5%,一端连接化学气相沉积系统,通过载气将苯甲醚蒸气载入化学气相沉积系统中;载有苯甲醚蒸气的载气流量通过气体质量流量计控制,流速为50sccm;
步骤(4).将化学气相沉积系统中的刚玉管,升温至1000℃,升温速率为25℃/min;温度升至1000℃后保温,保温时间为40min;
步骤(6).管式电炉、刚玉管停止加热,开启管式炉,将刚玉管室温环境下快速冷却到室温,然后取出基底,在镍纤维表面获得氮、硼掺杂的非晶碳薄膜;氮、硼掺杂浓度相同,掺杂浓度原子比为20%;
步骤(7).步骤(6)产物通过三氯化铁的盐酸溶液浸泡,溶解去除铜,获得硼、氮掺杂非晶碳中空纤维膜,膜厚度120μm。
实施例三:一种硼、氮掺杂非晶碳中空纤维膜制备方法的具体步骤是:
步骤(1).将直径为1000μm铜镍合金纤维为衬底,放入化学气相沉积系统中的石英管中;
步骤(2).将5g氨硼烷装入石英鼓泡器中,鼓泡器一端连接载气氩氢,其中氢气体积占5%,一端连接化学气相沉积系统,通过载气将氨硼烷蒸气载入化学气相沉积系统中;载有氨硼烷蒸气的载气流量通过气体质量流量计控制,载气流速为50sccm;装有氨硼烷的石英鼓泡器加热温度为90℃;
步骤(3).将20g苯甲醚装入石英鼓泡器中,鼓泡器一端连接载气氩氢,其中氢气体积占5%,一端连接化学气相沉积系统,通过载气将苯甲醚蒸气载入化学气相沉积系统中;载有苯甲醚蒸气的载气流量通过气体质量流量计控制,流速为100sccm;
步骤(4).将化学气相沉积系统中的石英管,升温至1100℃,升温速率为30℃/min;温度升至1100℃后保温,保温时间为60min;
步骤(6).管式电炉、石英管停止加热,开启管式炉,将石英管室温环境下快速冷却到室温,然后取出基底,在铜纤维表面获得氮、硼掺杂的非晶碳薄膜;氮、硼掺杂浓度相同,掺杂浓度原子比为40%;
步骤(7).步骤(6)产物通过三氯化铁的盐酸溶液浸泡,溶解去除铜,获得硼、氮掺杂非晶碳中空纤维膜,膜厚度800μm。

Claims (4)

1.一种氮、硼掺杂非晶碳中空纤维膜的制备方法,其特征在于,该方法具体包括以下步骤:
步骤1.以铜纤维为衬底,放入化学气相沉积系统中的石英管中;
步骤2.将氨硼烷装入石英鼓泡器中,鼓泡器一端连接载气氩氢,其中氢气体积占5%,一端连接化学气相沉积系统,通过载气将氨硼烷蒸气载入化学气相沉积系统中;载有氨硼烷蒸气的载气流量通过气体质量流量计控制,载气流速为10-50 sccm;装有氨硼烷的石英鼓泡器加热温度为40-90 ℃;
步骤3.将苯甲醚装入石英鼓泡器中,鼓泡器一端连接载气氩氢,其中氢气体积占5%,一端连接化学气相沉积系统,通过载气将苯甲醚蒸气载入化学气相沉积系统中;载有苯甲醚蒸气的载气流量通过气体质量流量计控制,流速为20-100 sccm;所述的氨硼烷与苯甲醚的质量比为0.025:5;
步骤4.将化学气相沉积系统中的石英管,升温至900~1100℃,升温速率为20~30℃/min;温度升至900~1100℃后保温,保温时间为20~60 min;
步骤5.管式电炉、石英管停止加热,开启管式炉,将石英管室温环境下快速冷却到室温,然后取出基底,在铜纤维表面获得氮、硼掺杂的非晶碳薄膜;氮、硼掺杂浓度相同,其中氮原子的浓度为0.5-40 %;
步骤6.步骤5产物通过三氯化铁的盐酸溶液浸泡,溶解去除铜,获得硼、氮掺杂非晶碳中空纤维膜,膜厚度0.5μm-1000μm。
2.根据权利要求1所述的一种氮、硼掺杂非晶碳中空纤维膜的制备方法,其特征在于:所述的铜纤维的尺寸为0.5μm至1000μm。
3.根据权利要求1所述的一种氮、硼掺杂非晶碳中空纤维膜的制备方法,其特征在于:所述的铜纤维替换为镍纤维或铜镍合金纤维。
4.根据权利要求1所述的一种氮、硼掺杂非晶碳中空纤维膜的制备方法,其特征在于:石英管替换为刚玉管。
CN202110275151.8A 2021-03-15 2021-03-15 一种氮、硼掺杂非晶碳中空纤维膜的制备方法 Active CN113136641B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110275151.8A CN113136641B (zh) 2021-03-15 2021-03-15 一种氮、硼掺杂非晶碳中空纤维膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110275151.8A CN113136641B (zh) 2021-03-15 2021-03-15 一种氮、硼掺杂非晶碳中空纤维膜的制备方法

Publications (2)

Publication Number Publication Date
CN113136641A CN113136641A (zh) 2021-07-20
CN113136641B true CN113136641B (zh) 2022-05-31

Family

ID=76811069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110275151.8A Active CN113136641B (zh) 2021-03-15 2021-03-15 一种氮、硼掺杂非晶碳中空纤维膜的制备方法

Country Status (1)

Country Link
CN (1) CN113136641B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0989204A1 (en) * 1998-09-25 2000-03-29 Japan Pionics Co., Ltd. Process for preparing nitride film
ITMI20081407A1 (it) * 2008-07-29 2010-01-30 Ct Regionale Di Competenza In B Iotecnologie I Ceppo batterico per la degradazione di miscele di idrocarburi aromatici mono e policiclici
EP3455874A1 (en) * 2016-05-12 2019-03-20 Globalwafers Co., Ltd. Direct formation of hexagonal boron nitride on silicon based dielectrics
EP3502189A1 (de) * 2017-12-22 2019-06-26 EMS-Patent AG Verwendung einer polyamid-formmassen zur reduktion von belagsbildung bei der thermoplastischen verarbeitung, polyamid-formmasse und verfahren zur herstellung von gebrauchsgegenständen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0989204A1 (en) * 1998-09-25 2000-03-29 Japan Pionics Co., Ltd. Process for preparing nitride film
ITMI20081407A1 (it) * 2008-07-29 2010-01-30 Ct Regionale Di Competenza In B Iotecnologie I Ceppo batterico per la degradazione di miscele di idrocarburi aromatici mono e policiclici
EP3455874A1 (en) * 2016-05-12 2019-03-20 Globalwafers Co., Ltd. Direct formation of hexagonal boron nitride on silicon based dielectrics
EP3502189A1 (de) * 2017-12-22 2019-06-26 EMS-Patent AG Verwendung einer polyamid-formmassen zur reduktion von belagsbildung bei der thermoplastischen verarbeitung, polyamid-formmasse und verfahren zur herstellung von gebrauchsgegenständen

Also Published As

Publication number Publication date
CN113136641A (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
JP3182522B2 (ja) 一次元貫通気孔を持つセラミック膜とその製造方法
CN107640763B (zh) 一种单层单晶石墨烯的制备方法
JP2017532439A (ja) 化学気相堆積又は液相エピタキシーを用いた鉄窒化物硬質磁性材料の形成
CN102452650A (zh) 一种低温化学法制备石墨烯的方法
CN113802180B (zh) 一种金刚石/金属基复合材料及其制备方法和应用
US20160194205A1 (en) Hybrid graphene materials and methods of fabrication
CN113136641B (zh) 一种氮、硼掺杂非晶碳中空纤维膜的制备方法
CN105836730A (zh) 一种石墨材料表面原位自生碳纳米管的方法
CN111233515B (zh) 一种石墨制品表面制备纳米石墨涂层的方法
Liu et al. Facile synthesis of air-stable nano/submicro dendritic copper structures and their anti-oxidation properties
Papastaikoudis et al. Electrical resistivity of hydrogen in nickel
JP4577775B2 (ja) 水素分離・精製用複相合金の製造方法
CN113151803A (zh) 一种硼碳氮薄膜的制备方法
US20190085478A1 (en) Low-density interconnected ionic material foams and methods of manufacture
CN108950500A (zh) 一种基于磁控溅射的纳米孔结构金电极的制备方法
CN111170317B (zh) 一种石墨烯改性金刚石/铜复合材料的制备方法
Milenkovic et al. A novel concept for the preparation of alloy nanowires
CN112281004A (zh) 一种管状钯合金膜的制备方法
KR101174870B1 (ko) 그라펜 복합체 조성물 및 이를 이용한 투명한 전도성 필름
CN115323316B (zh) 一种泡沫镍铬合金及其制备方法
CN113897675B (zh) 一种掺杂金刚石颗粒及其制备方法与应用
CN115613162B (zh) 复合纤维及其制备方法
Cheng et al. Electroless synthesis of pure nickel metal nanotubes using silicon oxide nanowires as removable templates
CN113789463B (zh) 一种高导热低膨胀超薄片金刚石-金属基复合材料及其制备方法和应用
CN114752837B (zh) 中熵磁致伸缩合金及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant