CN107138160B - 纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方法及应用 - Google Patents

纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方法及应用 Download PDF

Info

Publication number
CN107138160B
CN107138160B CN201710323594.3A CN201710323594A CN107138160B CN 107138160 B CN107138160 B CN 107138160B CN 201710323594 A CN201710323594 A CN 201710323594A CN 107138160 B CN107138160 B CN 107138160B
Authority
CN
China
Prior art keywords
titanium dioxide
composite material
graphene
nano zero
valent iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710323594.3A
Other languages
English (en)
Other versions
CN107138160A (zh
Inventor
王向宇
王安祺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201710323594.3A priority Critical patent/CN107138160B/zh
Publication of CN107138160A publication Critical patent/CN107138160A/zh
Application granted granted Critical
Publication of CN107138160B publication Critical patent/CN107138160B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Cosmetics (AREA)

Abstract

本发明公开了一种纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方法与应用,该方法包括:(1)将二氧化钛和氧化石墨烯加入到乙醇水溶液中超声分散,然后加入氢氧化钠进行水热反应;(2)将反应后的产物过滤、洗涤、干燥得到二氧化钛纳米线/石墨烯复合材料;(3)再将上述合成材料与铁盐溶液搅拌、超声,然后加入植物提取液中还原铁离子形成纳米零价铁/二氧化钛纳米线/石墨烯复合材料;本发明所制备的复合材料具有强还原性和优异的光催化活性,能够将抗生素、农药、染料和硝酸盐从水环境中快速去除;本发明制备方法易操作、成本低,所制备复合材料降解能力强、稳定性好、易于磁性分离,是一种环境友好型功能材料。

Description

纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方 法及应用
技术领域
本发明属于环境功能纳米材料制备工艺领域,具体涉及纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方法,及该复合材料应用于处理含抗生素、农药、染料和硝酸盐的废水。
背景技术
纳米零价铁作为一种高效还原剂已经成为最具有前景的污染土壤和水体修复技术;然而由于纳米零价铁比表面积大、反应活性高和固有的磁性,使其在环境修复应用中常常发生严重的团聚和和表面氧化。另一方面,虽然纳米零价铁能够通过还原作用降解水中多种有机污染物,但是在此过程中TOC的去除率非常低,即生成许多顽固性还原产物难以被彻底矿化。此外,纳米零价铁传统的制备方法工艺较为繁杂,耗能高,成本高,使用有毒有害化学药品作为还原剂,污染环境。二氧化钛作为一种高效、稳定、廉价的环保型光催化材料已经被广泛研究,但是二氧化钛基光催化剂存在一些严重缺陷,例如光生电子和空穴容易快速复合以及量子效率低等问题,因此必须采取有效方法提高二氧化钛的光催化效率,其中改变催化剂材料形貌和结构使其具有独特性质已经被证明是一种有效的途径。然而改性催化剂还是难以满足实际应用的要求,因为粉末状催化剂容易随水体迁移、难以回收,从而造成二次污染。
石墨烯是单层碳原子堆积成的二维片层结构碳质材料,具有优秀的光、电性能和独特的结构,成为了物理、化学、材料科学和纳米技术领域的研究热点。虽然石墨烯可以作为一种有效的载体材料来提高光催化剂的活性,但石墨烯/无机半导体复合材料通常以粉体状态存在,不易回收,残留于生态环境中的石墨烯基材料具有一定的环境污染风险,对人类健康造成潜在的威胁。此外,石墨烯基光催化材料的合成步骤通常复杂、繁琐,并且需要大量的化学试剂,提高其制备成本,例如通过溶胶-凝胶法制备石墨烯/二氧化钛(GR-TiO2)复合材料,该方法是将钛的前驱体与氧化石墨烯溶液混合,通过前驱体与溶剂产生水解反应,使TiO2分布在氧化石墨烯表面形成凝胶,再通过热处理得到 GR-TiO2复合材料。该过程需要冰醋酸、乙酰丙酮和异丙醇等有机试剂,易对环境造成污染,并且需要经过混合搅拌、调节pH、真空干燥以及研磨培烧等多个步骤。
考虑到上述石墨烯、纳米零价铁和二氧化钛半导体材料的一些特点以及存在的缺陷,本发明设计一种由石墨烯、纳米零价铁和二氧化钛纳米线构成的三元磁性纳米复合材料,使石墨烯、纳米零价铁和二氧化钛在复合材料弥补各自不足产生协同促进效果,并将其用于协同降解多种有机污染物。文献检索结果表明:石墨烯、纳米零价铁和二氧化钛这三种材料相结合形成三元纳米复合材料及其应用此前未有报道;黑米、紫薯、紫甘蓝、山楂皮、火龙果果皮以及茄子皮提取液制备纳米零价铁此前尚未报道。
发明内容
本发明的目的在于提供一种水处理用的纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方法,该方法不但降低制备成本、简化合成步骤、避免对环境产生污染物,还可以有效提高纳米零价铁表面活性和稳定性、促进光生电子和空穴快速分离以提高二氧化钛纳米线的光催化效率,通过引入大表面积的石墨烯、纳米铁颗粒和纳米线结构来提高所制备的催化剂的吸附能力以及解决纳米材料难以回收和再生问题,为含各种难降解有机污染物废水的深度处理提供更好的技术支持。
本发明制备方法按如下步骤完成:
(1)将0.4~0.6 g二氧化钛和60~100 mg氧化石墨烯加入到乙醇水溶液中,搅拌超声分散得到悬浮液;
(2)将12~18 g 氢氧化钠加入到步骤(1)二氧化钛/氧化石墨烯悬浮液充分搅拌使其完全溶解,然后放入反应釜在150 ~200℃下反应12~48小时后,冷却至室温,过滤;
(3)滤饼先用去离子水洗至pH=9.0,再用0.05~0.3 M的盐酸连续洗涤进行离子交换,最后用去离子水洗至中性,干燥,得到二氧化钛纳米线/石墨烯复合材料;
(4)将二氧化钛纳米线/石墨烯复合材料加入到铁盐溶液中,搅拌30~180分钟,超声60~180分钟,得到混合均匀的悬浮液;
(5)去离子水清洗黑米、紫薯、紫甘蓝、山楂皮、火龙果果皮、茄子皮中的一种植物,干燥、破碎、筛分至200~700 μm,随后将其与去离子水混合,加热至沸腾提取,然后冷却至室温,过滤,得到提取液;
(6)将步骤(5)提取液与步骤(4)悬浮液混合,然后搅拌,直至溶液颜色完全变成黑色,过滤、干燥,得到绿色合成的纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料。
所述步骤(1)乙醇水溶液是无水乙醇和水按体积比0.5:1~3:1的比例混合制得,使用量为30~40 mL。
所述步骤(4)中二氧化钛纳米线/石墨烯复合材料和铁盐的质量比为1:0.25~1:2,其中铁盐为七水合硫酸亚铁、硝酸亚铁或氯化亚铁。
所述步骤(5)中植物与去离子水的料液比g:L为20~150:1,沸腾提取时间为60~120分钟。
所述步骤(6)中提取液和悬浮液体积比为5:1~50:1。
所述步骤(5)中用0.22~0.45 μm滤膜过滤。
本发明的另一目的是提供一种纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料,该复合材料由纳米零价铁颗粒、还原氧化石墨烯及二氧化钛纳米线组成。
本发明的另一目的是将纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料应用在含抗生素、农药、染料或硝酸盐废水的净化处理中。
所述纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料使用及再生方法如下:
(1)将纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料加入到含抗生素、农药、染料或硝酸盐废水中,无光搅拌30分钟取得吸附-解吸平衡同时进行还原反应对污染物进行预处理,再用紫外灯光照50分钟进行光催化反应,然后用磁铁对复合材料颗粒进行磁性回收;
(2)回收的复合材料用去离子水清洗3次,高速离心后在真空干燥箱中干燥,然后将干燥好的复合材料溶于50 mL去离子水中搅拌1~2小时得到均匀分散的悬浮液,最后按制备方法中的步骤(5)和(6)进行再生反应,得到再生的复合材料用于下一轮对水中污染物降解实验。
上述废水处理中复合材料投加量0.5~5 mg/L,溶液的pH为5.5~7.5。
所述高速离心为在转速为8000~10000 rpm条件下离心15~30分钟,磁性回收后的干燥过程为复合材料在40℃~55℃干燥25~40分钟。
使用该纳米零价铁/二氧化钛纳米线/石墨烯复合材料分别对含甲硝唑、亚甲基蓝、孔雀绿、阿特拉津和硝酸盐的模拟废水进行修复,测试结果表明所制备的新型复合纳米材料对上述污染物质的去除效率均高于90%、TOC去除效率在85%以上,且该纳米零价铁/二氧化钛纳米线/石墨烯复合材料在5次循环降解实验的降解效率和TOC去除效率都在80%以上,说明了上述复合材料对不同的污染废水具有极高的修复能力和稳定性。
本发明的有益效果如下:
(1)本发明所述的纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料,其制备过程简单、绿色环保、陈本低廉、可行性高,降低制备过程对环境的污染物;
(2)本发明提供的方法可有效解决纳米零价颗粒容易氧化和团聚的问题,提高了其表面活性、分散性和稳定性;
(3)本发明提供的方法克服了二氧化钛光催化剂的光生电子和空穴易复合和光催化效率低的问题;
(4)石墨烯在该复合材料中不仅能在无光条件下与纳米零价铁颗粒形成无数微电池提高纳米零价铁的活性,还可以在光催化反应中促进光生载流子转移与分离提高光催化效率;
(5)在光催化反应过程中纳米零价铁和二氧化钛可以利用水和溶解氧构成光芬顿体系进一步提高污染物的降解效率;
(6)石墨烯、纳米铁颗粒和纳米线结构可以极大提高所制备的复合材料的吸附能力,并且二氧化钛纳米管相比二氧化钛颗粒具有更多的活性位点以及能与石墨烯结合更牢固不易聚集;
(7)所制备的复合材料有良好的磁性可以解决纳米材料难以回收问题;
(8)通过复合材料中纳米零价铁的还原反应可以有效利用无光时期对污染进行预处理,并且生成的铁离子对随后的光催化反应有促进作用。
附图说明
图1为本发明所制备的纳米材料的透射电镜(TEM)比较示意图;其中(a)为二氧化钛纳米线;(b)为二氧化钛纳米线/石墨烯复合材料;(c)为纳米零价铁/二氧化钛纳米线/石墨烯复合材料;
图2为本发明所制备的纳米零价铁/二氧化钛纳米线/石墨烯复合材料的EDS图谱;
图3为本发明所制二氧化钛纳米线/石墨烯(a)、纳米零价铁/二氧化钛纳米线/石墨烯复合材料(b)的X射线衍射(XRD)比较示意图;
图4为本发明所制备的二氧化钛纳米线/石墨烯复合材料的拉曼光谱比较示意图。
具体实施方式
下面通过附图和实施例对本发明做进一步说明,但本发明所述的保护范围不限于所示内容。
实施例1:本纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备及其去除水中甲硝唑,具体内容如下:
(1)将0.4 g二氧化钛和60 mg氧化石墨烯加入到30 mL无水乙醇/水混合溶液中(乙醇和水体积比为0.5:1),搅拌超声分散得到悬浮液;
(2)将12 g 氢氧化钠颗粒加入到上述二氧化钛/氧化石墨烯悬浮液充分搅拌使其完全溶解,然后放入反应釜在150℃下反应40小时,冷却至室温,过滤;
(3)滤饼先用去离子水洗至pH=9.0,再用0.05 M的盐酸连续洗涤进行离子交换,最后用去离子水洗至中性,干燥,得到二氧化钛纳米线/石墨烯复合材料;
(4)取1 g二氧化钛纳米线/石墨烯复合材料和0.25 g七水合硫酸亚铁加入到100mL去离子水中搅拌180分钟、超声60分钟,得到混合均匀的悬浮液;
(5)用去离子水清洗火龙果果皮,干燥、破碎、筛分至700 μm,随后将其与去离子水混合,加热至100℃沸腾,持续120分钟后冷却至室温,用0.45 μm滤膜过滤,得到提取液其中火龙果果皮与去离子水的料液比g:L为150:1;
(6)将步骤(5)提取液与步骤(4)悬浮液以体积比50:1比例混合,持续搅拌60分钟使还原反应更加彻底,直至溶液颜色完全变成黑色,然后进行过滤、干燥,得到绿色合成的纳米零价铁/二氧化钛纳米线/石墨烯复合材料。
(7)对本实施例制备的纳米材料进TEM、EDS、XRD和拉曼光谱分析,从TEM表征图1可以看出,二氧化钛纳米线长度从几百纳米到几微米不等。通过对比未负载纳米零价铁的二氧化钛纳米线/石墨烯样品的表征图可以清楚的看到黑色颗粒均匀的分散在石墨烯基板上和二氧化钛纳米线之间,再根据所合成纳米零价铁/二氧化钛纳米线/石墨烯复合材料的EDS分析结果可以得出纳米零价铁和二氧化钛纳米线已经成功负载到石墨烯的表面上(图2);XRD分析结果表明所合成的三元复合材料具有典型的锐钛型二氧化钛特征峰(A(101),A(103),A(004),A(112),A(200),A(105),A(211),A(220)和A(204)),但无法从中看到碳物质的衍射峰,而纳米零价铁/二氧化钛纳米线/石墨烯的XRD图中的宽峰代表有机物质(图3);位于拉曼光谱中153,397,510 和634 cm−1的特征信号可以很好的匹配Eg(1),B1g(1),A1g +B1g(2) 和 Eg(2) 锐钛型二氧化钛拉曼激活模式(图4);另外在1347 cm−1(石墨烯的结构缺陷)和 1593 cm−1(sp2碳原子的面内振动)的特征峰以及位于2770 cm−1的特征峰都可以证明复合材料中存在石墨烯。
(8)将纳米零价铁/二氧化钛纳米线/石墨烯复合材料加入50 mL 浓度为45 mg/L的甲硝唑溶液中,无光搅拌30分钟,再用紫外灯光照50分钟进行光催化反应,复合材料投加量为0.5 g/L,反应液初始pH为5.5,反应结束后甲硝唑的去除效率达97.3%。
采用商用二氧化钛P25(0.5 g/L)、纳米零价铁(0.5 g/L)和石墨烯(0.5 g/L)来去除甲硝唑(45 mg/L),无光搅拌30分钟,再用紫外灯光照50分钟进行光催化反应,反应液初始pH为5.5,反应结束后甲硝唑的去除效率达21.5%、45.8%和12.4%。
(9)用磁铁对复合材料颗粒进行磁性回收,然后用去离子水清洗3次,在转速为8000 rpm条件下离心15分钟后在真空干燥箱中40℃干燥30分钟,然后将干燥好的复合材料溶于50 mL去离子水中搅拌1小时得到均匀分散的悬浮液,按照上述步骤(5)和(6)进行再生反应,得到再生的复合材料按照步骤(8)对水中污染物进行降解,第五次再生后的复合材料对甲硝唑溶液的降解效率仍然达到90.5%。
实施例2:本纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备及其去除水中亚甲基蓝,具体内容如下:
(1)将0.6 g二氧化钛和100 mg氧化石墨烯加入到40 mL无水乙醇/水混合溶液中(乙醇和水体积比为3:1),搅拌超声分散得到悬浮液;
(2)将18 g 氢氧化钠颗粒加入到上述二氧化钛/氧化石墨烯悬浮液充分搅拌使其完全溶解,然后放入反应釜在200 ℃下反应12小时,冷却至室温,过滤;
(3)滤饼先用去离子水洗至pH=9.0,再用0.30M的盐酸连续洗涤进行离子交换,最后用去离子水洗至中性,干燥,得到二氧化钛纳米线/石墨烯复合材料;
(4)取1 g二氧化钛纳米线/石墨烯复合材料和2g硝酸亚铁加入到100 mL去离子水中搅拌120分钟、超声120分钟,得到混合均匀的悬浮液;
(5)去离子水清洗茄子皮,干燥、破碎、筛分至500 μm,随后将其与去离子水混合,加热至95℃沸腾,持续100分钟后冷却至室温,用0.22 μm滤膜过滤,得到提取液,其中茄子皮与去离子水的料液比g:L为130:1;
(6)将步骤(5)提取液与步骤(4)悬浮液以体积比35:1的比例混合,持续搅拌40分钟使还原反应更加彻底,直至溶液颜色完全变成黑色,然后进行过滤、干燥,得到绿色合成的纳米零价铁/二氧化钛纳米线/石墨烯复合材料。
(7)将纳米零价铁/二氧化钛纳米线/石墨烯复合材料加入50 mL 浓度为105 mg/L的亚甲基蓝溶液中,无光搅拌30分钟,再用紫外灯光照50分钟进行光催化反应,复合材料投加量为5 g/L,反应液初始pH为7.5,反应结束后亚甲基蓝的去除效率达98.5%。
采用商用二氧化钛P25(5 g/L)、纳米零价铁(5 g/L)和石墨烯(5 g/L)来去除亚甲基蓝(105 mg/L),无光搅拌30分钟,再用紫外灯光照50分钟进行光催化反应,反应液初始pH为7.5,反应结束后亚甲基蓝的去除效率达24.6%、50.5%和13.8%。
(8)用磁铁对复合材料颗粒进行磁性回收,然后用去离子水清洗3次,在转速为10000 rpm条件下离心30分钟后在真空干燥箱中55℃干燥40分钟,然后将干燥好的复合材料溶于50 mL去离子水中搅拌2小时得到均匀分散的悬浮液,按照步骤(5)和(6)进行再生反应,得到再生的复合材料按照步骤(7)对水中目标污染物进行降解,第五次再生后的材料对亚甲基蓝溶液的降解效率仍然达到93.8%。
实施例3:纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备及其去除水中阿特拉津,具体内容如下:
(1)将0.5 g二氧化钛和80 mg氧化石墨烯加入到40 mL无水乙醇/水混合溶液中(乙醇和水体积比为1.5:1),搅拌超声分散得到悬浮液;
(2)将16 g 氢氧化钠颗粒加入到上述二氧化钛/氧化石墨烯悬浮液充分搅拌使其完全溶解,然后放入反应釜在170℃下反应36小时,冷却至室温,过滤;
(3)滤饼先用去离子水洗至pH=9.0,再用0.15 M的盐酸连续洗涤进行离子交换,最后用去离子水洗至中性,干燥,得到二氧化钛纳米线/石墨烯复合材料;
(4)取1 g二氧化钛纳米线/石墨烯复合材料和1 g七水合硫酸亚铁加入到100 mL去离子水中搅拌80分钟、超声100分钟,得到混合均匀的悬浮液;
(5)去离子水清洗黑米,干燥、破碎、筛分至200 μm,随后将其与去离子水混合,加热至96℃至沸腾,持续60分钟后冷却至室温,用0.4μm滤膜过滤,得到提取液,其中黑米与去离子水的料液比g:L为80:1;
(6)将步骤(5)提取液与步骤(4)悬浮液以体积比15:1比例混合,持续搅拌45分钟使还原反应更加彻底,直至溶液颜色完全变成黑色,然后进行过滤、干燥,得到绿色合成的纳米零价铁/二氧化钛纳米线/石墨烯复合材料。
(7)将纳米零价铁/二氧化钛纳米线/石墨烯复合材料加入50 mL 浓度为85 mg/L的阿特拉津溶液中,无光搅拌30分钟,再用紫外灯光照50分钟进行光催化反应,复合材料投加量为3 g/L,反应液初始pH为6.5,反应结束后阿特拉津的去除效率达94.6%。
采用商用二氧化钛P25(3 g/L)、纳米零价铁(3 g/L)和石墨烯(3 g/L)来去除阿特拉津(85 mg/L),无光搅拌30分钟,再用紫外灯光照50分钟进行光催化反应,反应液初始pH为6.5,反应结束后阿特拉津的去除效率达16.4%、39.7%和11.6%。
(8)用磁铁对复合材料颗粒进行磁性回收,然后用去离子水清洗3次,在转速为8500 rpm条件下离心25分钟后在真空干燥箱中50干燥35分钟,然后将干燥好的复合材料溶于50 mL去离子水中搅拌1小时得到均匀分散的悬浮液,按照步骤(5)和(6)进行再生反应,得到再生的复合材料按照步骤(7)对水中污染物进行降解,第五次再生后的材料对阿特拉津溶液的降解效率仍然达到86.4%。

Claims (7)

1.一种纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方法,其特征在于包括如下步骤:
(1)将0.4~0.6 g二氧化钛和60~100 mg氧化石墨烯加入到乙醇水溶液中,搅拌超声分散得到悬浮液;
(2)将12~18g氢氧化钠加入到步骤(1)二氧化钛/氧化石墨烯悬浮液充分搅拌使其完全溶解,然后置于150 ~200℃下反应12~48小时后,冷却至室温,过滤;
(3)滤饼先用去离子水洗至pH=9.0,再用0.05~0.3M的盐酸连续洗涤进行离子交换,最后用去离子水洗至中性,干燥,得到二氧化钛纳米线/石墨烯复合材料;
(4)将二氧化钛纳米线/石墨烯复合材料加入到铁盐溶液中,搅拌、超声,得到混合均匀的悬浮液;
(5)用去离子水清洗黑米、紫薯、紫甘蓝、山楂皮、火龙果果皮、茄子皮中的一种植物,干燥、破碎、筛分后将其与去离子水混合,加热至沸腾提取,然后冷却至室温,过滤,得到提取液;
(6)将步骤(5)提取液与步骤(4)悬浮液混合,然后搅拌,直至溶液颜色完全变成黑色,过滤、干燥,得到纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料。
2.根据权利要求1所述的纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方法,其特征在于:步骤(1)乙醇水溶液是无水乙醇和水按体积比0.5:1~3:1的比例混合制得,使用量为30~40mL。
3.根据权利要求1所述的纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方法,其特征在于:步骤(4)中二氧化钛纳米线/石墨烯复合材料和铁盐的质量比为1:0.25~1:2,其中铁盐为七水合硫酸亚铁、硝酸亚铁或氯化亚铁。
4.根据权利要求1所述的纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方法,其特征在于:步骤(5)中植物与去离子水的料液比g:L为20~150:1,沸腾提取时间为60~120分钟。
5.根据权利要求1所述的纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方法,其特征在于:步骤(6)中提取液和悬浮液体积比为5:1~50:1。
6.权利要求1-5中任一项所述的纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方法制得的纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料。
7.权利要求6所述纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料在净化含抗生素、农药、染料或硝酸盐废水中的应用。
CN201710323594.3A 2017-05-10 2017-05-10 纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方法及应用 Active CN107138160B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710323594.3A CN107138160B (zh) 2017-05-10 2017-05-10 纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710323594.3A CN107138160B (zh) 2017-05-10 2017-05-10 纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN107138160A CN107138160A (zh) 2017-09-08
CN107138160B true CN107138160B (zh) 2020-02-07

Family

ID=59777894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710323594.3A Active CN107138160B (zh) 2017-05-10 2017-05-10 纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN107138160B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107445387A (zh) * 2017-10-29 2017-12-08 蚌埠学院 一种磁性石墨烯二氧化钛纳米复合废水处理剂的制备方法及其应用
CN111318287B (zh) * 2020-02-28 2022-12-16 江苏大学 一种FeS@rGO复合材料的生物合成方法
CN111871207B (zh) * 2020-07-17 2022-01-25 中国海洋大学 一种纳米线反渗透复合膜及其制备方法
CN114523121B (zh) * 2022-02-09 2024-04-05 上海市农业技术推广服务中心 一种利用茄子叶片提取液制备纳米银颗粒的方法、产品和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102847528A (zh) * 2012-09-26 2013-01-02 攀枝花学院 氧化石墨烯-TiO2纳米管复合材料的制备方法
CN104857934A (zh) * 2015-05-21 2015-08-26 中国地质科学院水文地质环境地质研究所 一种用绿茶制备纳米零价铁悬浮液的方法及其应用
CN105457597A (zh) * 2015-12-08 2016-04-06 华南理工大学 一种石墨烯/二氧化硅/纳米零价铁复合材料及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104591173A (zh) * 2015-01-24 2015-05-06 南昌航空大学 一种基于油茶壳提取物还原氧化石墨烯制备石墨烯的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102847528A (zh) * 2012-09-26 2013-01-02 攀枝花学院 氧化石墨烯-TiO2纳米管复合材料的制备方法
CN104857934A (zh) * 2015-05-21 2015-08-26 中国地质科学院水文地质环境地质研究所 一种用绿茶制备纳米零价铁悬浮液的方法及其应用
CN105457597A (zh) * 2015-12-08 2016-04-06 华南理工大学 一种石墨烯/二氧化硅/纳米零价铁复合材料及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites with Enhanced Photocatalytic Activity";Sanjaya D.Perera et al.,;《ACS Catalysis》;20120418;第946-956页 *
"新型纳米零价铁的绿色合成和改性工艺研究进展";杜毅等;《环境化学》;20160229;第35卷(第2期);第337-347页 *
"纳米零价铁的强化改性及其对水污染治理最新研究进展";乐兰等;《化学世界》;20151231;第56-64页 *

Also Published As

Publication number Publication date
CN107138160A (zh) 2017-09-08

Similar Documents

Publication Publication Date Title
Boutra et al. Magnetically separable MnFe2O4/TA/ZnO nanocomposites for photocatalytic degradation of Congo Red under visible light
Nguyen et al. Efficient removal of methylene blue dye by a hybrid adsorption–photocatalysis process using reduced graphene oxide/titanate nanotube composites for water reuse
Bai et al. Uniformly distributed anatase TiO2 nanoparticles on graphene: Synthesis, characterization, and photocatalytic application
Ojha et al. Photo-Fenton degradation of organic pollutants using a zinc oxide decorated iron oxide/reduced graphene oxide nanocomposite
CN107138160B (zh) 纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方法及应用
Phin et al. Effect of carbon nanotubes loading on the photocatalytic activity of zinc oxide/carbon nanotubes photocatalyst synthesized via a modified sol-gel method
CN102489284B (zh) 可磁性分离回收的石墨烯复合二氧化钛光催化剂及其制备方法
Xu et al. Visible light-degradation of azo dye methyl orange using TiO2/β-FeOOH as a heterogeneous photo-Fenton-like catalyst
Gan et al. The fabrication of bio-renewable and recyclable cellulose based carbon microspheres incorporated by CoFe2O4 and the photocatalytic properties
Gao et al. Fabrication of visible-light responsive TiO2@ C photocatalyst with an ultra-thin carbon layer to efficiently degrade organic pollutants
Kumar et al. Bismuth sulfide (Bi2S3) nanotubes decorated TiO2 nanoparticles heterojunction assembly for enhanced solar light driven photocatalytic activity
Li et al. Bi2Ti2O7/TiO2/RGO composite for the simulated sunlight-driven photocatalytic degradation of ciprofloxacin
Zhai et al. Novel magnetically separable BiVO4/Fe3O4 photocatalyst: synthesis and photocatalytic performance under visible-light irradiation
Hejazi et al. Novel visible-light-responsive rGO-ZnO@ Bi2MoO6 nanocomposite with enhanced light harvesting and Z-scheme charge transfer for photodegradation and detoxification of RhB
Li et al. Facile synthesis of ZnO/g-C3N4 composites with honeycomb-like structure by H2 bubble templates and their enhanced visible light photocatalytic performance
Khan et al. Investigation of the photocatalytic potential enhancement of silica monolith decorated tin oxide nanoparticles through experimental and theoretical studies
Dubey et al. Ultrasound assisted synthesis of magnetic Fe3O4/ɑ-MnO2 nanocomposite for photodegradation of organic dye
Anjum et al. Photo-degradation, thermodynamic and kinetic study of carcinogenic dyes via zinc oxide/graphene oxide nanocomposites
Ren et al. In situ synthesis of gC 3 N 4/TiO 2 heterojunction nanocomposites as a highly active photocatalyst for the degradation of Orange II under visible light irradiation
Mohammadiyan et al. Synthesis and characterization of a magnetic Fe3O4@ CeO2 nanocomposite decorated with Ag nanoparticle and investigation of synergistic effects of Ag on photocatalytic activity
Altin CuO-TiO2/graphene ternary nanocomposite for highly efficient visible-light-driven photocatalytic degradation of bisphenol A
Wang et al. Facile assembly of novel gC 3 N 4@ expanded graphite and surface loading of nano zero-valent iron for enhanced synergistic degradation of tetracycline
Chegeni et al. Photocatalytic bauxite and red mud/graphitic carbon nitride composites for Rhodamine B removal
CN108079993B (zh) 氧化亚铁/氧化亚铜纳米复合材料的制备方法
Zhao et al. Construction of a stable Cu-Fe@ C composite catalyst with enhanced performance and recyclability for visible-light-driven photo-Fenton reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant