CN113101912B - 一种球磨钛铁矿制备磁性TiO2光催化剂的方法及所得磁性TiO2的应用 - Google Patents

一种球磨钛铁矿制备磁性TiO2光催化剂的方法及所得磁性TiO2的应用 Download PDF

Info

Publication number
CN113101912B
CN113101912B CN202110412870.XA CN202110412870A CN113101912B CN 113101912 B CN113101912 B CN 113101912B CN 202110412870 A CN202110412870 A CN 202110412870A CN 113101912 B CN113101912 B CN 113101912B
Authority
CN
China
Prior art keywords
ilmenite
ball
tio
photocatalyst
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110412870.XA
Other languages
English (en)
Other versions
CN113101912A (zh
Inventor
史载锋
韩立志
张小朋
张大帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan Pujin Technology Co ltd
Original Assignee
Hainan Pujin Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan Pujin Technology Co ltd filed Critical Hainan Pujin Technology Co ltd
Priority to CN202110412870.XA priority Critical patent/CN113101912B/zh
Publication of CN113101912A publication Critical patent/CN113101912A/zh
Application granted granted Critical
Publication of CN113101912B publication Critical patent/CN113101912B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种球磨钛铁矿制备磁性TiO2光催化剂的方法及所得磁性TiO2的应用,球磨钛铁矿制备磁性TiO2光催化剂的方法,利用磁铁或电磁场作用,分选出具有磁性的钛铁矿粉体,然后将具有磁性的磁性钛铁矿粉体在溶液介质中球磨,TiO2由无定型转变为锐钛型,钛铁矿晶型具有明显的锐钛矿特征峰出现,而磁性保持不变,得到磁性TiO2光催化剂。本发明球磨钛铁矿制备磁性TiO2光催化剂的方法,以钛铁矿为前驱体,采用球磨法制得了磁性TiO2,具有明显的锐钛矿特征峰出现,而磁性没有变化,所得磁性TiO2具有优异的光催化活性,且方便回收,可反复使用。

Description

一种球磨钛铁矿制备磁性TiO2光催化剂的方法及所得磁性 TiO2的应用
技术领域
本发明涉及一种球磨钛铁矿制备磁性TiO2光催化剂的方法及所得磁性TiO2的应用,属于光催化技术领域。
背景技术
钛铁矿是海南的主要矿产之一,占全国的48%。钛铁矿中除含50%左右的TiO2和10~20%SiO2外,含Fe3O4一般在20%~30%左右,还含有少量的Ca、Mg、S、P、 Si等氧化物。在原矿中铁离子的存在形式较为复杂,从理论上讲矿石中铁是以Fe3+和Fe2+的形式存在,而Fe2+不稳定,不能长期单独存在,在钛铁矿中,Fe2+一般是和Fe3+形成复合体,即Fe3O4;Fe2+也可以和TiO2形成复合体即FeTiO3(钛酸亚铁),从而使得原矿中铁是以磁铁矿Fe3O4、赤铁矿Fe2O3和钛铁矿FeTiO3的形式共生存在。
现有技术中,虽然有关于钛铁矿处理的一些报道,如CN201811172623.1一种由钛精矿制备人造金红石的方法:包括钛铁矿分级、氧化焙烧、还原焙烧、氟化盐分段酸浸除杂、水洗、煅烧等五个步骤之后得到高品位的人造金红石;CN201911182728.X一种利用低品位高钙镁钛铁矿制备人造金红石的方法:将高品位钛铁矿进行氧化处理,得到氧化钛铁矿;将低品位钛铁矿进行氧化处理,然后在还原气氛下进行还原处理得还原钛铁矿;将所得的氧化钛铁矿和所得的还原钛铁矿混合均匀得改性钛铁矿,然后进行酸浸,然后固液分离、洗涤得人造金红石初品;将步所得的人造金红石初品进行煅烧,即得产品人造金红石;CN201810785059.4钛铁矿制备高强度人造金红石的方法:为了解决人造金红石强度低、易粉化的问题,该发明提供了一种钛铁矿制备高强度人造金红石的方法,钛铁矿经“高温氧化-弱还原-高温再氧化-酸浸-碱浸-煅烧”,得到人造金红石,通过对钛铁矿进行“高温氧化-弱还原-高温再氧化”预处理改变钛铁矿微观组成和形态,使其在后续酸浸-碱浸除杂过程中同时具有很好的反应活性和抗机械力,使钛回收率达98%以上,TiO2含量更高,粒度保持更好,细粉比例更低;CN101531397一种由钛铁矿制备金红石型二氧化钛的清洁生产方法:以钛铁矿为原料,使其与200~260℃的氢氧化钾亚熔盐反应制备中间产物,然后将中间产物进行水洗、酸溶、萃取除铁(III)、水解直接制备金红石型二氧化钛,二氧化钛纯度可达98.5%,该发明避免了高温焙烧,钛铁矿的转化率可以达到96.5%以上,并且碱、酸、萃取剂可以循环利用,制得钛酸钾中间产物可以作为制备系列钛的中间体,为钛铁矿的综合利用及金红石型二氧化钛的制备提供了一条有效的途径。但现有技术中关于钛铁矿处理的报道,所解决的技术问题及所采用的技术方案,均与本申请内容不相关。目前,以钛铁矿为前驱体,采用球磨法制备磁性光催化剂,尚未见发明报道。
发明内容
本发明提供一种球磨钛铁矿制备磁性TiO2光催化剂的方法及所得磁性TiO2的应用,本发明以钛铁矿为前驱体,采用球磨法制得了磁性TiO2,所得磁性TiO2具有优异的光催化活性。
为解决上述技术问题,本发明所采用的技术方案如下:
一种球磨钛铁矿制备磁性TiO2光催化剂的方法,利用磁铁或电磁场作用,分选出具有磁性的钛铁矿粉体,然后将具有磁性的磁性钛铁矿粉体在溶液介质中球磨,钛铁矿粉体中的TiO2由无定型转变为锐钛型,钛铁矿晶型具有明显的锐钛矿特征峰出现,而钛铁矿粉体的磁性保持不变,得到磁性TiO2光催化剂。
经实践,上述磁性TiO2具有优异的光催化活性,溶液中悬浮的磁性钛铁矿光催化剂粉体可以利用磁场回收。
申请人经研究发现,采用球磨机球磨钛铁矿过程中,球与钛铁矿物料碰撞瞬间产生的能量可导致高温,为钛铁矿颗粒表面TiO2晶型发生转变提供条件,达到球磨目的。
本申请磁性TiO2光催化剂的磁性采用超导量子干涉仪磁性测量系统测量,其晶型采用XRD衍射仪测量。
为了进一步确保产品的催化效率,上述分选出的具有磁性的钛铁矿粉体的饱和磁化强度大于2emu·g-1
为了提高所得磁性TiO2的催化效率,球磨所用设备为行星式球磨机,公转速率为100~800r/min,自转速率为100~1000r/min,球磨时间为2~10小时,球料质量比为10:1~1:1。进一步优选,公转速率为250~350r/min,自转速率为100~200r/min,球磨时间为5~7小时。当球磨超过7小时,金红石TiO2的增多将会降低钛铁矿的光催化活性。
为了提高所得磁性TiO2的催化效率,溶液介质为水、氢氧化钠、盐酸、苯甲醛、甲醛、冰乙酸、正丁醇、乙酸乙酯、乙醇、丙三醇或呋喃甲醛,球磨罐的材质为不锈钢,球磨球的材质为玛瑙。优选,溶液介质为盐酸或呋喃甲醛,盐酸的浓度为0.1mol/L。
上述制得的磁性TiO2可用于光催化剂。
在搅拌作用下,以悬浮态形式进行光催化降解亚甲基蓝实验,验证了上述制得的磁性TiO2的光催化活性,具体为:将磁性TiO2悬浮于溶液中,用量为0.5-5.0g/L,亚甲基蓝溶液初始浓度为0.5-50mg/L,光源为5-50W低压汞灯或300-500W中压汞灯,光源在溶液外部照射,也可以在防水保护下在溶液内部照射,亚甲基蓝浓度变化采用分光光度计测定,反应结束后,溶液中悬浮的磁性钛铁矿光催化剂粉体可以利用磁场或电磁场分离回收再利用。
上述磁性TiO2的用量为0.5-5.0g/L反应溶液,进一步优选,磁性TiO2的用量为1-2g/L。
本发明未提及的技术均参照现有技术。
本发明球磨钛铁矿制备磁性TiO2光催化剂的方法,以钛铁矿为前驱体,采用球磨法制得了磁性TiO2,具有明显的锐钛矿特征峰出现,而磁性没有变化,所得磁性TiO2具有优异的光催化活性,且方便回收,可反复使用。
附图说明
图1为实施例1中钛铁矿球磨前后的XRD图(a、球磨前,b、球磨后(球磨6h));
图2为实施例1中钛铁矿球磨前后的磁化强度曲线;
图3为实施例3中磁性TiO2回收前后效果图(a、回收前,b回收后);
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
各例中所用球磨机为行星式球磨机,球磨罐的材质为不锈钢,球磨球的材质为玛瑙,球料比为8:1。
实施例1
不同球磨时间钛铁矿的光催化活性对比:
准确称取5.0g经超声水洗的、饱和磁化强度大于2emu·g-1的海南钛铁矿粉体(通过电磁场分选得到),加入10mL去离子水,分别球磨(球磨机的操作参数为公转转速为300r/min、自转100r/min)2、4、6、8、10个小时后,分别用电子天平称取1.00g,并量取 500ml、2.5mg/L的亚甲基蓝溶液于光反应器中,加磁子,开启搅拌器、通风,打开15w 低压汞灯照射并开始计时。每隔5min取样,连续取样。反应结束后将所取样品离心沉降后利用分光光度计在波长660nm下测吸光度,计算降解率。结果如表1所示,当球磨机公转速率为300r/min、自转速率100r/min、球磨时间6小时所制备的钛铁矿,作为光催化剂用于光催化降解亚甲基蓝,反应50min时,降解率为76.21%,效果最佳。对球磨6h 的钛铁矿进行XRD和磁性分析,结果如图1和图2所示。由图1可见,经球磨处理后,明显出现了锐钛型TiO2在101晶面处的特征峰,说明钛铁矿颗粒表面的TiO2经球磨后由无定型转变为锐钛型。当球磨超过6小时,金红石TiO2的增多将会降低钛铁矿的光催化活性,如表1所示。由图2可见,钛铁矿具有顺磁性,饱和磁化强度为8.02emu·g-1,球磨前后磁性没有改变,具备利用磁场回收的磁性条件。
表1球磨时间对降解率(%)的影响
Figure BDA0003024809980000041
实施例2
钛铁矿在不同溶剂介质中球磨后,光催化活性对比:
准确称取5.0g经超声水洗的、饱和磁化强度大于2emu·g-1的海南钛铁矿粉体(通过电磁场分选得到),分别加入10mL蒸馏水、氢氧化钠(0.1M)、盐酸(0.1M)、苯甲醛、冰乙酸(0.1M)、正丁醇、乙酸乙酯、乙醇或呋喃甲醛,球磨(球磨机的操作参数为公转转速为300r/min、自转100r/min)6小时后,用电子天平称取1.00g,并量取500ml、2.5 mg/L的亚甲基蓝溶液于光反应器中,加磁子,开启搅拌器、通风,打开10W低压汞灯照射并开始计时。将所取样品离心沉降后利用分光光度计在波长660nm下测吸光度,计算降解率,结果如表2所示。从表2可见,光催化反应60min后、溶剂介质为盐酸(0.1 M)时,亚甲基蓝降解率为70.61%,效果较好,其次为呋喃甲醛,降解率为70.13%。
表2溶剂对降解率(%)的影响
Figure BDA0003024809980000042
Figure BDA0003024809980000051
实施例3
不同钛铁矿用量光催化降解亚甲基蓝对比及光催化剂回收:
准确称取4个5.0g经超声水洗的、饱和磁化强度大于2emu·g-1的海南钛铁矿粉体(通过电磁场分选得到),分别加入10mL去离子水,球磨(球磨机的操作参数为公转转速为300r/min、自转100r/min)6小时后,分别用电子天平称取0.5、1.0、2.0、3.0、4.0g,并量取500ml、2.5mg/L的亚甲基蓝溶液于光反应器中,加磁子,开启搅拌器、通风,打开15w低压汞灯照射并开始计时。将所取样品离心沉降后利用分光光度计在波长660 nm下测吸光度并计算降解率,结果如表3所示。从表3可见,当钛铁矿质量为1.0g时,光催化反应50min后亚甲基蓝降解率为76.21%,效果较好,当继续增加钛铁矿用量,紫外光在溶液中被阻挡,入射光程减小,反而会降低亚甲基蓝降解效果。图3为磁铁回收磁性钛铁矿光催化剂实验效果,由图可见,在磁铁的作用下,磁性TiO2光催化剂可以很容易地从溶液中分离回收再利用,磁性TiO2光催化剂反复使用10次后,降解率几乎不变。
表3球磨钛铁矿质量对降解率(%)的影响
Figure BDA0003024809980000052

Claims (8)

1.一种球磨钛铁矿制备磁性TiO2光催化剂在亚甲基蓝溶液降解中的应用,其特征在于:利用磁铁或电磁场作用,分选出具有磁性的钛铁矿粉体,然后将具有磁性的钛铁矿粉体在介质中球磨,钛铁矿粉体中的TiO2由无定型转变为锐钛型,而钛铁矿粉体的磁性保持不变,从而得到磁性TiO2光催化剂;介质为水、氢氧化钠溶液、盐酸、苯甲醛、甲醛、冰乙酸、正丁醇、乙酸乙酯、乙醇、丙三醇或呋喃甲醛,球磨罐的材质为不锈钢,球磨球的材质为玛瑙。
2.如权利要求1所述的球磨钛铁矿制备磁性TiO2光催化剂在亚甲基蓝溶液降解中的应用,其特征在于:具有磁性的钛铁矿粉体的饱和磁化强度大于2emu·g-1
3.如权利要求1或2所述的球磨钛铁矿制备磁性TiO2光催化剂在亚甲基蓝溶液降解中的应用,其特征在于:球磨所用设备为行星式球磨机,公转速率为100~800r/min,自转速率为100~1000r/min,球磨时间为2~10小时,球料比为10:1~1:1。
4.如权利要求3所述的球磨钛铁矿制备磁性TiO2光催化剂在亚甲基蓝溶液降解中的应用,其特征在于:公转速率为250~350r/min,自转速率为100~200r/min,球磨时间为5~7小时。
5.如权利要求1或2所述的球磨钛铁矿制备磁性TiO2光催化剂在亚甲基蓝溶液降解中的应用,其特征在于:介质为盐酸或呋喃甲醛,盐酸的浓度为0.1mol/L。
6.如权利要求1或2所述的球磨钛铁矿制备磁性TiO2光催化剂在亚甲基蓝溶液降解中的应用,其特征在于:磁性TiO2的用量为0.5-5.0g/L。
7.如权利要求6所述的球磨钛铁矿制备磁性TiO2光催化剂在亚甲基蓝溶液降解中的应用,其特征在于:磁性TiO2的用量为1-2 g/L。
8.如权利要求1或2所述的球磨钛铁矿制备磁性TiO2光催化剂在亚甲基蓝溶液降解中的应用,其特征在于:光催化结束后,利用磁铁或电磁场从溶液中分离回收磁性TiO2,循环利用。
CN202110412870.XA 2021-04-16 2021-04-16 一种球磨钛铁矿制备磁性TiO2光催化剂的方法及所得磁性TiO2的应用 Active CN113101912B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110412870.XA CN113101912B (zh) 2021-04-16 2021-04-16 一种球磨钛铁矿制备磁性TiO2光催化剂的方法及所得磁性TiO2的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110412870.XA CN113101912B (zh) 2021-04-16 2021-04-16 一种球磨钛铁矿制备磁性TiO2光催化剂的方法及所得磁性TiO2的应用

Publications (2)

Publication Number Publication Date
CN113101912A CN113101912A (zh) 2021-07-13
CN113101912B true CN113101912B (zh) 2021-11-05

Family

ID=76718016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110412870.XA Active CN113101912B (zh) 2021-04-16 2021-04-16 一种球磨钛铁矿制备磁性TiO2光催化剂的方法及所得磁性TiO2的应用

Country Status (1)

Country Link
CN (1) CN113101912B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1613553A (zh) * 2004-09-29 2005-05-11 上海交通大学 可见光响应型二氧化钛光催化剂的高能球磨制备方法
CN1857768A (zh) * 2006-06-06 2006-11-08 北京科技大学 一种用钛铁精矿制备光触媒材料的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1613553A (zh) * 2004-09-29 2005-05-11 上海交通大学 可见光响应型二氧化钛光催化剂的高能球磨制备方法
CN1857768A (zh) * 2006-06-06 2006-11-08 北京科技大学 一种用钛铁精矿制备光触媒材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"钛铁矿机械活化-稀酸酸解反应耦合";杜均等;《化学反应工程与工艺》;20140831;第30卷(第4期);第322页第1段 *

Also Published As

Publication number Publication date
CN113101912A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN103723765B (zh) 一种硫酸法钛白粉制备方法
WO2013017000A1 (zh) 酸解渣再利用制备钛白粉时的预处理方法
CN107601561B (zh) 纳米钒酸铋黄色颜料的制备方法
CN102616824A (zh) 一种超微细高白度活性重晶石粉体的制备方法
WO2014065888A1 (en) Process for obtaining highly pure litharge from lead acid battery paste
CN112007644B (zh) 基于盐模板法回收芬顿污泥制备二维Fe/Fe3O4光催化剂的方法
CN108671951B (zh) 一种氮化碳复合光催化剂及其制备方法和应用
CN109294281A (zh) 颜料二氧化钛的制备方法
CN110339843B (zh) 一种磁性氧化铋/钒酸铋复合光催化剂的制备方法
CN113101912B (zh) 一种球磨钛铁矿制备磁性TiO2光催化剂的方法及所得磁性TiO2的应用
CN111185204A (zh) 一种可见光催化剂及其制备方法与应用
CN104276594A (zh) 一种硫化锌精矿锌焙砂制备纳米氧化锌的工艺
CN102380421B (zh) C12~c18烷基膦酸保护的磁性四氧化三铁纳米晶及其制备方法和应用
RU2628586C2 (ru) Способ переработки ванадиево-титано-магнетитового концентрата с применением мокрого процесса
CN103441315B (zh) 一种以废旧锌锰电池生物淋滤液为原料制备锰锌铁氧软磁体的方法
CN112121797A (zh) 一种磁性TiO2氧化石墨烯复合材料的制备方法
CN102380618A (zh) 一种用硫酸沉淀—h2透气还原工艺制备纳米钨粉的方法
CN112495400A (zh) 一种具有S空位的SnS2纳米片的制备及其在光降解Cr(Ⅵ)上的应用
CN115744991B (zh) 一种含钨废料制备氧化钨的方法
CN112607785A (zh) 一种MnFe2O4/C纳米复合微球及其制备方法
CN108273522B (zh) 一种具有梯形结构的z型半导体光催化剂及其制备方法和应用
CN100408481C (zh) 盐酸法生产高纯度纳米二氧化钛方法
CN110508286A (zh) 以硫化镍精矿制备(Ni,Mg,Cu)Fe2O4异相类Fenton催化剂及使用方法
CN112939094B (zh) 一种制备纳米钨酸钴和回收粗钛渣的方法
CN112574043B (zh) 一种碱性红中间体3-乙基氨基对甲基苯酚的生产工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant