CN113120977B - 由含镍铁电镀废水制备铁酸镍纳米材料的方法及应用 - Google Patents

由含镍铁电镀废水制备铁酸镍纳米材料的方法及应用 Download PDF

Info

Publication number
CN113120977B
CN113120977B CN202110481530.2A CN202110481530A CN113120977B CN 113120977 B CN113120977 B CN 113120977B CN 202110481530 A CN202110481530 A CN 202110481530A CN 113120977 B CN113120977 B CN 113120977B
Authority
CN
China
Prior art keywords
nickel
nickel ferrite
nano material
reaction
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110481530.2A
Other languages
English (en)
Other versions
CN113120977A (zh
Inventor
冯春全
李政
颜炼红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Jingwei Naco Environmental Technology Co ltd
Original Assignee
Foshan Jingwei Naco Environmental Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Jingwei Naco Environmental Technology Co ltd filed Critical Foshan Jingwei Naco Environmental Technology Co ltd
Priority to CN202110481530.2A priority Critical patent/CN113120977B/zh
Publication of CN113120977A publication Critical patent/CN113120977A/zh
Application granted granted Critical
Publication of CN113120977B publication Critical patent/CN113120977B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/38Particle morphology extending in three dimensions cube-like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明属于电镀废水资源化处理技术领域,公开了一种由含镍铁电镀废水制备铁酸镍纳米材料的方法及应用。向含镍铁电镀废水中加入有机溶剂和表面活性剂,20~70℃及搅拌条件下进行相转移反应,使金属离子从下层水相转移到上层有机溶液相,然后将相转移反应后的溶液转移到反应釜中,加入碱,80~200℃温度下进行溶剂热反应,反应结束后溶液体系分层,除去下层水相,将有机相中的铁酸镍进行离心,洗涤,干燥,得到铁酸镍纳米材料。本发明利用电镀废水中的镍铁离子合成铁酸镍,同时解决了电镀废水的处理难题;所得铁酸镍纳米材料可用于光催化还原CO2产生H2和CO,将温室效应气体转化为能源。具有显著的环保效益和经济效益。

Description

由含镍铁电镀废水制备铁酸镍纳米材料的方法及应用
技术领域
本发明属于电镀废水资源化处理技术领域,具体涉及一种由含镍铁电镀废水制备铁酸镍纳米材料的方法及应用。
背景技术
电镀废水是电镀生产过程中产生的废水,其主要污染物是各种金属离子,其中含镍、铁、铜、铬、铅等电镀废水是常见的废水之一。这些重金属排放到自然界中会对生物体产生很大的毒害作用。目前电镀废水常见的处理方法是采用化学沉淀法将废水中的重金属转化为不溶于水的化合物,从而达到排放标准。但是化学沉淀法会产生大量的电镀污泥,造成二次污染,且不能对各金属离子进行回收,资源浪费。急需寻找一种将电镀废水中重金属离子进行回收,并且可以资源化利用的方法。
专利CN 112010488 A公开了一种从重金属废水制备纳米粒子的方法,通过往重金属废水中加入络合剂和相转移剂搅拌混合均匀,然后加碱调节pH至碱性,所得混合溶液升温至100~230℃进行溶剂热反应,反应完成后冷却至室温,得到明显分层且下层是净化水、上层是含纳米粒子和络合剂的相转移溶液;下层分离得到净化水,上层含纳米粒子和络合剂的相转移溶液经离心分离得到含络合剂的相转移溶剂和纳米粒子。该发明方法在高效资源化净化重金属废水的同时,可以回收重金属纳米粒子。但该专利暂未公开对回收后的重金属纳米粒子进行高值化利用。
温室气体二氧化碳排放的显著提升和能源供给安全问题已经引起了社会的极大关注,被认为是本世纪的最大挑战。受到自然光合作用的启发,利用光催化减少燃烧燃料产生的二氧化碳似乎是一个既能发展再生能源,同时又能减缓全球变暖的理想策略,一石二鸟,解决能源和环境问题。然而,由于二氧化碳分子的极度稳定性和多质子耦合的电子转移步骤,光还原二氧化碳的效率远比我们所期望的低。在很多已经被研究过的光催化材料中,镍基材料凭借多个氧化态、优异的电化学稳定性和环境友好性得到了很大的关注。
专利CN102989461 A公开了一种磁性铁酸镍光催化材料,通过将可溶性铁盐与可溶性镍盐于水中均匀混合,并加入强碱持续搅拌,其后将形成的混合反应体系在温度为180℃的条件下密闭加热10h以上,然后利用磁场分离出混合反应物中的固形物,并洗涤多次,最后将所述固形物在温度为200-450℃的环境中烘干,获得目标产物。该发明制备的磁性铁酸镍光催化材料具有紫外光和可见光光催化降解功能、磁性分离功能,能应用于污水的治理,尤其是能快速有效地脱去污染水体中的氨氮。专利CN110790322 A公开了一种核壳状铁酸镍、铁酸镍@C材料,采用溶剂热法制备得到镍铁甘油酸酯球粉末,并煅烧得到,进一步研究了在锂离子电池负极上的应用。
上述公开专利中,都是通过直接配置的金属盐溶液制备或通过高稳煅烧得到铁酸镍材料,成本及能耗高。且所得铁酸镍催化材料主要用于降解污染水体中的氨氮或用于电极材料。并未利用电镀废水中的有价金属制备产物,且未公开铁酸镍在光催化还原CO2中的应用。
杜婷在论文中公开了《光照下NiFe2O4/CoFe2O4分解二氧化碳为碳的研究》,天津理工大学学位论文,2013-6-13。该论文以氢气还原产生氧缺位的铁酸盐(MFe2O4)可以作为催化剂在高温下实现二氧化碳的转化。但该论文分别研究了溶液体系和气相体系光照对二氧化碳转化为碳的影响,公开的是以共沉淀法制得的铁酸镍用氨气高温还原后,在紫外光照射下可以将二氧化碳分解为以碳纳米棒、炭黑、碳球、碳纳米片形式存在的沉积碳。而溶剂热-热分解法制得的铁酸镍分解二氧化碳性能较差。
申请人通过调研大量的专利文献研究结果表明,目前还没有报道通过使用电镀废水进行铁酸镍纳米晶体的制备,并将该材料用于特定体系下光催化还原CO2产生H2和CO。
发明内容
针对以上现有技术存在的缺点和不足之处,本发明的首要目的在于提供一种由含镍铁电镀废水制备铁酸镍纳米材料的方法。本发明方法以含镍铁电镀废水作为原料合成铁酸镍纳米材料,具有价格低廉、合成方法简单、便于工业化生产的优点,在解决环境问题的同时解决能耗问题,具有重要的研究意义。
本发明的另一目的在于提供一种通过上述方法制备得到的铁酸镍纳米材料。
本发明的再一目的在于提供上述铁酸镍纳米材料在光催化还原CO2中的应用。
本发明目的通过以下技术方案实现:
一种由含镍铁电镀废水制备铁酸镍纳米材料的方法,包括如下制备步骤:
(1)向含镍铁电镀废水中加入有机溶剂和表面活性剂,20~70℃及搅拌条件下进行相转移反应,使金属离子从下层水相转移到上层有机溶液相;
(2)将步骤(1)经过相转移反应后的溶液转移到反应釜中,然后加入碱,80~200℃温度下进行溶剂热反应,反应结束后溶液体系分层,除去下层水相,将有机相中的铁酸镍进行离心,洗涤,干燥,得到铁酸镍纳米材料。
进一步地,步骤(1)中所述有机溶剂选自乙醇、正己烷、三氯甲烷中的一种或两种以上的混合溶剂。
进一步地,步骤(1)中所述含镍铁电镀废水与有机溶剂的体积比为1:(1~5)。
进一步地,步骤(1)中所述表面活性剂选自油胺、油酸钠、十二烷基苯磺酸钠、聚丙烯酰胺中的至少一种。
进一步地,步骤(1)中所述含镍铁电镀废水中金属离子与表面活性剂的摩尔比为1:(1~20)。
进一步地,步骤(1)中所述相转移反应的时间为1~5h。
进一步地,步骤(2)中所述碱为氢氧化钠,氢氧化钠的加入量为含镍铁电镀废水中金属离子物质的量的1~15倍。更优选氢氧化钠的加入量为含镍铁电镀废水中金属离子物质的量的10倍,所得铁酸镍纳米材料为花状形貌。
进一步地,步骤(2)中所述溶剂热反应的时间为2~24h。
一种铁酸镍纳米材料,通过上述方法制备得到。
上述铁酸镍纳米材料在光催化还原CO2中的应用。
进一步地,所述应用过程为:
将铁酸镍纳米材料超声分散于含有联吡啶钌、三乙醇胺、水和乙腈的混合溶液中,然后通入CO2在可见光条件下反应,得到CO和H2
上述应用过程中,联吡啶钌作为一种光敏剂,受到光激发以后产生电子和空穴。三乙醇胺作为牺牲剂,用于捕获光空穴,降低光生电子-空穴对的复合几率,提高光催化效率。水和乙腈作为光催化还原CO2的还原剂,降低CO2还原反应的活化能。
进一步地,所述反应体系中,铁酸镍纳米材料:联吡啶钌:三乙醇胺:水:乙腈的比例为1mg:5~15mg:1~4ml:1~6ml:1~9ml。
本发明原理为:首先采用有机溶剂和表面活性剂将水相中的金属离子提取到有机相,然后采用水热法通过加碱对形貌调控,合成反尖晶石结构的铁酸镍纳米材料。其中,表面活性剂与水相中金属离子络合,提取到有机相。所得铁酸镍纳米材料作为助催化剂用于光催化还原CO2
与现有技术相比,本发明的有益效果是:
(1)本发明利用电镀废水中的镍铁离子合成反尖晶石结构的铁酸镍,合成步骤简单,易实现,合成纳米材料的同时解决了电镀废水排放到环境中的处理难题,一石二鸟;合成的铁酸镍纳米光催化材料可用于还原CO2产生H2和CO,将温室效应气体转化为能源。具有显著的环保效益和经济效益。
(2)本发明通过调节碱量,可调节铁酸镍晶体的生长,在水热条件下得到不同形貌和性能的铁酸镍纳米材料,形貌可控。
(3)本发明所得铁酸镍作为磁性材料应用于光催化还原CO2,易于回收,可循环利用。
附图说明
图1为本发明实施例1在不同碱加入量条件下合成的铁酸镍的XRD谱图。
图2为本发明实施例1在不同碱加入量条件下合成的铁酸镍的扫描电镜图。
图3为不同碱加入量条件下合成不同形貌铁酸镍的光催化还原CO2的性能结果图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
以下实施例中所述含镍铁电镀废水是指经浓缩处理后的,主要金属离子为Ni2+和Fe2+的电镀废水。
实施例1
(1)将电镀废水中的金属离子转移至有机相:取0.05mol/L的含镍铁电镀废水20ml,加入10ml乙醇,20ml正己烷,2mmol油胺。加热搅拌体系在70℃保持1h。使金属离子从下层水相转移到上层有机溶液相。
(2)将步骤(1)的体系冷却至室温转入反应釜中,分别加入10ml物质的量为5mmol、10mmol、15mmol的NaOH溶液,加热至180℃,恒温反应24h。反应结束后,溶液体系分层,除去下层水相,将有机相中的铁酸镍进行离心,洗涤,干燥,得到铁酸镍纳米材料。
本实施例在不同碱加入量条件下合成的铁酸镍的XRD谱图如图1所示。由图1可见,随着碱浓度的增高,铁酸镍的结晶性能越来越好。在不同碱加入量条件下合成的铁酸镍的扫描电镜图如图2所示。由图2可见,碱加入量为10mmol(b)时,所得铁酸镍纳米材料为花状形貌,而碱加入量为5mmol(a)或15mmol(c)时,所得铁酸镍纳米材料为块状形貌。
实施例2
(1)将电镀废水中的金属离子转移至有机相:取0.05mol/L的含镍铁电镀废水20ml,加入10ml乙醇,20ml正己烷,2mmol十二烷基苯磺酸钠。加热搅拌体系在70℃保持1h。使金属离子从下层水相转移到上层有机溶液相。
(2)将步骤(1)的体系冷却至室温转入反应釜中,加入10ml物质的量为10mmol的NaOH溶液,加热至180℃,恒温反应24h。反应结束后,溶液体系分层,除去下层水相,将有机相中的铁酸镍进行离心,洗涤,干燥,得到花状铁酸镍纳米材料。
实施例3
(1)将电镀废水中的金属离子转移至有机相:取0.05mol/L的含镍铁电镀废水20ml,加入10ml乙醇,20ml正己烷,2mmol聚丙烯酰胺。加热搅拌体系在70℃保持1h。使金属离子从下层水相转移到上层有机溶液相。
(2)将步骤(1)的体系冷却至室温转入反应釜中,加入10ml物质的量为10mmol的NaOH溶液,加热至180℃,恒温反应24h。反应结束后,溶液体系分层,除去下层水相,将有机相中的铁酸镍进行离心,洗涤,干燥,得到花状铁酸镍纳米材料。
实施例4
光催化降解CO2:分别取1mg实施例1中在不同碱加入量条件下合成的铁酸镍,加入7.5mg的联吡啶钌,1ml三乙醇胺、2ml去离子水和3ml乙腈,在60ml的光催化瓶中超声溶解。抽真空,通入CO2气体,随后放入多通道光催化反应仪当中,5W的LED灯照射。反应1h后,取样,气相色谱检测反应气体成分。
图3是在不同碱加入量条件下合成不同形貌铁酸镍的光催化还原CO2的性能。由图3可见,本发明所得铁酸镍纳米材料具有良好的光催化还原CO2的性能。且NaOH加入量在10mmol时长成的花状铁酸镍展现了更优异的光催化性能,催化还原生成的CO和H2比块状铁酸镍高。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (5)

1.一种铁酸镍纳米材料在光催化还原CO2中的应用,其特征在于,所述应用过程为:
将铁酸镍纳米材料超声分散于含有联吡啶钌、三乙醇胺、水和乙腈的混合溶液中,然后通入CO2在可见光条件下反应,得到CO和H2
所述铁酸镍纳米材料通过如下方法制备得到:
(1)向含镍铁电镀废水中加入有机溶剂和表面活性剂,20~70℃及搅拌条件下进行相转移反应,使金属离子从下层水相转移到上层有机溶液相;
(2)将步骤(1)经过相转移反应后的溶液转移到反应釜中,然后加入碱,180℃温度下进行溶剂热反应24h,反应结束后溶液体系分层,除去下层水相,将有机相中的铁酸镍进行离心,洗涤,干燥,得到铁酸镍纳米材料;
步骤(2)中所述碱为氢氧化钠,氢氧化钠的加入量为含镍铁电镀废水中金属离子物质的量的10倍;所得铁酸镍纳米材料为花状形貌。
2.根据权利要求1所述的一种铁酸镍纳米材料在光催化还原CO2中的应用,其特征在于:步骤(1)中所述有机溶剂选自乙醇、正己烷、三氯甲烷中的一种或两种以上的混合溶剂;所述含镍铁电镀废水与有机溶剂的体积比为1:(1~5)。
3.根据权利要求1所述的一种铁酸镍纳米材料在光催化还原CO2中的应用,其特征在于:步骤(1)中所述表面活性剂选自油胺、油酸钠、十二烷基苯磺酸钠、聚丙烯酰胺中的至少一种;所述含镍铁电镀废水中金属离子与表面活性剂的摩尔比为1:(1~20)。
4.根据权利要求1所述的一种铁酸镍纳米材料在光催化还原CO2中的应用,其特征在于:步骤(1)中所述相转移反应的时间为1~5h。
5.根据权利要求1所述的一种铁酸镍纳米材料在光催化还原CO2中的应用,其特征在于:所述反应体系中,铁酸镍纳米材料:联吡啶钌:三乙醇胺:水:乙腈的比例为1mg:5~15mg:1~4ml:1~6ml:1~9ml。
CN202110481530.2A 2021-04-30 2021-04-30 由含镍铁电镀废水制备铁酸镍纳米材料的方法及应用 Active CN113120977B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110481530.2A CN113120977B (zh) 2021-04-30 2021-04-30 由含镍铁电镀废水制备铁酸镍纳米材料的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110481530.2A CN113120977B (zh) 2021-04-30 2021-04-30 由含镍铁电镀废水制备铁酸镍纳米材料的方法及应用

Publications (2)

Publication Number Publication Date
CN113120977A CN113120977A (zh) 2021-07-16
CN113120977B true CN113120977B (zh) 2023-06-23

Family

ID=76780714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110481530.2A Active CN113120977B (zh) 2021-04-30 2021-04-30 由含镍铁电镀废水制备铁酸镍纳米材料的方法及应用

Country Status (1)

Country Link
CN (1) CN113120977B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114345347B (zh) * 2022-01-20 2024-05-14 陕西科技大学 一种铁酸钴助催化剂及其制备方法和应用
US20230322588A1 (en) * 2022-04-08 2023-10-12 Macdermid, Incorporated Electrochemical Oxidation of Amine Complexants in Waste Streams from Electroplating Processes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989461A (zh) * 2012-11-15 2013-03-27 苏州科技学院 磁性铁酸镍光催化材料的制备方法及应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9469555B2 (en) * 2014-06-19 2016-10-18 Cristian Predescu Magnetic nanostructures and device implementing same
CN106517361A (zh) * 2016-11-07 2017-03-22 中国铝业股份有限公司 一种尖晶石型纳米铁酸镍粉体的制备方法
CN106492816A (zh) * 2016-11-23 2017-03-15 南阳师范学院 一种磁性光催化纳米复合材料及其制备方法
CN107452952B (zh) * 2017-08-16 2019-10-08 华南师范大学 一种铁酸镍与硅的复合材料及其制备方法和应用
CN109467131B (zh) * 2018-10-22 2021-05-14 华南理工大学 一种以合成铁酸盐晶体形式提取电镀污泥中金属的方法
CN111821979A (zh) * 2020-07-13 2020-10-27 江苏康德龙环保有限公司 一种制备可回收石墨烯复合二氧化钛纳米材料的新型方法
CN112010488B (zh) * 2020-09-09 2021-05-25 佛山经纬纳科环境科技有限公司 一种从重金属废水制备纳米粒子的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989461A (zh) * 2012-11-15 2013-03-27 苏州科技学院 磁性铁酸镍光催化材料的制备方法及应用

Also Published As

Publication number Publication date
CN113120977A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
CN113351227B (zh) 一种超薄Ti3C2纳米片/ZnIn2S4花球复合光催化剂的制备方法
CN113120977B (zh) 由含镍铁电镀废水制备铁酸镍纳米材料的方法及应用
CN108993550B (zh) 一种表面氧空位改性的溴氧铋光催化剂及其制备方法
Darkhosh et al. One pot synthesis of CuFeO2@ expanding perlite as a novel efficient floating catalyst for rapid degradation of methylene blue under visible light illumination
CN111036243B (zh) 含氧空缺的过渡金属掺杂的BiOBr纳米片光催化剂及其制备方法和应用
CN110385146B (zh) 一种Ni0.85Se/PDA/g-C3N4复合光催化剂及其应用
CN105233850A (zh) 一种磁性纳米复合光催化材料及其制备方法
CN107433203B (zh) 一种Z-Scheme复合体系及制备方法和应用
Hong et al. Urchin-like CuO microspheres: Synthesis, characterization, and properties
WO2022268021A1 (zh) 一种Cu基催化剂及将其用于光催化水产氢-5-HMF氧化偶联反应
CN110624594A (zh) 一种磁性Fe3O4/ZnO/g-C3N4复合光催化剂及其制备方法
CN110756203A (zh) 一种Ni2P/Mn0.3Cd0.7S光催化分解水复合催化剂及其制备方法与应用
CN114849738A (zh) 一种硫化锰镉@氧化镍复合光催化剂的制备方法及其应用
CN113145138A (zh) 热响应型复合光催化剂及其制备方法和应用
CN110064407A (zh) 一种基于锌锰铁氧体负载纳米硫化铜的生物制备方法
CN113649075A (zh) 一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备方法
CN109395759B (zh) 一种具有核壳结构的Fe3C纳米粒子及其制备方法和应用
CN109847779B (zh) 一种g-C3N4-MP-MoS2复合材料及其制备方法与应用
Zou et al. Oxalic acid modified hexagonal ZnIn2S4 combined with bismuth oxychloride to fabricate a hierarchical dual Z-scheme heterojunction: Accelerating charge transfer to improve photocatalytic activity
Zhang et al. Promoted interfacial charge transfer by coral-like nickel diselenide for enhanced photocatalytic hydrogen evolution over carbon nitride nanosheet
CN111939932A (zh) 二硫化锡@氧化铟纳米复合材料的制备方法
CN114917932B (zh) 一种用于co2光还原合成co和h2的催化剂、制备方法及应用
CN114100682B (zh) 一种羽状叶异质结光催化剂及其制备方法
CN114870899B (zh) 一种光催化co2分解制合成气的复合光催化剂及其制备方法
CN117258844A (zh) 一种含混合配体的Co(II)可见光催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant