CN113130691A - 一种太阳光谱选择性透过涂层及其制备方法 - Google Patents

一种太阳光谱选择性透过涂层及其制备方法 Download PDF

Info

Publication number
CN113130691A
CN113130691A CN201911402358.6A CN201911402358A CN113130691A CN 113130691 A CN113130691 A CN 113130691A CN 201911402358 A CN201911402358 A CN 201911402358A CN 113130691 A CN113130691 A CN 113130691A
Authority
CN
China
Prior art keywords
dielectric layer
radio frequency
metal
sputtering
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911402358.6A
Other languages
English (en)
Inventor
杜淼
米菁
郝雷
王树茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
GRIMN Engineering Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRIMN Engineering Technology Research Institute Co Ltd filed Critical GRIMN Engineering Technology Research Institute Co Ltd
Priority to CN201911402358.6A priority Critical patent/CN113130691A/zh
Publication of CN113130691A publication Critical patent/CN113130691A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本发明公开了一种太阳光谱选择性透过涂层及其制备方法。该涂层包括在玻璃基体上依次制备的第一电介质层、金属层与第二电介质层的堆叠结构、第三电介质层;其中第一电介质层和第二电介质层材料为AlN、TiAlN、ZrAlN中的任意一种,其厚度为1‑100nm;金属层与第二电介质层的堆叠结构表示为(M/D2)n,n为堆叠次数;金属层材料为Au、Ag、Cu、Al中的任意一种,其厚度为1‑30nm;第三电介质层材料为SiO2、TiO2、ZnO、Al2O3中的任意一种,其厚度为1‑100nm。本发明的涂层设计能够实现在可见光波段高透过率,在红外波段高反射率,其制备过程易于调控、镀膜面积大、涂层附着力强。

Description

一种太阳光谱选择性透过涂层及其制备方法
技术领域
本发明涉及一种太阳光谱选择性透过涂层及其制备方法,属于光谱涂层技术领域。
背景技术
光伏组件是光伏发电系统中把光能转换为电能的部件,其光电转换效率是决定光伏发电效率的主要因素。光伏组件主要由玻璃盖板、太阳电池片、EVA及背板等构成。以晶体硅组件为例,虽然理论上晶体硅太阳电池的转换效率极限接近30%,但实际上晶体硅组件的转换效率只有20%左右。也就是说,组件仅将吸收的太阳能的少部分转化为电能加以利用,而其余大部分的能量则转化为热能被浪费,且热能不能完全散失,反而会导致光伏组件的温度升高,对组件的发电效率产生不利影响。对于其他材料的太阳电池或光伏组件也得出了类似的结论。
根据热力学原理,随着温度的升高,半导体内的载流子运动更加不规则,导致太阳能电池的电损耗急剧增加,因此,太阳能电池的光电转换效率随温度的升高而降低。温度升高导致相同光通量(载流子生成量相同)下,更多的电子会分布在能态较高的缺陷态,导致费米能级升高。根据Multiple Trap模型,费米能级升高的话,电子扩散系数呈指数增加,因此开路电压(Voc)与短路电流(Jsc)均随着温度升高而增大。转换效率是由短路电流密度、开路电压和填充因子共同决定,短路电流密度的增大弥补不了开路电压和填充因子的减小对转换效率的影响,因此,随着温度的升高,太阳电池转换效率降低。
传统的光伏组件中,吸收的阳光越多,产能越高,但自身的温度升高也会影响整个组件的性能。光谱选择性透过涂层在保证可见光透过率的同时,可以达到较低的红外发射率,其冷却作用可减少温度的副作用,延长整个系统的寿命;系统多余的热量亦可转化为电能,可提高太阳能的利用率。
发明内容
本发明的目的在于提供一种太阳光谱选择性透过涂层,该涂层具有在可见光高透过率,在红外波段高反射的特性。
本发明的另一目的在于提供一种所述太阳光谱选择性透过涂层的制备方法,该制备方法具有制备过程易于调控、镀膜面积大、涂层附着力强的优点。
为实现上述目的,本发明采用以下技术方案:
一种太阳光谱选择性透过涂层,该涂层包括在玻璃基体上依次制备的第一电介质层、金属层与第二电介质层的堆叠结构、第三电介质层;其中第一电介质层材料为AlN、TiAlN、ZrAlN中的任意一种,其厚度为1-100nm;金属层与第二电介质层的堆叠结构表示为(M/D2)n,其中M表示金属层,D2表示第二电介质层,n表示堆叠次数;金属层材料为Au、Ag、Cu、Al中的任意一种,其厚度为1-30nm;第二电介质层材料为AlN、TiAlN、ZrAlN中的任意一种,其厚度为1-100nm;第三电介质层材料为SiO2、TiO2、ZnO、Al2O3中的任意一种,其厚度为1-100nm。
其中,所述堆叠次数n的取值范围优选是1-3。
红外波段透射率的降低主要与金属膜有关。当超薄金属膜上下界面的反射系数处于相反相位时,产生的相互干涉会使可见光区的反射率降低,1-3次的堆叠结构有助于增大涂层透射率。当堆叠次数大于3时,制备成本进一步增大,且厚度的增加会降低涂层可见光的透过率。
一种所述太阳光谱选择性透过涂层的制备方法,包括以下步骤:
(1)在玻璃基底上以射频磁控溅射法制备第一电介质层;
(2)以射频磁控溅射法制备金属层,然后以射频磁控溅射法制备第二电介质层;重复堆叠n次;
(3)以射频磁控溅射法制备第三电介质层。
其中,所述第一电介质层的制备可包含如下步骤:先预抽真空至10-5~10-3Pa;使用金属或金属氮化物作为靶材,通Ar和N2混合气体进行射频溅射,Ar/N2气流量比为1-20,射频功率为100-500W,溅射气压为0.1-10Pa,靶基距为30-150mm。
所述金属层的制备可包含如下步骤:先预抽真空至10-5~10-3Pa;使用纯金属作为靶材,然后通Ar气进行射频溅射,射频功率为1-200W,溅射气压为0.1-10Pa,靶基距为30-150mm。
所述第二电介质层的制备可包含如下步骤:先预抽真空至10-5~10-3Pa;使用金属或金属氮化物作为靶材,通Ar和N2混合气体进行射频溅射,Ar/N2气流量比为1-20,射频功率为100-500W,溅射气压为0.1-10Pa,靶基距为30-150mm。
所述第三电介质层的制备可包含如下步骤:先预抽真空至10-5~10-3Pa;使用金属或金属氧化物作为靶材,通Ar和O2混合气体进行射频溅射,Ar/O2气流量比为1-20,射频功率为100-500W,溅射气压为0.1-10Pa,靶基距为30-150mm。
本发明的原理是:通过在双层电介质层(第一电介质层和第三电介质层)中间引入金属层和电介质层的堆叠结构,保证选择性透过涂层在红外波段较高的反射率。可见光透射率主要与金属层的厚度有关。通过制备工艺和流程设计,在最上层利用不同折射率的减反层搭配,使其光谱选择性高于传统的透明导电氧化物。另外,考虑Au、Ag、Cu和Al的成膜临界厚度,金属层的厚度设计为1-30nm,通过调节其沉积参数和厚度可将涂层红外发射率降低到15%以下。电介质层的厚度范围与各层间界面处的反射光有关,当电介质膜表面和底面返回来的光波相互重叠,反射波的相位和振幅相互抵消。基于各电介质的折射率和消光系数,利用TFCale模拟设计并优化整体涂层的透射光谱,可知各电介质层的厚度范围分别是1~100nm。
本发明的优点在于:
本发明的涂层可见光波段的透射率能达到80%,红外发射率低于15%。该涂层的制备过程易于设计和调控,且制得的涂层表面形貌致密,具有良好的热稳定性和化学稳定性。
附图说明
图1所示为实施例1制备的GLASS/TiAlN/Ag/TiAlN/SiO2选择性透过涂层的结构示意图。
图2所示为实施例2制备的GLASS/AlN/Al/AlN/Al/AlN/SiO2选择性透过涂层的结构示意图。
具体实施方式
下面结合实施例对本发明作详细说明,但并不意味着对本发明保护范围的限制。
本发明对原有单层透明导电氧化物薄膜的材料构成进行改善,提供一种GLASS/D1/(M/D2)n/D3结构的太阳光谱选择性透过涂层,从玻璃基体向外依次为电介质层D1、超薄金属层M和电介质层D2的堆叠结构、电介质层D3。电介质层D1由AlN、TiAlN、ZrAlN等氮化物中的任意一种组成,厚度为1-100nm,起着增加金属层与玻璃基体的结合力的作用;超薄金属层由Au、Ag、Cu、Al中的任意一种组成,厚度为1-30nm。大多数入射红外辐射都是由金属薄膜中的自由电子反射的,故超薄的光滑金属膜是实现本发明作用的关键。电介质层D2由AlN、TiAlN、ZrAlN等氮化物中的任意一种组成,厚度为1-100nm,该层与金属层M组合作用,实现对可见光的高透过作用。电介质层D3由SiO2、TiO2、ZnO、Al2O3等氧化物中的任意一种组成,厚度为1-100nm,该层可实现减反射的作用,进一步提高涂层在可见光波段的透过率。
在本发明中,作为玻璃基底,选择对太阳光具有高透过率和低吸收率的玻璃材质,例如可以选择硼硅玻璃、超白玻璃等,厚度为0.5-3.5mm。透明光学实际应用中需要选用高折射率的高带隙电介质。本发明的实施方案中选择用的金属氮化物和金属氧化物均具有可见光区的高透射率、高折射率、宽带隙、机械和化学性能稳定的特点。另外,在金属层上下均采用金属氮化物,可有效防止超薄金属层的氧化问题。电介质的光学和机械强度取决于生长技术和表面形态,本发明的实施方案中采用磁控溅射的方法,保证电介质的致密度和机械强度。
实施例1
以GLASS/TiAlN/Ag/TiAlN/SiO2选择性透过涂层为例。制备步骤如下:
步骤一:准备玻璃基底;选择硼硅玻璃基底,厚度为2mm。
步骤二:制备电介质层TiAlN;采用陶瓷靶TiAlN(纯度为99.99%)射频磁控溅射方法,将真空室预抽真空至2.0×10-4Pa,通入纯度为99.999%的Ar和N2作为溅射气体,流量分别设置为20sccm和3sccm,调节溅射气压为6×10-1Pa。开启TiAlN靶电源,溅射功率为400W,时长为53min,制备40nm的TiAlN膜;
步骤三:制备超薄金属Ag膜;采用金属Ag靶(纯度为99.99%)射频磁控溅射方法,将真空室预抽真空至2.0×10-4Pa,通入纯度为99.999%的Ar作为溅射气体,流量为20sccm。调节溅射气压为6×10-1Pa。开启Ag靶电源,溅射功率为100W,时长为5min,制备19nm的Ag膜;
步骤四:制备电介质层TiAlN;采用陶瓷靶TiAlN(纯度为99.99%)射频磁控溅射方法,将真空室预抽真空至2.0×10-4Pa,通入纯度为99.999%的Ar和N2作为溅射气体,流量分别设置为20sccm和3sccm,调节溅射气压为6×10-1Pa。开启TiAlN靶电源,溅射功率为400W,时长为33min,制备25nm的TiAlN膜;
步骤五:制备电介质层SiO2;采用陶瓷靶SiO2(纯度为99.99%)射频磁控溅射方法,将真空室预抽真空至2.0×10-4Pa,通入纯度为99.999%的Ar和O2作为溅射气体,流量分别设置为20sccm和3sccm,调节溅射气压为8×10-1Pa。开启SiO2靶电源,溅射功率150W,时长为63min,制备25nm的SiO2膜;
上述步骤制备的选择性透过涂层结构如图1所示。所制备的选择性透过涂层在可见光区550nm处的透射率达到85%,红外光谱发射率小于15%,且涂层致密、热稳定性好。
实施例2
以GLASS/AlN/Al/AlN/Al/AlN/SiO2选择性透过涂层为例。制备步骤如下:
步骤一:准备玻璃基底;选择超白玻璃基底,厚度为2mm。
步骤二:制备电介质层AlN;采用金属Al靶(纯度为99.99%)射频磁控溅射方法,将真空室预抽真空至2.0×10-4pa,通入纯度为99.999%的Ar和N2作为溅射气体,流量分别设置为20sccm和8sccm,调节溅射气压为6×10-1Pa。开启Al靶,Al靶溅射功率为300W,时长为30min,制备35nm的AlN膜;
步骤三:制备超薄金属Al膜;采用金属Al靶(纯度为99.99%)射频磁控溅射方法,将真空室预抽真空至2.0×10-4Pa,通入纯度为99.999%的Ar作为溅射气体,流量为20sccm。调节溅射气压为6×10-1Pa。开启Al靶电源,溅射功率为100W,时长为4min,制备10nm的Al膜;
步骤四:制备电介质层AlN;采用金属Al靶(纯度为99.99%)射频磁控溅射方法,将真空室预抽真空至2.0×10-4Pa,通入纯度为99.999%的Ar和N2作为溅射气体,流量分别设置为20sccm和8sccm,调节溅射气压为6×10-1Pa。开启Al靶,Al靶溅射功率为300W,时长为74min,制备86nm的AlN膜;
步骤五:制备超薄金属Al膜;采用金属Al靶(纯度为99.99%)射频磁控溅射方法,将真空室预抽真空至2.0×10-4Pa,通入纯度为99.999%的Ar作为溅射气体,流量为20sccm。调节溅射气压为6×10-1Pa。开启Al靶电源,溅射功率为100W,时长为4min,制备10nm的Al膜;
步骤六:制备电介质层AlN;采用金属Al靶(纯度为99.99%)射频磁控溅射方法,将真空室预抽真空至2.0×10-4Pa,通入纯度为99.999%的Ar和N2作为溅射气体,流量分别设置为20sccm和8sccm,调节溅射气压为6×10-1Pa。开启Al靶,Al靶溅射功率为300W,时长为22min,制备26nm的AlN膜;
步骤七:制备电介质层SiO2;采用陶瓷靶SiO2(纯度为99.99%)射频磁控溅射方法,将真空室预抽真空至2.0×10-4Pa,通入纯度为99.999%的Ar和O2作为溅射气体,流量分别设置为20sccm和3sccm,调节溅射气压为8×10-1Pa。开启SiO2靶电源,溅射功率150W,时长为65min,制备26nm的SiO2膜;
上述步骤制备的选择性透过涂层结构如图2所示。所制备的选择性透过涂层在可见光区的透射率达到90%,红外光谱发射率小于10%,且涂层生长致密、热稳定性好。
上述实施例仅用于说明本发明,而不是限制本发明。

Claims (7)

1.一种太阳光谱选择性透过涂层,其特征在于,该涂层包括在玻璃基体上依次制备的第一电介质层、金属层与第二电介质层的堆叠结构、第三电介质层;其中第一电介质层材料为A1N、TiAlN、ZrAlN中的任意一种,其厚度为1-100nm;金属层与第二电介质层的堆叠结构表示为(M/D2)n,其中M表示金属层,D2表示第二电介质层,n表示堆叠次数;金属层材料为Au、Ag、Cu、A1中的任意一种,其厚度为1-30nm;第二电介质层材料为A1N、TiAlN、ZrAlN中的任意一种,其厚度为1-100nm;第三电介质层材料为SiO2、TiO2、ZnO、Al2O3中的任意一种,其厚度为1-100nm。
2.根据权利要求1所述的太阳光谱选择性透过涂层,其特征在于,所述堆叠次数n的取值范围是1-3。
3.一种权利要求1所述太阳光谱选择性透过涂层的制备方法,其特征在于,包括以下步骤:
(1)在玻璃基底上以射频磁控溅射法制备第一电介质层;
(2)以射频磁控溅射法制备金属层,然后以射频磁控溅射法制备第二电介质层;重复堆叠n次;
(3)以射频磁控溅射法制备第三电介质层。
4.根据权利要求3所述的太阳光谱选择性透过涂层的制备方法,其特征在于,所述第一电介质层的制备包含如下步骤:先预抽真空至10-510-3Pa;使用金属或金属氮化物作为靶材,通Ar和N2混合气体进行射频溅射,Ar/N2气流量比为1-20,射频功率为100-500W,溅射气压为0.1-10Pa,靶基距为30-150mm。
5.根据权利要求3所述的太阳光谱选择性透过涂层的制备方法,其特征在于,所述金属层的制备包含如下步骤:先预抽真空至10-5~10-3Pa;使用纯金属作为靶材,然后通Ar气进行射频溅射,射频功率为1-200W,溅射气压为0.1-10Pa,靶基距为30-150mm。
6.根据权利要求3所述的太阳光谱选择性透过涂层的制备方法,其特征在于,所述第二电介质层的制备包含如下步骤:先预抽真空至10-5~10-3Pa;使用金属或金属氮化物作为靶材,通Ar和N2混合气体进行射频溅射,Ar/N2气流量比为1-20,射频功率为100-500W,溅射气压为0.1-10Pa,靶基距为30-150mm。
7.根据权利要求3所述的太阳光谱选择性透过涂层的制备方法,其特征在于,所述第三电介质层的制备包含如下步骤:先预抽真空至10-510-3Pa;使用金属或金属氧化物作为靶材,通Ar和O2混合气体进行射频溅射,Ar/O2气流量比为1-20,射频功率为100-500W,溅射气压为0.1-10Pa,靶基距为30-150mm。
CN201911402358.6A 2019-12-30 2019-12-30 一种太阳光谱选择性透过涂层及其制备方法 Pending CN113130691A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911402358.6A CN113130691A (zh) 2019-12-30 2019-12-30 一种太阳光谱选择性透过涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911402358.6A CN113130691A (zh) 2019-12-30 2019-12-30 一种太阳光谱选择性透过涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN113130691A true CN113130691A (zh) 2021-07-16

Family

ID=76768523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911402358.6A Pending CN113130691A (zh) 2019-12-30 2019-12-30 一种太阳光谱选择性透过涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN113130691A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103072341A (zh) * 2013-01-22 2013-05-01 福耀玻璃工业集团股份有限公司 一种低辐射镀膜玻璃及其夹层玻璃制品
CN106229371A (zh) * 2016-08-30 2016-12-14 电子科技大学 荧光波导聚光模块、太阳能发电装置及其应用
CN110418710A (zh) * 2016-12-20 2019-11-05 墨西哥平板玻璃可变资本股份有限公司 用于玻璃基材的低发射率涂层

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103072341A (zh) * 2013-01-22 2013-05-01 福耀玻璃工业集团股份有限公司 一种低辐射镀膜玻璃及其夹层玻璃制品
CN106229371A (zh) * 2016-08-30 2016-12-14 电子科技大学 荧光波导聚光模块、太阳能发电装置及其应用
CN110418710A (zh) * 2016-12-20 2019-11-05 墨西哥平板玻璃可变资本股份有限公司 用于玻璃基材的低发射率涂层

Similar Documents

Publication Publication Date Title
CA2151736C (en) Method for the manufacture of improved efficient tandem photovoltaic device and device manufactured thereby
US5858120A (en) Photovoltaic device
CN207320169U (zh) 一种渐变带隙的钙钛矿电池
JP4565105B2 (ja) 太陽電池用の光学薄膜およびその製造方法
JP2003142709A (ja) 積層型太陽電池およびその製造方法
JP2008270562A (ja) 多接合型太陽電池
CN112259615A (zh) 一种空间用GaAs太阳电池叠层减反射膜及其制备方法与应用
JP2002363744A (ja) 多層膜製造装置および製造方法
CN113130691A (zh) 一种太阳光谱选择性透过涂层及其制备方法
WO2012171146A1 (zh) 包含新型减反射层的薄膜太阳能电池及其制造方法
CN116123741A (zh) 一种用于槽式热发电高温真空集热管的太阳光谱选择性吸收涂层及其制备方法
CN103779430A (zh) 一种晶体硅太阳电池的导电减反射膜和晶体硅太阳电池
JP3112339B2 (ja) 太陽電池モジュール
JP2004356623A (ja) 積層型光起電力素子及びその製造方法
CN102938430B (zh) 包含中间层的柔性衬底硅基多结叠层太阳电池及其制造方法
CN202977429U (zh) 一种太阳能电池及减反射膜
CN112490297B (zh) 一种空间三结砷化镓太阳电池用三层减反射膜及其制备方法
JP5469298B2 (ja) 光電変換装置用透明導電膜、及びその製造方法
CN208706660U (zh) 一种薄膜太阳能电池
Myong Recent patent issues on intermediate reflectors for high efficiency thin-film silicon photovoltaic devices
KR102071481B1 (ko) 산화은 투명 전극을 사용하여 개선된 투과성을 갖는 양면 수광형 태양전지 및 이의 제조방법
CN112652675A (zh) 一种彩色薄膜光伏组件及其制备方法
CN2593368Y (zh) 宽谱域低温叠层硅基薄膜太阳电池
JP2007251114A (ja) 光学多層膜を有した高性能太陽光電池用基板及びその製造方法
Chowdhury et al. Performance improvement of amorphous silicon solar cell by SiOx: H based multiple antireflection coatings

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210716

RJ01 Rejection of invention patent application after publication