CN112121797A - 一种磁性TiO2氧化石墨烯复合材料的制备方法 - Google Patents

一种磁性TiO2氧化石墨烯复合材料的制备方法 Download PDF

Info

Publication number
CN112121797A
CN112121797A CN202011068639.5A CN202011068639A CN112121797A CN 112121797 A CN112121797 A CN 112121797A CN 202011068639 A CN202011068639 A CN 202011068639A CN 112121797 A CN112121797 A CN 112121797A
Authority
CN
China
Prior art keywords
tio
graphene oxide
solution
magnetic
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011068639.5A
Other languages
English (en)
Inventor
金立国
赵丽萍
王钰雯
吴景
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN202011068639.5A priority Critical patent/CN112121797A/zh
Publication of CN112121797A publication Critical patent/CN112121797A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种光催化降解水体有机污染物的磁性氧化石墨烯复合材料的制备方法,包括以下步骤:制备Fe3O4磁性核,制备TiO2‑Fe3O4核壳结构,制备氧化石墨烯,将磁性TiO2催化剂分散吸附在氧化石墨烯层上,可改变磁性TiO2催化剂的量制成不同催化剂含量的磁性TiO2氧化石墨烯复合复合材料,本发明将TiO2‑Fe3O4制成核壳结构,有效预防了水体中强氧化物质对Fe3O4磁性的破坏,而氧化石墨烯表面基团不仅增强了该复合材料在水中的分散性,也增强了该复合材料对水体中有机污染物的吸附,有利于TiO2的光催化降解。

Description

一种磁性TiO2氧化石墨烯复合材料的制备方法
技术领域
本发明涉及光催化降解技术领域,具体涉及一种光催化降解水体有机污染物的磁性 TiO2氧化石墨烯复合材料的制备方法。
背景技术
光催化可被称为光诱导反应,该类型的反应通过吸收具有足够能量(等于或高于催化剂的带隙能量的光子来激活。方法的最终目的是使活化电子与氧化剂之间发生反应以生成还原产物,并且使生成的空穴与还原剂之间发生反应以生成氧化产物。光催化降解技术越来越受到重视,特别是含有少量难降解有机物的废水的污水中。该过程有几个优点:(一)完全矿化(二)无废物处理问题(三)成本低(四)只需要温和的温度和压力条件。
能在有光的情况下促进反应在整个反应中不被消耗的固体被称为光催化剂。这些都是半导体。半导体材料是其价带和导带被能隙或带隙分开的材料。[43]半导体(例如TiO2,ZnO,Fe2O3,CdS和ZnS等)可以用于光诱导氧化还原过程的敏化剂。而单一的纳米光催化剂难以分散、吸附性能低、难以分离回收,其中提高对水体中有机污染物的吸附及光催化降解材料的回收是新的重点。
近来,通过利用Fe3O4磁性进行光催化降解材料回收成为热点,但易被水体腐蚀失去活性,水体中污染物难于吸附降解,使得光催化降解效率大打折扣。
发明内容
为了克服上述不足,本发明目的在于提供一种光催化降解水体有机污染物的磁性TiO2氧化石墨烯复合材料的制备方法,有效保护Fe3O4磁性,实现可分离回收,大大的提高了有机污染物的吸附降解效率。
本发明解决其技术问题所采用的技术方案是:一种光催化降解水体有机污染物的磁性TiO2氧化石墨烯复合材料的制备方法,包括以下步骤:
步骤一、制备Fe3O4磁性核
将Fe2+:Fe3+=5.5:1的铁盐制成溶液,超声15min,水浴锅中搅拌升温80℃,调节溶液 PH=12,使Fe3O4结晶,反应一段时间,冷却后用去离子水洗至中性。
步骤二、对Fe3O4进行表面改性
将步骤一中制备的Fe3O4用表面改性进行改善并尽量除去多余的表面改性剂
步骤三、制备TiO2-Fe3O4核壳结构
用共沉淀法制备TiO2-Fe3O4核壳结构,取表面改性过的Fe3O4,用钛酸四丁酯制备TiO2纳米壳
步骤四、磁性TiO2氧化石墨烯复合复合材料
将一定量TiO2-Fe3O4纳米颗粒分散吸附在氧化石墨烯层上,制成不同催化剂含量的磁性TiO2氧化石墨烯复合复合材料。
具体地,所述氧化石墨烯为改良的Hummers法制备的粉末状的氧化石墨烯。
具体地,在步骤一后对Fe3O4进行清洗,取1g制备的Fe3O4,滴加2mL油酸、4mL油胺,磁力搅拌30min,再经离心处理后加入正己烷,超声分散清洗,再加酒精清洗10-15min,然后离心分离。并将剩余产物于60℃干燥6h后研磨成粉末。
具体地,称取0.1g聚丙烯酸溶于30mL二甲基酰胺中,后与分散有0.5gFe3O4的 30mL正己烷混合,超声处理,离心分离,并用酒精和去离子水超声清洗。将经过改性的 Fe3O4加入到8mL的去离子水中,添加0.05g柠檬酸三钠,超声1h,使Fe3O4纳米颗粒充分分散,之后用去离子水离心清洗,除去过量的柠檬酸三钠。最后将所得物质分散在乙醇溶液当中。
具体地,将改性的Fe3O4加入含有30mL乙醇和10mL乙腈烧杯中,超声30min使 Fe3O4颗粒完全分散,并在常温下机械搅拌上述溶液。在搅拌期间,将0.15mL的氨水逐滴加入到A溶液中。制备B溶液:将4mL的钛酸四丁酯分散在13mL的乙醇溶液中,搅拌使其溶解均匀。然后将B溶液逐滴加入到A溶液中,反应2h,得到TiO2-Fe3O4纳米颗粒。将磁铁置于烧杯底部,分离出TiO2-Fe3O4纳米颗粒,除去上清液,剩余溶液离心3min,用乙醇清洗三次。收集并将样品置于60℃的烘箱中,连续干燥12h。
具体实施方式
现在对本发明作进一步详细的说明。
实施例一
一种光催化降解水体有机污染物的磁性TiO2氧化石墨烯复合材料的制备方法,包括以下步骤:
步骤一、制备Fe3O4磁性核
将11ml的1mol/L的氯化亚铁溶液与2ml的1mol/L的氯化铁溶液的混合,超声15min,水浴锅中搅拌升温80℃,调节溶液PH=12,获得Fe3O4结晶,反应一段时间,冷却后用去离子水洗至中性。
步骤二、对Fe3O4进行表面改性
取1g步骤一制备的Fe3O4,滴加2mL油酸、4mL油胺,磁力搅拌30min,再经离心处理后加入正己烷,超声分散清洗,再加酒精清洗15min,然后离心分离。并将剩余产物于60℃干燥6h后研磨成粉末。将0.5gFe3O4超声10min分散在30mL正己烷,称取0.1g聚丙烯酸溶于30mL二甲基酰胺中,加入Fe3O4的正己烷分散液中,超声处理,用酒精和去离子水超声清洗,离心分离后的Fe3O4加入到8mL的去离子水中,添加0.05g柠檬酸三钠,超声1 h,使Fe3O4纳米颗粒充分分散,之后用去离子水离心清洗。
步骤三、制备TiO2-Fe3O4核壳结构
将步骤二得到改性的Fe3O4加入含有30mL乙醇和10mL乙腈烧杯中,超声30min 使Fe3O4颗粒完全分散,并在常温下机械搅拌上述溶液。在搅拌期间,将0.15mL的氨水逐滴加入获得Fe3O4溶液;将4mL的钛酸四丁酯分散在13mL的乙醇溶液中,搅拌使其溶解均匀,并逐滴加入Fe3O4溶液,反应2h,得到TiO2-Fe3O4纳米颗粒。将磁铁置于烧杯底部,分离出TiO2-Fe3O4纳米颗粒,除去上清液,剩余溶液离心3min,用乙醇清洗三次。收集并将样品置于60℃的烘箱中,连续干燥12h。
步骤四、磁性TiO2氧化石墨烯复合复合材料
取0.5g步骤三制得的TiO2-Fe3O4纳米颗粒分散在100ml的2g/L氧化石墨烯水溶液,超声2h,获得含量的磁性TiO2氧化石墨烯复合复合材料。
具体地,所述氧化石墨烯为改良的Hummers法制备的粉末状的氧化石墨烯。
具体地,在步骤一后对Fe3O4进行清洗,取1g制备的Fe3O4,滴加2mL油酸、4mL油胺,磁力搅拌30min,再经离心处理后加入正己烷,超声分散清洗,再加酒精清洗10-15min,然后离心分离。并将剩余产物于60℃干燥6h后研磨成粉末。
具体地,称取0.1g聚丙烯酸溶于30mL二甲基酰胺中,后与分散有0.5gFe3O4的 30mL正己烷混合,超声处理,离心分离,并用酒精和去离子水超声清洗。将经过改性的 Fe3O4加入到8mL的去离子水中,添加0.05g柠檬酸三钠,超声1h,使Fe3O4纳米颗粒充分分散,之后用去离子水离心清洗,除去过量的柠檬酸三钠。最后将所得物质分散在乙醇溶液当中。
具体地,将改性的Fe3O4加入含有30mL乙醇和10mL乙腈烧杯中,超声30min使 Fe3O4颗粒完全分散,并在常温下机械搅拌上述溶液。在搅拌期间,将0.15mL的氨水逐滴加入到A溶液中。制备B溶液:将4mL的钛酸四丁酯分散在13mL的乙醇溶液中,搅拌使其溶解均匀。然后将B溶液逐滴加入到A溶液中,反应2h,得到TiO2-Fe3O4纳米颗粒。将磁铁置于烧杯底部,分离出TiO2-Fe3O4纳米颗粒,除去上清液,剩余溶液离心3min,用乙醇清洗三次。收集并将样品置于60℃的烘箱中,连续干燥12h。
实施例二
一种光催化降解水体有机污染物的磁性TiO2氧化石墨烯复合材料的制备方法,包括以下步骤:
步骤一、制备Fe3O4磁性核
将22ml的1mol/L的氯化亚铁溶液与4ml的1mol/L的氯化铁溶液的混合,超声15min,水浴锅中搅拌升温80℃,调节溶液PH=12,获得Fe3O4结晶,反应一段时间,冷却后用去离子水洗至中性。
步骤二、对Fe3O4进行表面改性
取1g步骤一制备的Fe3O4,滴加2mL油酸、4mL油胺,磁力搅拌30min,再经离心处理后加入正己烷,超声分散清洗,再加酒精清洗15min,然后离心分离。并将剩余产物于60℃干燥6h后研磨成粉末。将0.5gFe3O4超声10min分散在30mL正己烷,称取0.1g聚丙烯酸溶于30mL二甲基酰胺中,加入Fe3O4的正己烷分散液中,超声处理,用酒精和去离子水超声清洗,离心分离后的Fe3O4加入到8mL的去离子水中,添加0.05g柠檬酸三钠,超声1 h,使Fe3O4纳米颗粒充分分散,之后用去离子水离心清洗。
步骤三、制备TiO2-Fe3O4核壳结构
将步骤二得到改性的Fe3O4加入含有30mL乙醇和10mL乙腈烧杯中,超声30min 使Fe3O4颗粒完全分散,并在常温下机械搅拌上述溶液。在搅拌期间,将0.15mL的氨水逐滴加入获得Fe3O4溶液;将4mL的钛酸四丁酯分散在13mL的乙醇溶液中,搅拌使其溶解均匀,并逐滴加入Fe3O4溶液,反应2h,得到TiO2-Fe3O4纳米颗粒。将磁铁置于烧杯底部,分离出TiO2-Fe3O4纳米颗粒,除去上清液,剩余溶液离心3min,用乙醇清洗三次。收集并将样品置于60℃的烘箱中,连续干燥12h。
步骤四、磁性TiO2氧化石墨烯复合复合材料
取0.5g步骤三制得的TiO2-Fe3O4纳米颗粒分散在100ml的2g/L氧化石墨烯水溶液,超声2h,获得含量的磁性TiO2氧化石墨烯复合复合材料。
实施例三
一种光催化降解水体有机污染物的磁性TiO2氧化石墨烯复合材料的制备方法,包括以下步骤:
步骤一、制备Fe3O4磁性核
将11ml的0.5mol/L的氯化亚铁溶液与2ml的0.5mol/L的氯化铁溶液的混合,超声15min,水浴锅中搅拌升温80℃,调节溶液PH=12,获得Fe3O4结晶,反应一段时间,冷却后用去离子水洗至中性。
步骤二、对Fe3O4进行表面改性
取1g步骤一制备的Fe3O4,滴加2mL油酸、4mL油胺,磁力搅拌30min,再经离心处理后加入正己烷,超声分散清洗,再加酒精清洗15min,然后离心分离。并将剩余产物于60℃干燥6h后研磨成粉末。将0.5gFe3O4超声10min分散在30mL正己烷,称取0.1g聚丙烯酸溶于30mL二甲基酰胺中,加入Fe3O4的正己烷分散液中,超声处理,用酒精和去离子水超声清洗,离心分离后的Fe3O4加入到8mL的去离子水中,添加0.05g柠檬酸三钠,超声1 h,使Fe3O4纳米颗粒充分分散,之后用去离子水离心清洗。
步骤三、制备TiO2-Fe3O4核壳结构
将步骤二得到改性的Fe3O4加入含有30mL乙醇和10mL乙腈烧杯中,超声30min 使Fe3O4颗粒完全分散,并在常温下机械搅拌上述溶液。在搅拌期间,将0.15mL的氨水逐滴加入获得Fe3O4溶液;将4mL的钛酸四丁酯分散在13mL的乙醇溶液中,搅拌使其溶解均匀,并逐滴加入Fe3O4溶液,反应2h,得到TiO2-Fe3O4纳米颗粒。将磁铁置于烧杯底部,分离出TiO2-Fe3O4纳米颗粒,除去上清液,剩余溶液离心3min,用乙醇清洗三次。收集并将样品置于60℃的烘箱中,连续干燥12h。
步骤四、磁性TiO2氧化石墨烯复合复合材料
取0.5g步骤三制得的TiO2-Fe3O4纳米颗粒分散在100ml的2g/L氧化石墨烯水溶液,超声2h,获得含量的磁性TiO2氧化石墨烯复合复合材料。
实施例四
一种光催化降解水体有机污染物的磁性TiO2氧化石墨烯复合材料的制备方法,包括以下步骤:
步骤一、制备Fe3O4磁性核
将22ml的0.5mol/L的氯化亚铁溶液与4ml的0.5mol/L的氯化铁溶液的混合,超声15min,水浴锅中搅拌升温80℃,调节溶液PH=12,获得Fe3O4结晶,反应一段时间,冷却后用去离子水洗至中性。
步骤二、对Fe3O4进行表面改性
取1g步骤一制备的Fe3O4,滴加2mL油酸、4mL油胺,磁力搅拌30min,再经离心处理后加入正己烷,超声分散清洗,再加酒精清洗15min,然后离心分离。并将剩余产物于60℃干燥6h后研磨成粉末。将0.5gFe3O4超声10min分散在30mL正己烷,称取0.1g聚丙烯酸溶于30mL二甲基酰胺中,加入Fe3O4的正己烷分散液中,超声处理,用酒精和去离子水超声清洗,离心分离后的Fe3O4加入到8mL的去离子水中,添加0.05g柠檬酸三钠,超声1 h,使Fe3O4纳米颗粒充分分散,之后用去离子水离心清洗。
步骤三、制备TiO2-Fe3O4核壳结构
将步骤二得到改性的Fe3O4加入含有30mL乙醇和10mL乙腈烧杯中,超声30min 使Fe3O4颗粒完全分散,并在常温下机械搅拌上述溶液。在搅拌期间,将0.15mL的氨水逐滴加入获得Fe3O4溶液;将4mL的钛酸四丁酯分散在13mL的乙醇溶液中,搅拌使其溶解均匀,并逐滴加入Fe3O4溶液,反应2h,得到TiO2-Fe3O4纳米颗粒。将磁铁置于烧杯底部,分离出TiO2-Fe3O4纳米颗粒,除去上清液,剩余溶液离心3min,用乙醇清洗三次。收集并将样品置于60℃的烘箱中,连续干燥12h。
步骤四、磁性TiO2氧化石墨烯复合复合材料
取0.5g步骤三制得的TiO2-Fe3O4纳米颗粒分散在100ml的2g/L氧化石墨烯水溶液,超声2h,获得含量的磁性TiO2氧化石墨烯复合复合材料。
本发明不局限于所述实施方式,任何人赢得值在本发明的启示下作出的结构变化,凡是与本发明具有相同或相近的技术方案,均落入本发明的保护范围之内。
本发明未详细描述的技术、形状、构造部分均为公知技术。

Claims (6)

1.磁性TiO2氧化石墨烯复合复合材料的制备方法,其特征包括以下步骤:
步骤一、制备Fe3O4磁性核
将一定比例的Fe3+和Fe2+铁盐制成溶液,超声15min,水浴锅中搅拌升温80℃,调节溶液PH值,使Fe3O4结晶,反应一段时间,冷却后用去离子水洗至中性;
步骤二、对Fe3O4进行表面改性
将步骤一中制备的Fe3O4用表面改性进行改善并尽量除去多余的表面改性剂
步骤三、制备TiO2-Fe3O4核壳结构
用共沉淀法制备TiO2-Fe3O4核壳结构,取表面改性过的Fe3O4,用钛酸四丁酯制备TiO2纳米壳
步骤四、磁性TiO2氧化石墨烯复合复合材料
将一定量TiO2-Fe3O4纳米颗粒分散吸附在氧化石墨烯层上,制成不同催化剂含量的磁性TiO2氧化石墨烯复合复合材料。
2.根据权利要求1所述的磁性TiO2氧化石墨烯复合复合材料的制备方法,其特征在于在所述步骤一中,Fe2+:Fe3+=5.5:1,调节溶液PH=12,使Fe3O4结晶,反应一段时间,冷却后用去离子水洗至中性。
3.根据权利要求1所述的磁性TiO2氧化石墨烯复合复合材料的制备方法,其特征在于在所述步骤二实现对Fe3O4表面改性方法为,在步骤一后对Fe3O4进行清洗,取1g制备的Fe3O4,滴加2mL油酸、4mL油胺,磁力搅拌30min,再经离心处理后加入正己烷,超声分散清洗,再加酒精清洗10-15min,然后离心分离,并将剩余产物于60℃干燥6h后研磨成粉末。
4.根据权利要求1所述的磁性TiO2氧化石墨烯复合复合材料的制备方法,其特征在于在所述步骤二中,表面改性剂为聚丙烯酸、二甲基酰胺中,后与正己烷混合,超声处理,后离心分离,并用酒精和去离子水超声清洗,将经过改性的 Fe3O4加入到 8 mL的去离子水中,添加0.05 g柠檬酸三钠,超声1 h,使 Fe3O4纳米颗粒充分分散,之后用去离子水离心清洗,除去过量的柠檬酸三钠,最后将所得物质分散在乙醇溶液当中。
5.根据权利要求1所述的磁性TiO2氧化石墨烯复合复合材料的制备方法,其特征在于在所述步骤三中制备A溶液:将改性的Fe3O4加入含有30 mL乙醇和10 mL乙腈烧杯中,超声30min使Fe3O4颗粒完全分散,并在常温下机械搅拌上述溶液,在搅拌期间,将0.15 mL的氨水逐滴加入到A溶液中;制备B溶液:将4 mL 的钛酸四丁酯分散在13 mL的乙醇溶液中,搅拌使其溶解均匀;然后将B溶液逐滴加入到A溶液中,反应2 h,得到TiO2-Fe3O4纳米颗粒;将磁铁置于烧杯底部,分离出TiO2-Fe3O4纳米颗粒,除去上清液,剩余溶液离心3 min,用乙醇清洗三次,收集并将样品置于60ºC的烘箱中,连续干燥 12 h。
6.根据权利要求1所述的磁性TiO2氧化石墨烯复合复合材料的制备方法,其特征在于,氧化石墨烯为hummer法制备的粉末状氧化石墨烯。
CN202011068639.5A 2020-09-30 2020-09-30 一种磁性TiO2氧化石墨烯复合材料的制备方法 Pending CN112121797A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011068639.5A CN112121797A (zh) 2020-09-30 2020-09-30 一种磁性TiO2氧化石墨烯复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011068639.5A CN112121797A (zh) 2020-09-30 2020-09-30 一种磁性TiO2氧化石墨烯复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN112121797A true CN112121797A (zh) 2020-12-25

Family

ID=73843821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011068639.5A Pending CN112121797A (zh) 2020-09-30 2020-09-30 一种磁性TiO2氧化石墨烯复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN112121797A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892536A (zh) * 2021-01-20 2021-06-04 燕山大学 复合光催化剂的制备方法、复合光催化剂以及染料废水的降解方法
CN115646470A (zh) * 2022-12-27 2023-01-31 杭州德海艾科能源科技有限公司 一种含钒废水处理用磁性复合材料及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101816937A (zh) * 2009-07-29 2010-09-01 兰州理工大学 磁性负载纳米光催化剂TiO2/Fe3O4的制作方法
CN104549201A (zh) * 2013-10-11 2015-04-29 天津大学 光催化剂氧化石墨烯掺杂二氧化钛纳米纤维及其制备方法和应用
CN105037766A (zh) * 2015-09-18 2015-11-11 哈尔滨理工大学 SiO2空心球/氧化石墨烯/聚酰亚胺复合薄膜的制法
CN106076337A (zh) * 2016-07-14 2016-11-09 中国科学院生态环境研究中心 一种复合光催化材料及其制备方法
CN108380213A (zh) * 2018-03-19 2018-08-10 上海应用技术大学 一种可磁性回收的石墨烯/二氧化钛光催化复合材料及其制备方法
CN109762557A (zh) * 2019-01-14 2019-05-17 天津理工大学 无机荧光纳米粒子及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101816937A (zh) * 2009-07-29 2010-09-01 兰州理工大学 磁性负载纳米光催化剂TiO2/Fe3O4的制作方法
CN104549201A (zh) * 2013-10-11 2015-04-29 天津大学 光催化剂氧化石墨烯掺杂二氧化钛纳米纤维及其制备方法和应用
CN105037766A (zh) * 2015-09-18 2015-11-11 哈尔滨理工大学 SiO2空心球/氧化石墨烯/聚酰亚胺复合薄膜的制法
CN106076337A (zh) * 2016-07-14 2016-11-09 中国科学院生态环境研究中心 一种复合光催化材料及其制备方法
CN108380213A (zh) * 2018-03-19 2018-08-10 上海应用技术大学 一种可磁性回收的石墨烯/二氧化钛光催化复合材料及其制备方法
CN109762557A (zh) * 2019-01-14 2019-05-17 天津理工大学 无机荧光纳米粒子及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
THUY-DUONG NGUYEN-PHAN ET AL.: ""The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites"", 《CHEMICAL ENGINEERING JOURNAL》 *
张建超: ""Fe3O4基核壳纳米结构材料的控制合成及性能研究"", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *
陈明洁等: ""磁性负载型光催化材料TiO2/Fe3O4的制备、改性及表征"", 《华南农业大学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892536A (zh) * 2021-01-20 2021-06-04 燕山大学 复合光催化剂的制备方法、复合光催化剂以及染料废水的降解方法
CN115646470A (zh) * 2022-12-27 2023-01-31 杭州德海艾科能源科技有限公司 一种含钒废水处理用磁性复合材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
Boutra et al. Magnetically separable MnFe2O4/TA/ZnO nanocomposites for photocatalytic degradation of Congo Red under visible light
Pan et al. Fenton-like catalyst Fe3O4@ polydopamine-MnO2 for enhancing removal of methylene blue in wastewater
Dhiman et al. ZnO Nanoadsorbents: A potent material for removal of heavy metal ions from wastewater
Shekofteh-Gohari et al. Fe3O4/ZnO/CoWO4 nanocomposites: Novel magnetically separable visible-light-driven photocatalysts with enhanced activity in degradation of different dye pollutants
Ahmed et al. Efficient photocatalytic degradation of toxic Alizarin yellow R dye from industrial wastewater using biosynthesized Fe nanoparticle and study of factors affecting the degradation rate
Adyani et al. Green synthesis of Ag/Fe3O4/RGO nanocomposites by Punica Granatum peel extract: Catalytic activity for reduction of organic pollutants
Abroshan et al. Novel magnetically separable Ag3PO4/MnFe2O4 nanocomposite and its high photocatalytic degradation performance for organic dyes under solar-light irradiation
Rehman et al. Nanostructured maghemite and magnetite and their nanocomposites with graphene oxide for photocatalytic degradation of methylene blue
Zhong et al. Self‐Assembled 3D flowerlike iron oxide nanostructures and their application in water treatment
Jasrotia et al. Robust and sustainable Mg1-xCexNiyFe2-yO4 magnetic nanophotocatalysts with improved photocatalytic performance towards photodegradation of crystal violet and rhodamine B pollutants
Li et al. Construction of magnetically separable dual Z-scheme g-C3N4/α-Fe2O3/Bi3TaO7 photocatalyst for effective degradation of ciprofloxacin under visible light
Zhu et al. Efficient degradation of rhodamine B by magnetically separable ZnS–ZnFe2O4 composite with the synergistic effect from persulfate
Vinodhkumar et al. Solvothermal synthesis of magnetically separable reduced graphene oxide/Fe3O4 hybrid nanocomposites with enhanced photocatalytic properties
Shekofteh-Gohari et al. Photosensitization of Fe3O4/ZnO by AgBr and Ag3PO4 to fabricate novel magnetically recoverable nanocomposites with significantly enhanced photocatalytic activity under visible-light irradiation
Wang et al. A novel magnetic photocatalyst Bi3O4Cl/SrFe12O19: Fabrication, characterization and its photocatalytic activity
CN105271430B8 (zh) 一种改性超分散四氧化三铁的制备方法
CN107262037B (zh) 一种海泡石羟基氧化铁活性炭复合吸附剂的制备与应用
CN112121797A (zh) 一种磁性TiO2氧化石墨烯复合材料的制备方法
Chen et al. Synthesis of BiVO4/g-C3N4 S-scheme heterojunction via a rapid and green microwave route for efficient removal of glyphosate
Zhou et al. Fabrication of Ag 3 PO 4/GO/NiFe 2 O 4 composites with highly efficient and stable visible-light-driven photocatalytic degradation of rhodamine B
CN110280308A (zh) 一种酒石酸钠改性铜钴铁类水滑石负载碳量子点纳米复合材料及其制备方法和应用
Okla et al. Facile construction of 3D CdS-Ag2S nanospheres: a combined study of visible light responsive phtotocatalysis, antibacterial and anti-biofilm activity
Xue et al. High photocatalytic activity of Fe3O4-SiO2-TiO2 functional particles with core-shell structure
Li et al. Visible light photocatalytic abatement of tetracycline over unique Z-scheme ZnS/PI composites
CN107138160B (zh) 纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201225

WD01 Invention patent application deemed withdrawn after publication