CN113135754B - 一种制备具有压电性能的胶凝复合材料的方法、胶凝复合材料及其应用 - Google Patents

一种制备具有压电性能的胶凝复合材料的方法、胶凝复合材料及其应用 Download PDF

Info

Publication number
CN113135754B
CN113135754B CN202110471834.0A CN202110471834A CN113135754B CN 113135754 B CN113135754 B CN 113135754B CN 202110471834 A CN202110471834 A CN 202110471834A CN 113135754 B CN113135754 B CN 113135754B
Authority
CN
China
Prior art keywords
piezoelectric
phase
titanium
stage
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110471834.0A
Other languages
English (en)
Other versions
CN113135754A (zh
Inventor
吕辉鸿
季益龙
代兵
杨贤峰
雷昭
武杏荣
李辽沙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN202110471834.0A priority Critical patent/CN113135754B/zh
Publication of CN113135754A publication Critical patent/CN113135754A/zh
Priority to US17/733,005 priority patent/US20220348510A1/en
Application granted granted Critical
Publication of CN113135754B publication Critical patent/CN113135754B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0263Hardening promoted by a rise in temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/023Fired or melted materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • C04B18/144Slags from the production of specific metals other than iron or of specific alloys, e.g. ferrochrome slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00215Mortar or concrete mixtures defined by their oxide composition
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3454Calcium silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

本发明提供一种制备具有压电性能的胶凝复合材料的方法、胶凝复合材料及其应用,隶属于智能道路交通领域。该方法将含钛高炉渣与金属氧化物(PbO、ZrO2)充分混匀后在一定的热制度下进行焙烧,以矿物相重构—各有价组元协同调控为理论基础,随炉冷却至室温后得到了这种具有压电性的胶凝复合材料。本发明制备出了一种应用场景多样性的压电胶凝材料,为解决纯PZT材料大规模应用于水泥混凝土中出现的相容性匹配较差等问题提供了理论基础,可应用于新型智能道路、智能路基及关键结构实时健康监测等众多领域,为我国独有的难处理含钛高炉渣的绿色短流程高附加值规模化利用提供了全新思路。

Description

一种制备具有压电性能的胶凝复合材料的方法、胶凝复合材 料及其应用
技术领域
本发明属于高炉渣应用技术领域,具有涉及一步法利用含钛高炉渣为原料制备压电胶凝复合材料。
背景技术
2018年成立自然资源部,推进实施矿产资源管理制度改革,持续加强战略资产调查评价,不断提升综合开发利用水平。做好矿产资源勘查开发利用,绿色矿山建设、矿产调查评价、矿产资源规划、矿产资源监督管理等相关条例、优化能源消费结构、生态保护修复等举措,积极推进矿产资源综合化开发利用与矿山地质环境保护。
含钛高炉渣的堆积与高附加值利用的问题是矗立在冶金行业的一座大山,经过几代人的辛勤耕耘,取得的丰厚的成果,但距离含钛高炉渣大规模、高附加值、符合市场经济的利用仍道阻且长。亟须以不同类型固废的不同资源特性为基础,学科交叉、多元化的开拓资源禀赋优化的途径。
发明人在2019年6月21日公开了:中国专利申请号为201910208190.9、一种利用含钛高炉渣为原料制备压电混凝土材料的方法。该专利将含钛高炉渣与过渡金属氧化物或者稀土氧化物混合均匀加热至熔融,确保混合均匀,冷却至室温后得到原位优化的含钛高炉渣,然后将原位优化的含钛高炉渣与碳酸钠或碳酸氢钠混合均匀进行矿物相重构,得到重构后的含钛高炉渣即为压电混凝土材料。但是,该研究的压电混凝土材料需要另外加凝胶材料
本发明明确提出了压电相和胶凝相的组成成分及形成机制,与上文在原料、焙烧制度上不同,本发明中压电胶凝材料可掺入水泥混凝土中,即可作为胶凝活性组分的补充,也能作为功能相应用于智能道路交通领域如结构健康检测等。
PZT型传感器继承了PZT陶瓷的优点,其居里温度高、压电系数高、可以经受苛刻的外界环境,具有响应速度快、响应频率宽等优点,在水泥混凝土、结构健康检测(SHM)、智能道路等领域有着极大的应用空间。
经检索,2008年05月26日,《吉林大学学报(理学版)》第46卷第3期第520-523页,李霜、张琳、付成伟等人公开了一篇名为“PbZr0.52Ti0.48O3的高压合成”的文章,该研究使用2种原料进行PbZr0.52Ti0.48O3的高压合成。实验结果表明,以PbO,ZrO2和TiO2(1∶0.52∶0.48)为原料,在1.5GPa和3.6GPa压力,880~1061℃条件下主要形成PbTiO3,ZrO2和Pb三相混合物,仅在880℃附近有少量锆钛酸铅(PZT)相生成。以Zr0.52Ti0.48O2为B位先驱体,与PbO混合后进行高压高温合成,在1.5GPa,710~812℃条件下形成PbZr0.52Ti0.48O3相,未发现PbTiO3相。对高压高温(1.5GPa,812℃)合成的PbZr0.52Ti0.48O3样品进行变温拉曼测量,在245℃时,未发生结构相变;在420℃时,拉曼谱只有177.5、257.7、517cm-1三个峰,其结构由铁电相转变为立方顺电相,因此高压合成的PbZr0.52Ti0.48O3居里温度在420℃以下。
吉林大学李霜在2004年6月1日公开了一篇名为“铁电材料锆钛酸铅(PZT)的合成及性能研究”的论文,该PZT的合成方法为:按下列化学方程式进行原料的化学计量配比:PbO+0.52ZrO2+0.48TiO2=PbZr0.52Ti0.48O3,其中PbO过量为总重的5%以防止PbO挥发。将备好的原料放入玛瑙研钵中,加入一定量的酒精充分研磨,研磨后的样品在烘箱中烘干。将混合均匀的原料进行预烧,首先在650℃下保温1h,然后分别升温到预烧温度(800℃,850℃,900℃,1000℃)保温2.5h。预烧后的粉末样品均发生颜色的变化,由原来的橘黄色变成淡黄色。降温后在200MPa压力下压成直径是13mm的片状样品。再在1200℃下烧结,升温速率3℃/min,保温4h,然后随炉降至室温。
上述两篇文献均为常规铁电材料锆钛酸铅的制备方法,其中原料均为实验纯试剂,对于反应物的控制较为容易,但是钛渣体系复杂多元化,反应难以调控,且只能得到压电功能相,无法实现压电、凝胶一步法合成。
在外部静态/动态载荷下,使用嵌入式传感器可保持混凝土结构的完整性,能够对周围应力变化及应变等情况作出快速、高精度的响应。无损监测技术建立于粘结或嵌入母体结构中,通过电阻抗等变化监测结构,压电陶瓷作为执行器和传感器。
因此,现有技术一般采用嵌入式将纯压电型PZT传感器埋入混凝土中,但可能会出现压电传感器所获得的机械阻抗响应与混凝土存在着不兼容的现象,纯压电性PZT传感器的延展性差、致密度不高,无法长期在环境复杂、载荷压力变化不一的环境稳定工作。为了解决压电传感器与结构材料不具有良好的相容性问题,比如:声阻抗的不同、温度系数、收缩特性等不兼容。利用含钛高炉渣作为钛源构建PZT功能相,在能够作为水泥混凝土胶凝活性组分补充的同时,作为一种功能材料可利用于SHM、智能道路传感等方面,相关研究尚属空白。
自上个世纪80年代以来,就如何高效绿色的利用钒钛磁铁矿展开了一系列摸索,其中含钛高炉渣的资源化利用困扰了我们几十年。从探索在建材领域的应用如制备高钛型复合掺料、空心砖等发展提钛的高附加值利用,从攀钢自主设计建成“高温选择碳化、低温选择氯化10kt/a精TiCl4”中试线,建立此基础上发展了高温碳化-选择性分离、碱处理相分离提钛技术、合金化提取。面对含钛高炉渣的资源化利用难题进行了长达几十年的摸索,虽有成效但距离真正意义上的的高附加值产业化利用道阻且长,仍需广大科研工作者继续攻坚。
因此,目前亟需需求一种利用含钛高炉渣为原料制备压电胶凝复合材料,达到对含钛高炉渣的资源化综合利用的目的,且得到一种压电胶凝材料,可以直接掺入水泥混凝土中。
发明内容
1.要解决的问题
本发明目的在于提供一步法以含钛高炉渣为主要原料制备具有压电性能的胶凝复合材料,该方法具备大宗量消耗且高附加值利用含钛高炉渣的潜力。该方法利用铅和锆的氧化物对含钛高炉渣中的含钛透辉石、钙钛矿等进行矿物相重构及改性,铅和锆的金属氧化物置换出透辉石相中的TiO2,TiO2与铅氧化物结合后,进一步与PbZrO3反应形成PZT相,钙钛矿与PbZrO3原位反应生成PbTiO3,且钙钛矿的分解导致了长石相的生成,即为胶凝活性的主要来源。
本发明胶凝复合材料在水泥混凝土,及建筑物、道路、桥梁结构的无损实时健康检测均可应用。
2.技术方案
为了解决上述问题,本发明所采用的技术方案如下:
一种利用含钛高炉渣制备具有压电性能的胶凝复合材料的方法,具体步骤如下所示:
(1)破碎:将含钛高炉渣破碎粉磨至粉末状,粒径大小基本一致;
(2)混合均匀:将步骤(1)得到的粉末状含钛高炉渣与铅和锆的金属氧化物混合均匀得到多元体系混合物;所述金属氧化物源自于金属的原矿和矿渣及其他包含金属的物质;
(3)改性重构过程:改性重构过程可视为三个阶段,其中,三个阶段通过热制度以使所需PZT相的含量最大化;
第一阶段在600℃-768.8℃下保温0.5-1.5h,此阶段发生的反应为:
PbO+ZrO2=PbZrO3式(a);
同时,第一阶段升温至低温时,还可以去除结合水等易挥发物质;
第二阶段加速升温至800-910℃保温1.5-2.5h,此阶段发生的反应为:
PbZrO3+CaTiO3=CaZrO3+PbTiO3式(b);
为了迫使处于钙钛矿A位的Ca从钙钛矿迁移到硅酸盐中,第二阶段中,当焙烧温度提升至800℃以上,还发生的反应为:
PbZrO3+CaTiO3+CaMgSi2O6=PbTiO3+Ca2MgSi2O7+ZrO2式(c);
第三阶段随后降温至700℃-768℃下保温1.0-2.5h,而后随炉冷却至室温,反应式(c)中再生的ZrO2在冷却的过程中与过量的PbO反应生成PbZrO3,再与PbTiO3形成二元连续PZT相,即压电相,反应式(c)中生成的Ca2MgSi2O7为凝胶相,胶凝活性来源于长石相,得到同时含压电相和凝胶相的胶凝复合材料;
其中,所述压电相(PZT相)主要源自于PbZrxTi1-xO3,0<x<1,所述凝胶相为Ca2MgSi2O7,。
进一步地,步骤(2)中,所述多元体系混合物Pb、Zr、Ti三种元素的摩尔比为Pb:Zr:Ti=1.1:0.52:0.48;多元体系混合物的化学计量比根据化学式:
PbO+0.52ZrO2+0.48TiO2=PbZr0.52Ti0.48O3
氧化铅易挥发,故需掺入微过量的氧化铅,所以选择原料的摩尔比为Pb:Zr:Ti=1.1:0.52:0.48。
进一步地,步骤(2)中,铅和锆的金属氧化物分别为PbO、ZrO2
进一步地,所述含钛高炉渣中TiO2的质量分数大于20%,以含钛高炉渣作为钛源,PbO均匀分布在钛渣体系中,钛渣粉末一定程度上的避免了PbO的挥发。
进一步地,步骤(3)中,第一阶段在700℃下保温1h,第二阶段加速升温至800-910℃保温2h,第三阶段随后降温至750℃下保温2h,而后随炉冷却至室温,得到矿物相重构改性的复合材料,即得到同时含压电相和凝胶相的胶凝复合材料。
进一步地,应当值得注意的是,当温度高于768.8℃时,PbZrO3不稳定易分解为PbO和ZrO2,为了保证反应式(c)的有效进行,焙烧过程应该以较高的升温速率通过768.8~831.5℃;故所述第二阶段的加热速率为≥10℃/min。
进一步地,所述第一阶段的加热速率为5-10℃/min,所述第三阶段的降温速率为5-10℃/min。
一种上述方法得到的具有压电性能的胶凝复合材料,胶凝复合材料中含有压电相和凝胶相,其中,所述压电相为PbZrxTi1-xO3,0<x<1,压电相占据体系总质量的50-60%,所述凝胶相为Ca2MgSi2O7,凝胶相占据体系总质量的8-15%,其他为不具有凝胶性能的硅酸盐。
于本发明的一种实施方式中不限定制备方法,具有压电性能的胶凝复合材料中同时含有压电相和凝胶相,其中,所述压电相为PbZrxTi1-xO3,0<x<1,压电相占据体系总质量的50-60%,所述凝胶相为Ca2MgSi2O7,凝胶相占据体系总质量的8-15%。
本发明含钛高炉渣改性重构过程主要原理如下:第一阶段(升温阶段)将混合粉体升温至低温,去除结合水等易挥发物质,后在700℃下保持1h,有利于PbZrO3的形成;再升温至高温下保温进入矿物相重构阶段,即(第二阶段)以10℃/min的升温速率加热至800-910℃,保温2小时,使PbZrO3的生成继续进行;最后再随炉冷却至一定温度下继续保温促进功能相的均匀化生成,(第三阶段)在750℃下保温2h,目的是将再生的ZrO2与PbO反应生成PbZrO3,促进了功能相的均匀化转变;后随炉冷却至室温后获得了同时具有压电相和胶凝相的粉末。
上述具有压电性能的胶凝复合材料在水泥混凝土中得以应用。
上述具有压电性能的胶凝复合材料在建筑物、道路、桥梁结构的无损实时健康检测中得以应用。
3.有益效果
相比于现有技术,本发明的有益效果为:
(1)本发明方法所制备复合材料在极化电压为55kV/cm、极化时间20min时,其压电系数表现最佳为6.0pC/N,胶凝活性组分占体系质量分数为11.5%;将游离的TiO2富集于PZT相中,实现“Ti”从透辉石及钙钛矿中的弥散分布到压电功能相的赋存,同时促进了具有胶凝活性组分的生成;制备出了一种应用场景多样性的压电胶凝材料,为解决纯PZT材料大规模应用于水泥混凝土中出现的相容性匹配较差等问题提供了理论基础,可应用于新型智能道路、智能路基及关键结构实时健康监测等众多领域,为我国独有的难处理含钛高炉渣的绿色短流程高附加值规模化利用提供了全新思路;
将含钛高炉渣与铅和锆的金属氧化物高温焙烧,迫使处于钙钛矿A位的Ca迁移到硅酸盐中,形成具有胶凝活性的长石相,金属氧化物与钙钛矿及透辉石中的TiO2反应生成PZT,即为压电相的来源;
一步法以含钛高炉渣制备压电胶凝复合材料,应用于水泥基压电复合材料提供压电相的同时中可作为胶凝材料的补充。但目前所得复合材料的压电系数仍有较大的上升提高空间,后续将对PZT相形成的动力学行为进行研究,对多元复杂体系中PZT相形成及组成实现精准控制,进而增强材料压电性能。
(2)本发明明确提出了压电相和胶凝相的组成成分及形成机制,与现有技术不同,本发明中压电胶凝材料可掺入水泥混凝土中,即可作为胶凝活性组分的补充,也能作为功能相应用于智能道路交通领域如结构健康检测等;
(3)本发明采用含钛高炉渣作为引入钛源,以此取代纯试剂TiO2,钛渣中的钙质、硅质转化结合为具有胶凝活性的硅酸盐;钛渣体系复杂多元化,反应难以调控,本发明通过对热力学分析、形成机制、反应机理的研究探讨,通过改变保温温度和时间进行调控,实现了以含钛高炉渣为钛源制备压电胶凝材料,达到对含钛高炉渣的资源化综合利用的目的;现有技术选择二氧化锆粉末作为填充物避免PbO的挥发,而本发明中PbO均匀混合在钛渣体系中,钛渣充当反应物及填充物二种作用,最大限度的避免了PbO的挥发。
附图说明
图1为本发明改性重构过程中相关反应的热力学曲线图;
图2为本发明改性重构过程热力学曲线图;
图3为实施例1所得试样的扫描电镜图;
图4为实施例2所得试样的扫描电镜图;
图5为实施例3所得试样的扫描电镜图;
图6为实施例4所得试样的扫描电镜图;
图7为本发明不同焙烧温度下矿物相重构的X射线衍射图像;
图8为本发明中不同焙烧温度下样品的压电系数d33
图9为本发明中不同焙烧温度下样品的胶凝活性组分含量。
具体实施方式
下面结合具体实施例对本发明进一步进行描述。
表1各实施例及对比例中改性重构过程工艺参数
Figure BDA0003045664900000061
将块状含钛高炉渣破碎后置于粉磨罐中粉磨60s,经干燥后称取16.472g,与24.844g分析纯氧化铅、6.493g分析纯二氧化锆混合,使用玛瑙研钵研磨30min以上确保各组分充分混合均匀,以马弗炉作为加热装置。第一阶段(升温阶段)将混合粉体在以5℃/min的升温速率升温至700℃,保持1h;然后以10℃/min的升温速率加热至800-910℃,保温2小时(第二阶段);最后阶段在750℃下保温1h。随炉冷却至室温后获得了具有压电性能的胶凝复合材料试样,焙烧过后粉体由灰色变为橘黄色。改性重构过程中相关反应的热力学曲线如图1所示,改性重构过程热力学曲线如图2所示。
根据改性重构过程第二阶段的不同温度,设置了4个实施例和一个对比例,见表1。
性能测试
(1)EDS能谱分析
表2各实施例试样的EDS能谱分析结果(at%)
Figure BDA0003045664900000071
图3-6分别为实施例1-4所得试样的扫描电镜图,由图3可知,有三个不同衬度的区域:灰色区域Sp1、黑色区域Sp2、灰白色区域Sp3。图4-5中黑色区域属于环氧树脂平面。结合表2中的SEM-EDS能谱分析:图5中Sp1呈现脉状,主要元素组成为Ca、Ti,原子百分比含量共占96.21%,即为钙钛矿相,同时少量的Zr、Pb进入矿物相;Sp2中主要元素为Ca、Al、Mg、Si,且含有少量的PZT相,即钛渣中的透辉石与PbZrO3反应生成了PbTiO3及长石相;Sp3呈现灰白色线条状,同样处于透辉石相向长石相转变的过程,反映了矿物相重构的初期进行。图4中,Sp1中Pb含量达到了38.06%,Zr/Ti=1.406,故Sp1中存在着:三方相(富锆)PZT,部分固溶Ca的PZT相。Si、Al含量均高于11%,故同时还存在着含Pb的长石相。Sp3中Zr/Ti≈1,为处于MPB相界处的PZT相。图5中,Sp3中Pb含量高达39.69%,Sp1、Sp3中PZT相均含有富锆型PZT相、MPB型PZT相,其中Sp1中长石相包裹着PZT相。图6中,PbO的挥发导致Pb含量减少,Sp1中存在富钛型PZT相,这PbZrO3的不耐热性导致由富锆偏移为富钛。Sp1、Sp3中多属于含Pb的硅酸盐相和一部分的PZT相。
带状、脉状的PZT相被长石相紧密包裹,而较大尺寸和不规则形貌的PZT多分布于颗粒外层区域。结合EDS分析可知,外层PZT相中Zr含量明显高于内部PZT相。PZT相在成分上的差异意味着形成机制不是单一的:钛源来自于钙钛矿和透辉石,反应生成了富锆型Pb(Zr0.7Ti0.3)O3及MPB型PbZr0.58Ti0.42O3,以及(Pb,Ca)ZrxTi1-xO3(部分固溶Ca)。
(2)XRD检测
针对实施例1~4得到的胶凝复合材料进行性能检测,X射线衍射图谱如图7(TS为未经处理的含钛高炉渣)所示,经XRD物相分析可知:800℃已经出现了3-Pb(Zr0.7Ti0.3)O3和4-Ca2(Mg0.75Al0.25)(Si1.75Al0.25O7)的特征峰,随着温度的升高,这种富锆型的Pb(Zr0.7Ti0.3)O3逐渐转变为PbZr0.58Ti0.42O3,即发生了三方相向四方向的转变,使得晶体结构处于MPB相界附近。经矿物相重构后,钛渣中Ca(Mg,Al)(Al,Si)2O6转变为Ca2(Mg0.75Al0.25)(Si1.75Al0.25O7)。处于910℃时,PZT特征峰强度下降,这是因为Pb与不同硅酸盐复合,PZT含量降低所致。伴随温度的升高,峰位、峰形基本不变,但衍射峰的强度逐步增加,形状对称、尖锐,逐渐向MPB形态相界靠近。
从29-33°特征峰的局部放大图可知,随着温度的上升,从2θ≈31°附近的峰位渐渐靠左偏移,由布拉格公式:2dsinθ=nλ可知,晶面间距增加,晶格常数增加,富锆型Pb(Zr0.7Ti0.3)O3逐渐向MPB型PbZr0.58Ti0.42O3转变,Zr4+的半径为0.072nm,Ti4+的半径为0.0605nm,在Pb(Zr0.7Ti0.3)O3中,Zr4+和Ti4+的平均离子半径为0.06855nm,经过转变后,平均离子半径为0.06717nm,所以晶格常数和晶格畸变增加,峰位往低角度偏移。由图7右侧可知:峰形存在着不对称结构,表明存在多个相对这个峰有“贡献”,即Pb(Zr0.7Ti0.3)O3(三方相)、PbZr0.58Ti0.42O3(MPB)和Ca2(Mg0.75Al0.25)(Si1.75Al0.25O7)。
(3)压电性能检测
压电效应:当受到来自某方向的机械应力时,内部会发生电极化产生电位差。d33数值越大,内部产生的电荷越多,电极化越强,电位差则越大,即代表机械应力和介电性能之间的相互耦合性越好。
实施例1-4的压电系数d33如图8所示,可以得出:d33在700-800℃范围内略有增加,800-870℃在870时达到最大值6.0pC/N,910℃减少到4.5pC/N,需要强调的是对比例1的第二阶段以700℃保温情况下,压电性能较四个实施例都低。
(4)凝胶活性检测
胶凝活性组分含量如图9所示,可以得出:随着浸出时间的延长,浸出量逐步上升,但溶解速率有所降低,其中910℃下保温1h试样的溶解量最多,可达到14.67%。钛渣在不同时间点的溶出量均维持在一个较低的标准,说明钛渣经重构改性的水化活性与浸出率相关性高,有效的提高了原始钛渣中硅酸盐的水化活性。含钛透辉石作为水化惰性相,参与水化过程会导致C-S-H(水化硅酸钙)凝胶性能差。经矿物相重构后,含钛透辉石转化为长石相,具有良好的胶凝活性,经矿物相重构后,钙钛矿、透辉石的结构发生改变,促进长石相的生成,胶凝活性的表达与Ca2+、Si4+、Al3+在水体系中的溶出行为密切相关,EDTA-碱溶液能对硅酸盐相及铝酸盐相进行选择性溶解。在溶解过程不断破碎为细小颗粒,继续释放出被包裹的硅酸盐颗粒,从而加速了与EDTA-碱溶液的接触,故反应速率在前期略快。原始钛渣中钙钛矿的反应活性差,具有较强的耐酸碱性,而钛渣中各个矿物相相互嵌布、互相包裹,难以解离,反应活性低,与EDTA-碱溶液接触反应面积有限,当极少量的透辉石表面与EDTA-碱溶液反应形成螯合物,释放出被包裹其中的钙钛矿,从而到后期浸出速率变慢,溶出量趋于平稳。这说明了经矿物相改性重构后,能够适当提高硅酸盐的水化活性。
表3各实施例试样中凝胶相占比
项目 实施例1 实施例2 实施例3 实施例4
凝胶相质量占比/% 12.27 12.22 11.49 14.67
值得注意的是,对比例1的产物在压电性能低的情况下,经检索基本不具有凝胶性能。
特别地,各实施例压电相经测量均占据体系总质量的50-60%
(5)重金属溶出评估
表4各实施例制得试样中金属离子溶出量/(mg/L)
项目 实施例1 实施例2 实施例3 实施例4
Pb 0.29 0.23 0.26 0.35
Ti 0.22 <0.02 <0.02 0.12
由CB 5083.3-2007的标准可知:三级土壤中铅元素含量≤500mg/kg,危险废物浸出标准为≤5mg/L。从表4中可知,不同条件下所得PZT/含钛高炉渣基复合材料的Pb浸出量均符合国家安全的标准。
为厘清试样中Pb的浸出特性,测定了试样中铅、钛元素的含量,如下表5所示:
表5各实施例制得试样的XRF(wt%)
项目 实施例1 实施例2 实施例3 实施例4
PbO 49.412 48.519 49.581 49.526
TiO<sub>2</sub> 6.581 6.643 6.541 6.425
从表5可知:各组试样中均具有较高的含铅量,质量分数约占体系的49%。由此可得铅的浸出量与含量并不是存在着必然关系,而是与各组试样中PZT相及含Pb硅酸盐相的禀赋形式、组织结构和浸出能力息息相关。
从表4中可以看出钛离子浸出量均≤0.22mg/L,含钛高炉渣中游离的TiO2经矿物相重构后,以形成PZT固溶体的形式禀赋于钛渣体系中,化学性质较为稳定,仅有极其微弱水溶性。
上述实施例仅第二阶段取不同的保温温度作对比,其他参数例如升温速率、保温时间、降温速率均取最佳实施方式,在本发明权利要求书中要求保护的范围内,均可实现本发明产品的制备,只是压电性能和凝胶性能的效果不是最佳的,故本发明列举的实施例仅为本发明实施方式的一种,并非限制本发明所描述的实施方式,只要是在不违背本发明的精神与原理下进行的改进或者同等替换,都应涵盖在本发明的权利要求范围中,例如本发明各步骤反应温度及反应时间的范围值均为合理的优选值,事实上反应温度及反应时间均为较宽的范围值,未在本发明描述的范围值内的数值,只要可以制备出本发明的产物,均为本发明未提及的一种实施方式。

Claims (9)

1.一种制备具有压电性能的胶凝复合材料的方法,其特征在于:具体步骤如下所示:
(1)破碎:将含钛高炉渣破碎粉磨至粉末状;
(2)混合均匀:将步骤(1)得到的粉末状含钛高炉渣与铅和锆的金属氧化物混合均匀得到多元体系混合物;
(3)改性重构过程:第一阶段在600℃-768.8℃下保温0.5-1.5 h,第二阶段加速升温至800-910℃保温1.5-2.5 h,第三阶段随后降温至700℃-768℃下保温1.0-2.5 h,而后随炉冷却至室温,得到同时含压电相和凝胶相的胶凝复合材料;
其中,所述压电相为PbZrxTi1-xO3,0<x<1,所述凝胶相为Ca2MgSi2O7
2.根据权利要求1所述的一种制备具有压电性能的胶凝复合材料的方法,其特征在于:步骤(2)中,所述多元体系混合物Pb、Zr、Ti三种元素的摩尔比为Pb:Zr:Ti=1.1:0.52:0.48。
3.根据权利要求2所述的一种制备具有压电性能的胶凝复合材料的方法,其特征在于:步骤(2)中,铅和锆的金属氧化物分别为PbO、ZrO2
4.根据权利要求1所述的一种制备具有压电性能的胶凝复合材料的方法,其特征在于:所述含钛高炉渣中TiO2的质量分数为大于20%。
5.根据权利要求1所述的一种制备具有压电性能的胶凝复合材料的方法,其特征在于:步骤(3)中,第一阶段在700℃下保温1 h,第二阶段加速升温至800-910℃保温2 h,第三阶段随后降温至750℃下保温1 h,而后随炉冷却至室温,得到同时含压电相和凝胶相的胶凝复合材料。
6.根据权利要求5所述的一种制备具有压电性能的胶凝复合材料的方法,其特征在于:所述第一阶段的加热速率为5-10℃/min所述第二阶段的加热速率≥10℃/min,所述第三阶段的降温速率为5-10℃/min。
7.一种权利要求1-6任意一项方法得到的具有压电性能的胶凝复合材料,其特征在于:胶凝复合材料中含有压电相和凝胶相,其中,所述压电相为PbZrxTi1-xO3,0<x<1,压电相占据体系总质量的50-60%,所述凝胶相为Ca2MgSi2O7,凝胶相占据体系总质量的8-15%。
8.一种权利要求7所述具有压电性能的胶凝复合材料在水泥混凝土中的应用。
9.一种权利要求7所述具有压电性能的胶凝复合材料在建筑物、道路、桥梁结构的无损实时健康检测中的应用。
CN202110471834.0A 2021-04-29 2021-04-29 一种制备具有压电性能的胶凝复合材料的方法、胶凝复合材料及其应用 Active CN113135754B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110471834.0A CN113135754B (zh) 2021-04-29 2021-04-29 一种制备具有压电性能的胶凝复合材料的方法、胶凝复合材料及其应用
US17/733,005 US20220348510A1 (en) 2021-04-29 2022-04-29 Method for preparing gel composite material with piezoelectric property, and gel composite material and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110471834.0A CN113135754B (zh) 2021-04-29 2021-04-29 一种制备具有压电性能的胶凝复合材料的方法、胶凝复合材料及其应用

Publications (2)

Publication Number Publication Date
CN113135754A CN113135754A (zh) 2021-07-20
CN113135754B true CN113135754B (zh) 2022-06-03

Family

ID=76816496

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110471834.0A Active CN113135754B (zh) 2021-04-29 2021-04-29 一种制备具有压电性能的胶凝复合材料的方法、胶凝复合材料及其应用

Country Status (2)

Country Link
US (1) US20220348510A1 (zh)
CN (1) CN113135754B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656256B (zh) * 2022-03-25 2023-06-23 安徽工业大学 一种利用含钛矿物制备的压电复合材料及其方法
CN115872739A (zh) * 2022-12-05 2023-03-31 安徽工业大学 一种利用高钛渣制备的pzt压电陶瓷及其方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009136169A1 (en) * 2008-05-07 2009-11-12 Cenin Limited Magnesia containing cement composition
JP2010084223A (ja) * 2008-10-02 2010-04-15 Hitachi Metals Ltd 金属ケイ酸塩膜とガラス基材の複合体、金属ケイ酸塩膜と被成膜体の複合体及びそれらの製造方法
CN102070318A (zh) * 2010-12-06 2011-05-25 同济大学 一种压电胶凝复合材料的制备方法
CN106435647A (zh) * 2016-11-23 2017-02-22 北京科技大学 一种含钛渣电解提取钛的方法
CN106430264A (zh) * 2016-07-19 2017-02-22 四川大学 一种用炼铁高炉渣矿化co2联产氧化铝的方法
CN107296985A (zh) * 2017-05-15 2017-10-27 广东工业大学 一种基于光固化成型三维打印生物陶瓷支架的方法和应用
CN109234809A (zh) * 2018-11-08 2019-01-18 山东大学 镓掺杂钙铝黄长石晶体及制备方法与应用
CN109912242A (zh) * 2019-03-19 2019-06-21 安徽工业大学 一种利用含钛高炉渣为原料制备压电混凝土材料的方法
CN112216788A (zh) * 2020-10-14 2021-01-12 北京化工大学 一种气凝胶/pzt纳米粉体压电复合材料的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009136169A1 (en) * 2008-05-07 2009-11-12 Cenin Limited Magnesia containing cement composition
JP2010084223A (ja) * 2008-10-02 2010-04-15 Hitachi Metals Ltd 金属ケイ酸塩膜とガラス基材の複合体、金属ケイ酸塩膜と被成膜体の複合体及びそれらの製造方法
CN102070318A (zh) * 2010-12-06 2011-05-25 同济大学 一种压电胶凝复合材料的制备方法
CN106430264A (zh) * 2016-07-19 2017-02-22 四川大学 一种用炼铁高炉渣矿化co2联产氧化铝的方法
CN106435647A (zh) * 2016-11-23 2017-02-22 北京科技大学 一种含钛渣电解提取钛的方法
CN107296985A (zh) * 2017-05-15 2017-10-27 广东工业大学 一种基于光固化成型三维打印生物陶瓷支架的方法和应用
CN109234809A (zh) * 2018-11-08 2019-01-18 山东大学 镓掺杂钙铝黄长石晶体及制备方法与应用
CN109912242A (zh) * 2019-03-19 2019-06-21 安徽工业大学 一种利用含钛高炉渣为原料制备压电混凝土材料的方法
CN112216788A (zh) * 2020-10-14 2021-01-12 北京化工大学 一种气凝胶/pzt纳米粉体压电复合材料的制备方法

Also Published As

Publication number Publication date
US20220348510A1 (en) 2022-11-03
CN113135754A (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
CN113135754B (zh) 一种制备具有压电性能的胶凝复合材料的方法、胶凝复合材料及其应用
Wu et al. Preparation and characterization of ceramic proppants with low density and high strength using fly ash
Gallini et al. Combustion synthesis of nanometric powders of LaPO4 and Sr-substituted LaPO4
Freudenberg et al. Aluminum titanate formation by solid‐state reaction of coarse Al2O3 and TiO2 powders
Sinha et al. Single step synthesis of Li2TiO3 powder
De Souza et al. Rice hull-derived silica: applications in Portland cement and mullite whiskers
Filonenko et al. High-pressure phase transitions of M2O5 (M= V, Nb, Ta) and thermal stability of new polymorphs
Ding et al. Low temperature and rapid preparation of zirconia/zircon (ZrO2/ZrSiO4) composite ceramics by a hydrothermal-assisted sol-gel process
CN102674381A (zh) 一种利用煤系高岭土制备纳米莫来石粉体的方法
CN102180675A (zh) 化学共沉淀碳热还原法制备γ-AlON粉末的方法
Servi et al. Mechanical response of filtered and compacted iron ore tailings with different cementing agents: Focus on tailings-binder mixtures disposal by stacking
CN114656256B (zh) 一种利用含钛矿物制备的压电复合材料及其方法
Liu et al. Preparation of Gd2Zr2O7 nanoceramics from two-step thermal treatment and the aqueous durability analysis
Spearing et al. Zircon synthesis via sintering of milled SiO2 and ZrO2
CN105801150B (zh) 一种锰矿尾矿陶瓷板的制备方法
Wang et al. Phase transformation and microstructural evolution of black tourmaline mineral powders during heating and cooling processes
US3917780A (en) Preparation of lead lanthanum zirconate titanate bodies
Li et al. Phase structure evolution and chemical durability studies of Gd 1− x Yb x PO 4 ceramics for immobilization of minor actinides
Zheng et al. Enhancing effect of vanadium releasing efficiently from lattice in black shale by thermal activation
CN106745020B (zh) 高吸油性高岭土及其制备方法和应用
Pokharel et al. Influence of calcination and sintering temperatures on the structure of (Pb1− xBax) ZrO3
Chipera et al. Thermal evolution of fluorine from smectite and kaolinite
CN100365171C (zh) 一种熔盐法制备片状单晶钛酸铋镧粉体的方法
CN112479250B (zh) 一种钛酸钾的制备方法
CN106518107B (zh) 分层高纯锆英石耐火材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant