CN113101264A - 一种具有ros响应的水凝胶及其制备方法和应用 - Google Patents

一种具有ros响应的水凝胶及其制备方法和应用 Download PDF

Info

Publication number
CN113101264A
CN113101264A CN202110376178.6A CN202110376178A CN113101264A CN 113101264 A CN113101264 A CN 113101264A CN 202110376178 A CN202110376178 A CN 202110376178A CN 113101264 A CN113101264 A CN 113101264A
Authority
CN
China
Prior art keywords
solution
chitosan
hydrogel
catechol
ros
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110376178.6A
Other languages
English (en)
Other versions
CN113101264B (zh
Inventor
赵安莎
刘力
路槟阳
杨苹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202110376178.6A priority Critical patent/CN113101264B/zh
Publication of CN113101264A publication Critical patent/CN113101264A/zh
Application granted granted Critical
Publication of CN113101264B publication Critical patent/CN113101264B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/722Chitin, chitosan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供了一种具有ROS响应的水凝胶及其制备方法和应用,制备时,以碳二亚胺作为催化剂,将儿茶酚基团接枝在壳聚糖大分子上,提高了壳聚糖的溶解性和粘附性。再以胱胺作为交联剂,让其氨基与儿茶酚基团氧化后形成的苯醌发生迈克尔加成反应形成交联网络,从而形成水凝胶。本发明还包括上述方法制得的具有ROS响应的水凝胶及其应用。其中,胱胺含有的二硫键能够在活性氧的作用下断裂转变为亚磺酸,从而破坏了水凝胶的结构,在产生较多活性氧物质的动脉粥样硬化部位中可发挥智能化释放药物的作用,避免药物在病变部位的突释,有望减少血管内再狭窄的发生、内皮延迟愈合及晚期血栓等风险。

Description

一种具有ROS响应的水凝胶及其制备方法和应用
技术领域
本发明属于心血管治疗技术领域,具体涉及一种具有ROS响应的水凝胶及 其制备方法和应用。
背景技术
利用环境响应型材料控制药物释放是当下研究的热点,其在靶向纳米载体 领域、各种表面涂层领域以及水凝胶等均已经被证明有很好的使用效果。在环 境响应型水凝胶的研究中,其响应方式主要体现在依据周围环境改变而产生的 质量、溶胀能力、降解能力的变化。动脉粥样硬化部位微环境由于炎症存在而 导致pH呈弱酸性(≈6.5,正常人体pH=7.4)以及含有较多的活性氧物质,这给 制备适合于该环境下的智能环境响应型水凝胶提供了基础。
壳聚糖作为一种生物相容性良好的天然高分子材料,已经广泛应用在生物 医疗领域,壳聚糖功能众多,尤其是抗菌、抗炎能力,故被选择为本实验的基 础材料。然而,较大分子量的壳聚糖水溶性较差,只能溶于酸性溶液中,这与 人体正常pH值偏差较大,可能会对人体产生副作用;较小分子量的壳聚糖降解 速度太快,皆不适合本研究所用。如何在保证壳聚糖分子量和功能性的前提下, 改善其溶解性及粘附性是当下壳聚糖在生物医疗领域着重关注的问题。
发明内容
针对现有技术中存在的上述问题,本发明提供一种具有ROS响应的水凝胶 及其制备方法和应用,引入儿茶酚基团,赋予壳聚糖一定的粘附能力,同时起 到快速内皮化,预防再狭窄的作用,有效解决了壳聚糖水溶性差和粘附性差等 问题。
为实现上述目的,本发明解决其技术问题所采用的技术方案是:提供一种 具有ROS响应的水凝胶的制备方法,包括以下步骤:将儿茶酚改性壳聚糖氧化 后与胱胺交联,得具有ROS响应的水凝胶。
进一步,具有ROS响应的水凝胶的制备方法,其具体步骤为:
(1)将儿茶酚改性壳聚糖加入Tris-base溶液中,磁力搅拌至完全溶解,然 后在冰浴条件下搅拌1-3h,得中间液;
(2)将胱胺二盐酸盐溶于Tris-base溶液中,然后在搅拌条件下滴加到步骤 (1)所得中间液中,继续搅拌4-6min,再置于35-40℃温度下成胶,得具有ROS 响应的水凝胶。
进一步,步骤(1)和(2)中,儿茶酚改性壳聚糖溶液浓度为0.5-1wt%, 胱胺二盐酸盐溶液终浓度为8wt%。
进一步,胱胺二盐酸盐为C4H12N2S2
进一步,Tris-base溶液使用RO水溶解配置,浓度1.21g/L。
进一步,步骤(1)中,儿茶酚改性壳聚糖通过以下方法制备得到:以壳聚 糖为原料,碳二亚胺为催化剂,活化羧基为中间体,然后与氨基反应,得儿茶 酚改性壳聚糖。
进一步,制备儿茶酚改性壳聚糖的具体步骤为:
(1)将壳聚糖加入RO水中,然后加入浓盐酸搅拌至完全溶解,调节pH 值至4-6,得壳聚糖溶液;
(2)将3,4-二羟苯基丙酸溶于去离子水中,然后滴加到步骤(1)所得壳聚 糖溶液中混匀,调节pH值至4-6,得混合液一;
(3)将碳二亚胺加入RO水与无水乙醇按体积比1:1混合而成的混合液中, 然后滴加到步骤(2)所得混合液一中,调节pH值至4-6后于室温下搅拌4h以 上,得混合液二;
(4)将步骤(3)所得混合液二通过pH值为5.5±0.5的RO水中透析24-36h, 且每间隔4h更换一次RO水,冷冻干燥,得儿茶酚改性壳聚糖。
进一步,壳聚糖和碳二亚胺质量摩尔比为0.5:0.325-1.63g/mmol,碳二亚胺 和3,4-二羟苯基丙酸摩尔比为0.325-1.63:0.325-3.25。
进一步,儿茶酚改性壳聚糖浓度为1wt%。
进一步,步骤(1)和(2)中,采用1-2mol/L氢氧化钠溶液与1-2mol/L盐 酸溶液调节pH值。
进一步,步骤(1)和(2)中,采用1mol/L氢氧化钠溶液与1mol/L盐酸 溶液调节pH值。
进一步,儿茶酚改性壳聚糖乙酰度大于95%,分子量为5-19万Da,且接枝 率为9-21%。
进一步,儿茶酚改性壳聚糖乙酰度大于95%,分子量为10万Da,且接枝 率为12%。
上述具有ROS响应的水凝胶的制备方法制得的具有ROS响应的水凝胶。
上述具有ROS响应的水凝胶在动脉粥样硬化部位微环境中应用。
进一步,水凝胶在动脉粥样硬化部位微环境中具有智能化释放药物的ROS 响应性。
综上所述,本发明具备以下优点:
1、本发明引入儿茶酚基团,赋予壳聚糖一定的粘附能力,同时起到快速内 皮化,预防再狭窄的作用,有效解决了壳聚糖水溶性差和粘附性差等问题。一 是将壳聚糖在酸性条件下完全溶解于去离子水中并用氢氧化钠溶液和盐酸溶液 调节壳聚糖溶液pH至4-6,随后加入3,4-二羟苯基丙酸溶液,并调节溶液pH至 4-6,最后加入碳二亚胺活化作为催化剂,完成儿茶酚基团的接枝。通过改变单 体与催化剂的添加量,制备不同接枝率的改性壳聚糖样品,并对其水溶性测试 结果的分析,从而筛选出最适宜接枝率的儿茶酚改性壳聚糖,得到了一种优良 的儿茶酚改性壳聚糖的制备方法。二是提供用于治疗心血管类疾病的具有ROS 响应的水凝胶的制备方法,该方法能够制备出在治疗心血管类疾病方面具有潜 在优势的水凝胶;儿茶酚基团在碱性条件下易氧化成为醌或半醌,而苯醌能够 与氨基、巯基等发生迈克尔加成或席夫碱反应。因此,本方法以两端均为氨基 的胱胺(Cys)作为交联剂,让氨基与苯醌发生迈克尔加成反应形成交联网络从 而形成水凝胶,其中胱胺含有的二硫键具有氧化还原响应的能力。通过对溶解 条件、成胶方式、C-CS浓度以及C-CS接枝率等成胶工艺的探索,以及对水凝 胶氧化还原响应性和溶胀性的测试,得到最优成胶条件和方法。
2、制备时,以碳二亚胺作为催化剂,将儿茶酚基团接枝在壳聚糖大分子上, 提高了壳聚糖的溶解性和粘附性;再以胱胺作为交联剂,让其氨基与儿茶酚基 团氧化后形成的苯醌发生迈克尔加成反应形成交联网络,从而形成水凝胶,其 中,胱胺含有的二硫键具有氧化还原响应能力,能够在活性氧的作用下断裂转 变为亚磺酸,从而破坏了水凝胶的结构,在产生较多活性氧物质的动脉粥样硬 化部位中可发挥智能化释放药物的作用,避免药物在病变部位的突释,有望减 少血管内再狭窄的发生、内皮延迟愈合及晚期血栓等风险。
3、儿茶酚改性壳聚糖在保证壳聚糖分子量和良好生物相容性的前提下,改 变了壳聚糖水溶性差的缺点,使其能够在更广泛的pH值下溶于水;同时,儿茶 酚基团的引入,会赋予壳聚糖一定的粘附能力,使其能够更长时间的存在于体 内,更好的粘附细胞,从而起到快速内皮化,预防再狭窄的效果,为后面形成 水凝胶提供了基础。
4、本发明制得的具有ROS响应的水凝胶可应用于低pH值、高氧化应激环 境下的动脉粥样硬化部位微环境,解决了药物突释以及药物利用率差的问题, 具有能够长效、缓释以及靶向治疗心血管类疾病的作用。此外,由于使用胱胺 作为交联剂,其二硫键不仅仅拥有氧化还原响应的能力,也能够在体内作为气 体信号分子NO的催化剂,催化释放NO来调节动脉粥样硬化的微环境。该智能 化释放药物水凝胶对血管生理具有平衡调控功能,在心血管类疾病的治疗中, 具有潜在的优势。
附图说明
图1为儿茶酚改性壳聚糖的合成图;
图2为未改性壳聚糖与儿茶酚改性壳聚糖的溶解性对比;
图3为儿茶酚改性壳聚糖的紫外分光光谱图;
图4为儿茶酚改性壳聚糖在重水中的核磁共振氢谱图;
图5为不同成胶工艺制成的水凝胶;
图6为C-CS与C-CS-Cys水凝胶的氧化还原能力测试;
图7为C-CS与C-CS-Cys凝胶的溶胀情况及溶胀对比;
图8为C-CS、C-CS-tris、C-CS水凝胶及C-CS-Cys水凝胶的红外吸收图谱;
图9为水凝胶的扫描电子显微镜(SEM)分析。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发 明,并非用于限定本发明的范围。实施例中未注明具体条件者,按照常规条件 或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过 市售购买获得的常规产品。
下面结合实施例对本发明进行详细说明。
实施例1
一种具有ROS响应的水凝胶,其制备方法包括以下步骤:
(1)将儿茶酚改性壳聚糖加入Tris-base溶液中,磁力搅拌至完全溶解,然 后在冰浴条件下搅拌1h,得中间液;
(2)将胱胺二盐酸盐溶于Tris-base溶液中,然后在搅拌条件下滴加到步骤 (1)所得中间液中,继续搅拌5min,再置于37℃温度下成胶,得具有ROS响 应的水凝胶。
儿茶酚改性壳聚糖通过以下方法制备得到:
(1)将壳聚糖加入RO水中,然后加入浓盐酸搅拌至完全溶解,采用1mol/L 氢氧化钠溶液与1mol/L盐酸溶液调节pH值至5,得壳聚糖溶液;
(2)将3,4-二羟苯基丙酸溶于去离子水中,然后滴加到步骤(1)所得壳聚 糖溶液中混匀,采用1mol/L氢氧化钠溶液与1mol/L盐酸溶液调节pH值至5, 得混合液一;
(3)将碳二亚胺加入RO水与无水乙醇按体积比1:1混合而成的混合液中, 然后滴加到步骤(2)所得混合液一中,调节pH值至5后于室温下搅拌5h,得 混合液二;
(4)将步骤(3)所得混合液二通过pH值为5.5的RO水中透析24h,且 每间隔4h更换一次RO水,冷冻干燥,得儿茶酚改性壳聚糖。
其中,壳聚糖和碳二亚胺质量摩尔比为0.5:0.488g/mmol,碳二亚胺和3,4- 二羟苯基丙酸摩尔比为0.488:0.488。儿茶酚改性壳聚糖乙酰度大于95%,分子 量为10万Da,且接枝率为11.7%。
实施例2
一种具有ROS响应的水凝胶,其制备方法包括以下步骤:
(1)将儿茶酚改性壳聚糖加入Tris-base溶液中,磁力搅拌至完全溶解,然 后在冰浴条件下搅拌2h,得中间液;
(2)将胱胺二盐酸盐溶于Tris-base溶液中,然后在搅拌条件下滴加到步骤 (1)所得中间液中,继续搅拌5min,再置于37℃温度下成胶,得具有ROS响 应的水凝胶。
儿茶酚改性壳聚糖通过以下方法制备得到:
(1)将壳聚糖加入RO水中,然后加入浓盐酸搅拌至完全溶解,采用1mol/L 氢氧化钠溶液与1mol/L盐酸溶液调节pH值至5,得壳聚糖溶液;
(2)将3,4-二羟苯基丙酸溶于去离子水中,然后滴加到步骤(1)所得壳聚 糖溶液中混匀,采用1mol/L氢氧化钠溶液与1mol/L盐酸溶液调节pH值至5, 得混合液一;
(3)将碳二亚胺加入RO水与无水乙醇按体积比1:1混合而成的混合液中, 然后滴加到步骤(2)所得混合液一中,调节pH值至5后于室温下搅拌5h,得 混合液二;
(4)将步骤(3)所得混合液二通过pH值为5.5的RO水中透析30h,且 每间隔4h更换一次RO水,冷冻干燥,得儿茶酚改性壳聚糖。
其中,壳聚糖和碳二亚胺质量摩尔比为0.5:0.625g/mmol,碳二亚胺和3,4- 二羟苯基丙酸摩尔比为0.625:0.488。儿茶酚改性壳聚糖乙酰度大于95%,分子 量为10万Da,且接枝率为12.3%。
实施例3
一种具有ROS响应的水凝胶,其制备方法包括以下步骤:
(1)将儿茶酚改性壳聚糖加入Tris-base溶液中,磁力搅拌至完全溶解,然 后在冰浴条件下搅拌2h,得中间液;
(2)将胱胺二盐酸盐溶于Tris-base溶液中,然后在搅拌条件下滴加到步骤 (1)所得中间液中,继续搅拌5min,再置于37℃温度下成胶,得具有ROS响 应的水凝胶。
儿茶酚改性壳聚糖通过以下方法制备得到:
(1)将壳聚糖加入RO水中,然后加入浓盐酸搅拌至完全溶解,采用1mol/L 氢氧化钠溶液与1mol/L盐酸溶液调节pH值至5,得壳聚糖溶液;
(2)将3,4-二羟苯基丙酸溶于去离子水中,然后滴加到步骤(1)所得壳聚 糖溶液中混匀,采用1mol/L氢氧化钠溶液与1mol/L盐酸溶液调节pH值至5, 得混合液一;
(3)将碳二亚胺加入RO水与无水乙醇按体积比1:1混合而成的混合液中, 然后滴加到步骤(2)所得混合液一中,调节pH值至5后于室温下搅拌5h,得 混合液二;
(4)将步骤(3)所得混合液二通过pH值为5.5的RO水中透析36h,且 每间隔4h更换一次RO水,冷冻干燥,得儿茶酚改性壳聚糖。
其中,壳聚糖和碳二亚胺质量摩尔比为0.5:1.63g/mmol,碳二亚胺和3,4-二 羟苯基丙酸摩尔比为1.63:3.25。儿茶酚改性壳聚糖乙酰度大于95%,分子量为 10万Da,且接枝率为20.3%。
实验例1
首先,根据上述实施例中记载的制备方法制备儿茶酚改性壳聚糖,其具体 包括以下步骤:
(1)称量0.5g壳聚糖(CS)溶于20mL RO水中搅拌溶解,搅拌均匀后 使用移液枪按照每次20μL向未溶解的壳聚糖溶液中滴加浓盐酸,继续搅拌直至 壳聚糖完全溶解,使用1mol/L NaOH溶液与1mol/L HCl溶液调节壳聚糖溶液 的pH保持在4-6之间;
(2)称量0.49mmol的3,4-二羟苯基丙酸溶于3mL去离子水中,剧烈 搅拌下使用移液枪或胶头滴管缓慢添加到上述溶液中,继续搅拌溶解并使用 1mol/L NaOH溶液与1mol/LHCl溶液调整壳聚糖溶液pH保持在4-6;
(3)10-15分钟时,称量碳二亚胺(EDC)0.49mmol溶解于20mL的RO 水与无水乙醇(1:1,v/v)的混合溶液中,在剧烈搅拌下缓慢滴加到上述溶液中, 调整pH保持在4-6之间,室温下剧烈搅拌4小时以上,期间不断测试溶液pH 值,保持其稳定在在4-6之间;
(4)反应完成后,把壳聚糖溶液装进规格为分子量为8000Da的透析袋, 在pH=5.5左右弱酸性的RO水溶液中透析24-36小时,期间约4小时更换水溶 液一次;
(5)冷冻干燥并密封于真空干燥箱中保存;
(6)重复上述步骤,改变单体3,4-二羟苯基丙酸与催化剂碳二亚胺的比例, 制备不同接枝率的改性壳聚糖。具体的不同比例见表1。
表1 不同配方儿茶酚改性壳聚糖(C-CS)的接枝率
壳聚糖/g EDC/mmol DHPA/mmol 接枝率%
C-CS 0.5 0.488 0.488 11.7
C-CS 0.5 0.625 0.488 12.3
C-CS 0.5 1.63 3.25 20.3
C-CS 0.5 0.975 0.975 15.4
C-CS 0.5 0.325 0.325 9.2
其次,将上述所得的儿茶酚改性壳聚糖进行水溶性测试,步骤如下:
(1)称量儿茶酚改性的壳聚糖20mg*2(标记为A,B)以及未改性壳聚糖 20mg(标记为C);
(2)加入2mL RO水,把试样A,C在磁力搅拌器上搅拌,B静置在室温 下;
(3)一段时间后,观察试样的溶解情况。
其结果如图2所示。由图2可知经邻苯二酚改性的壳聚糖能够直接溶于未 加酸处理的去离子水中,而未经改性的壳聚糖只能在水中分散形成悬浊液,且 静置后有粉末沉在底部。
再次,将样品溶于溶剂中,超声分散均匀,使用移液枪加入到比色皿中, 对照比色皿加入等量溶剂后,一起使用紫外分光光度计扫描全谱谱图,观察其 吸收峰,根据峰值高低调整溶液浓度。试验样对照组使用未改性的壳聚糖以及 含有儿茶酚基团的多巴胺,并添加微量稀盐酸来溶剂不易溶于水的未改性壳聚 糖。三组样品详细信息如表2所示:
表2 紫外分光光度计测试的样品信息表
名称 溶质 溶剂
A 多巴胺 RO水
B 壳聚糖 添加微量稀盐酸的RO水
C 儿茶酚改性壳聚糖 RO水
上述紫外分光光谱图如图3所示。图3中,从上到下依次为A、C和B。
由图3可知,未改性的壳聚糖在280nm附近没有特征吸收峰,而儿茶酚改 性壳聚糖在280nm处出现了与多巴胺一致的特征峰;这一结果表明3,4-二羟苯 基丙酸(DHPA)通过碳二亚胺(EDC)催化的酰胺化学反应成功接枝到壳聚糖 上,由于接枝率较低或溶解度较低,所以相对纯多巴胺溶液检测出来的紫外分 光光度值的谱线峰值相对较低。
最后,使用500μL重水(D2O)作为溶剂,溶解10mg干燥的儿茶酚改性 壳聚糖样品;使用超声波清洗器与点震仪溶解分散均匀后,转移到核磁管中进 行送样检测。其核磁共振氢谱图如图4所示。
由图4可知,位于4.79ppm的是溶剂重水(D2O)的特征峰,位于3.1ppm 处的峰属于壳聚糖糖环上C-2的质子特征峰,位于2.1ppm左右的峰属于未脱乙 酰化的甲基(—O=CH3)的氢质子特征峰,位于6.60-6.88ppm附近的峰属于苯 环上的氢质子特征峰;根据之前的研究表明,未改性的壳聚糖在6.60-6.88ppm 处不存在特征峰,由苯环上单个氢质子的峰面积积分与壳聚糖主链中C-2上唯 一的氢质子的峰面积积分之比可以求出两者氢原子的摩尔数之比,即邻苯二酚 改性壳聚糖的接枝率。由于邻苯二酚基团的苯环上含有3个氢质子,把苯环的 氢质子特征峰峰面积平均分配给每个氢质子后,可以得到壳聚糖的接枝率为12.3%,同理计算得壳聚糖的脱乙酰度为4%,这与壳聚糖基本信息(脱乙酰度 >95%)相一致。
实验例2
根据上述实施例中具有ROS响应的水凝胶的制备方法制备具有ROS响应的 水凝胶,其具体包括以下步骤:
(1)称量一定量的儿茶酚改性壳聚糖(C-CS),将其置于已经配好的 Tris-base溶液中,磁力搅拌至完全溶解;
(2)充分搅拌溶解后,继续冰浴搅拌氧化约2h;
(3)称量一定量的胱胺二盐酸盐(Cys),溶解于配好的Tris-base溶液中;
(4)在剧烈搅拌下,将配好的胱胺溶液缓慢滴加到儿茶酚改性的壳聚糖溶 液中,继续搅拌5分钟,使之分散均匀;
(5)把搅拌均匀的混合溶液放置在一定温度下,直至形成水凝胶;
(6)对照组滴加不添加胱胺的Tris-base溶液,重复其他过程形成C-CS水 凝胶;
(7)使用不同接枝率的改性壳聚糖,重复水凝胶制备过程。
根据上述步骤,使用控制变量法对成胶方案进行了最优化的筛选与尝试(样 品A-J),另设使用RO水代替Tris-base溶液作为溶剂来测试儿茶酚基团的氧化 对成胶的影响(样品K);具体方案如表3所示:
表3 不同成胶方式
样品名称 溶解条件 成胶方式 C-CS浓度 接枝率
A 常温搅拌 37℃ 0.5% 14%
B 常温搅拌 反复冻融 0.5% 14%
C 冰浴搅拌 室温(约25℃) 0.5% 14%
D 冰浴搅拌 37℃ 0.5% 14%
E 冰浴搅拌 37℃ 0.5% 9%
F 冰浴搅拌 60℃ 0.5% 9%
G 冰浴搅拌 37℃ 1% 9%
H 冰浴搅拌 60℃ 1% 9%
I 冰浴搅拌 37℃ 1% 5%
J 冰浴搅拌 37℃ 1% 12%
K(RO水溶剂) 冰浴搅拌 37℃ 1% 9%
L(不加胱胺) 冰浴搅拌 37℃ 1% 9%
通过表3中不同成胶工艺所得的水凝胶如图5所示。
由图5可知,(1)A-D四组均未成胶,但能够清晰地观察到D组壳聚糖分 布更加均匀,根据控制变量条件分析,在改性壳聚糖浓度和接枝率不变的情况 下,37℃的成胶方式和冰浴搅拌的溶解条件更有利于改性壳聚糖的分布。
(2)E-H四组对比,37℃的成胶方式更有利于水凝胶的形成。
(3)G组、I组和J组,在其他条件相同情况下,12%接枝率的改性壳聚糖 更有利于水凝胶的形成
(4)E组和G组进行对比,得出结论1%浓度的改性壳聚糖更有利于水凝 胶的形成。
(5)对照组为K组和L组,将它们分别与G组进行比较,发现未加Tris-base 溶液的壳聚糖不能够成胶,而未加胱胺的壳聚糖只能少量的成胶。
(6)通常的,加入胱胺形成壳聚糖水凝胶的成胶时间约为1天,未加入胱 胺的壳聚糖水凝胶的成胶时间约为3天。
综上所述,G组为最佳的成胶工艺,其成胶条件为:使用邻苯二酚接枝率 为12%的改性壳聚糖,在冰浴条件下搅拌,在37℃下成胶,最后改性壳聚糖浓 度为1wt%。
将上述水凝胶加入0.5mL浓度为16%的DTT(二硫苏糖醇,Dithiothreitol) 溶液,DTT溶液能够把二硫键还原成硫醇,常用的比例为DTT:二硫键=1.5:1 (物质的量,pH=8.0-9.0)。在另一个装有制备好的C-CS-Cys水凝胶的玻璃瓶中 加入0.5mL浓度为5%的过氧化氢溶液(H2O2),H2O2溶液能够产生大量活性 氧,常在体外被用来当做活性氧的替代物质。把添加了DTT溶液与H2O2溶液 的水凝胶玻璃瓶放置在37℃恒温摇床中,每隔4h对玻璃瓶进行旋转,使水凝胶 与添加溶液充分接触,在2h,1D,2D,4D,8D时拍照观察。对照组添加0.5mL RO水,以及0.5mL浓盐酸来进行对照。其结果如图6所示;a为H2O2溶液, b为DTT溶液2h、1D、2D、4D及8D时的宏观状态。
由图6可知,加入5%过氧化氢溶液及16%DTT溶液的水凝胶结构都受到破 坏,并且加入5%过氧化氢溶液的水凝胶结构破坏更为明显,而加入RO水的水 凝胶结构无明显变化。加入5%过氧化氢溶液的水凝胶结构在一天后几乎被完全 破坏,加入16%DTT溶液的水凝胶结构在8天后虽未完全被破坏,但结构疏松, 效果明显。由上可知,本发明所得C-CS-Cys水凝胶具有较好的氧化还原能力。 此外,加入16%DTT溶液的水凝胶结构瓦解较为缓慢的现象推测原因,一是由 于DTT溶液浓度较低所导致,二是H2O2液具有一定的酸性,水凝胶的体系内 的pH酸性变化使得原本水凝胶网络中的氢键等分子间作用力减弱,从而快速变成溶胶状态。
把在玻璃瓶中制备好的圆柱体C-CS-Cys水凝胶以及对照组C-CS水凝胶除 去表面的水滴后,使用游标卡尺测量底面直径D0,放置在培养皿中,并用PBS 缓冲液浸没,按照规定的时间(1min,3min,5min,10min,20min,40min, 80min,3h,6h,18h,32h,48h,64h,80h,96h等)使用游标卡尺测量 其地面直径变化Di,水凝胶的体积溶胀结果使用溶胀的底面积表示,按照下式 计算:
λ(s)=Di2/D02
其结果如图7所示。
由图7可知,C-CS水凝胶的溶胀能力要强于C-CS-Cys水凝胶。这是由于 未加胱胺的的C-CS水凝胶中只存在氢键和分子间作用力的交联,而加入胱胺后 的C-CS-Cys水凝胶中由于迈克尔加成反应,形成了聚合物链间稳定的共价键接; 这样的化学交联会使得水凝胶网状结构的空隙变小,不利于水分子的吸收。
使用Nicolet-5700傅里叶红外光谱仪来测试,通过溴化钾压片法来制备样 品,扫描范围为500cm-1-4000cm-1,其结果如图8所示。图8中,从上到下依 次为C-CS-Cys-Hydrogel、C-CS–Hydrogel、C-CS-Tris和C-CS。
由图8可知,在3419cm-1左右出现的峰是-OH的伸缩振动峰,在1625cm-1出现的是强峰为C=O的伸缩振动峰。芳香族C=C的伸缩振动峰出现在1550cm-1左右处,1075cm-1处的峰为壳聚糖中C-O的典型伸缩振动峰。图中C-CS, C-CS-Tris,C-CS-Hydrogel水凝胶的红外光谱基本一致,说明C-CS在形成水凝 胶的过程中不发生化学反应,只有分子间作用力的物理交联。图中2500cm-1左 右处发现了-SH的振动峰,初步证明胱胺交联网络的形成,但在制备过程中,不 稳定的二硫键被部分还原成巯基。
X射线光电子能谱分析:将样品通过“成都e测试”检测(PHI-5400,Perkin Elmer,USA),其结果如下表4所示。
表4 X射线光电子能谱分析结果
Sample C(%) N(%) O(%) S(%)
C-CS 37.54 7.34 54.38 0.74
C-CS-Hydrogel 35.76 6.2 57.17 0.87
C-CS-Cys-Hydrogel 39.06 14.23 35.84 10.85
由表4可知,C-CS、C-CS水凝胶和本发明所得C-CS-Cys水凝胶的元素组 成情况;其中,可以明显观察到C-CS-Cys水凝胶中的S元素含量有显著地增长, 从C-CS和C-CS水凝胶中的0.74%和0.87%提高到了10.85%。这是由于苯醌与 胱胺间的迈克尔加成反应,导致了O元素含量的减少及N元素的增多;以上现 象都间接地反映了C-CS-Cys水凝胶网络地形成。
对所得水凝胶进行扫描电子显微镜(SEM)分析,其结果如图9所示。
由图9可知,C-CS水凝胶中的孔径约100-200μm,由于成胶时间较长,表 面水分子的挥发导致表面网状结构的塌陷。而本发明所得C-CS-Cys水凝胶表面 看不出明显的网状孔径结构。并且,C-CS-Cys水凝胶冻干前后的力学性能较 C-CS水凝胶差,冻干后的C-CS-Cys水凝胶整体性不好,易碎,可能与成胶速 度增加,分子间作用力结合较差有关。
虽然结合附图对本发明的具体实施方式进行了详细地描述,但不应理解为 对本专利的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员 不经创造性劳动即可作出的各种修改和变形仍属本专利的保护范围。

Claims (10)

1.一种具有ROS响应的水凝胶的制备方法,其特征在于,包括以下步骤:将儿茶酚改性壳聚糖氧化后与胱胺交联,得具有ROS响应的水凝胶。
2.如权利要求1所述的具有ROS响应的水凝胶的制备方法,其特征在于,其具体步骤为:
(1)将儿茶酚改性壳聚糖加入Tris-base溶液中,磁力搅拌至完全溶解,然后在冰浴条件下搅拌1-3h,得中间液;
(2)将胱胺二盐酸盐溶于Tris-base溶液中,然后在搅拌条件下滴加到步骤(1)所得中间液中,继续搅拌4-6min,再置于35-40℃温度下成胶,得具有ROS响应的水凝胶。
3.如权利要求2所述的具有ROS响应的水凝胶的制备方法,其特征在于,步骤(1)和(2)中,儿茶酚改性壳聚糖溶液浓度为0.5-1wt%,胱胺二盐酸盐溶液终浓度为8wt%。
4.如权利要求1或2所述的具有ROS响应的水凝胶的制备方法,其特征在于,步骤(1)中,所述儿茶酚改性壳聚糖通过以下方法制备得到:以壳聚糖为原料,碳二亚胺为催化剂,活化羧基为中间体,然后与氨基反应,得儿茶酚改性壳聚糖。
5.如权利要求4所述的具有ROS响应的水凝胶的制备方法,其特征在于,制备所述儿茶酚改性壳聚糖的具体步骤为:
(1)将壳聚糖加入RO水中,然后加入浓盐酸搅拌至完全溶解,调节pH值至4-6,得壳聚糖溶液;
(2)将3,4-二羟苯基丙酸溶于去离子水中,然后滴加到步骤(1)所得壳聚糖溶液中混匀,调节pH值至4-6,得混合液一;
(3)将碳二亚胺加入RO水与无水乙醇按体积比1:1混合而成的混合液中,然后滴加到步骤(2)所得混合液一中,调节pH值至4-6后于室温下搅拌4h以上,得混合液二;
(4)将步骤(3)所得混合液二通过pH值为5.5±0.5的RO水中透析24-36h,且每间隔4h更换一次RO水,冷冻干燥,得儿茶酚改性壳聚糖。
6.如权利要求5所述的具有ROS响应的水凝胶的制备方法,其特征在于,所述壳聚糖和所述碳二亚胺质量摩尔比为0.5:0.325-1.63g/mmol,所述碳二亚胺和所述3,4-二羟苯基丙酸摩尔比为0.325-1.63:0.325-3.25。
7.如权利要求5所述的具有ROS响应的水凝胶的制备方法,其特征在于,步骤(1)和(2)中,采用1-2mol/L氢氧化钠溶液与1-2mol/L盐酸溶液调节pH值。
8.如权利要求1或2所述的具有ROS响应的水凝胶的制备方法,其特征在于,所述儿茶酚改性壳聚糖乙酰度大于95%,分子量为5-19万Da,且接枝率为9-21%。
9.权利要求1-8任一项所述的具有ROS响应的水凝胶的制备方法制得的具有ROS响应的水凝胶。
10.权利要求9所述的具有ROS响应的水凝胶在动脉粥样硬化部位微环境中应用。
CN202110376178.6A 2021-04-08 2021-04-08 一种具有ros响应的水凝胶及其制备方法和应用 Active CN113101264B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110376178.6A CN113101264B (zh) 2021-04-08 2021-04-08 一种具有ros响应的水凝胶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110376178.6A CN113101264B (zh) 2021-04-08 2021-04-08 一种具有ros响应的水凝胶及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113101264A true CN113101264A (zh) 2021-07-13
CN113101264B CN113101264B (zh) 2022-05-03

Family

ID=76714621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110376178.6A Active CN113101264B (zh) 2021-04-08 2021-04-08 一种具有ros响应的水凝胶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113101264B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698539A (zh) * 2021-09-22 2021-11-26 四川大学 氧气调控力学性能的生物封闭材料及其制备方法
CN113842495A (zh) * 2021-09-13 2021-12-28 东华大学 一种可按需剥离的粘性纳米纤维水凝胶敷料及其制备方法
CN115337470A (zh) * 2022-07-20 2022-11-15 淮阴工学院 一种内皮细胞友好型抗内膜增生涂覆层的制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011038A1 (en) * 1998-08-21 2000-03-02 Guneet Kumar Modified chitosan polymers and enzymatic methods for the production thereof
US20030232198A1 (en) * 2002-02-21 2003-12-18 Encelle, Inc. Immobilized bioactive hydrogel matrices as surface coatings
CN101773683A (zh) * 2010-03-03 2010-07-14 天津大学 壳聚糖修饰的海藻酸盐水凝胶三维多孔支架及其制备方法
US20140193360A1 (en) * 2011-11-21 2014-07-10 Innotherapy Inc. Hydrogel comprising catechol group-coupled chitosan or polyamine and poloxamer comprising thiol group coupled to end thereof, preparation method thereof, and hemostat using same
CN106693078A (zh) * 2016-11-24 2017-05-24 西南交通大学 一种载药层层自组装涂层的制备方法
CN107118357A (zh) * 2017-05-15 2017-09-01 哈尔滨工业大学 一种儿茶酚壳聚糖自愈合水凝胶材料及其制备方法
WO2018065450A1 (en) * 2016-10-04 2018-04-12 Aarhus Universitet Flexible and multi-functional coacervates and hydrogel materials
KR20180110312A (ko) * 2017-03-28 2018-10-10 울산대학교 산학협력단 광학 온열 입자로 코팅된 스텐트 및 이의 제조방법
CN109381738A (zh) * 2018-07-20 2019-02-26 中国海洋大学 一种壳聚糖基水凝胶及其制备方法和应用
CN110343264A (zh) * 2018-04-03 2019-10-18 中国科学院苏州纳米技术与纳米仿生研究所 壳聚糖水凝胶及其制备方法与应用
CN111603617A (zh) * 2015-04-03 2020-09-01 伊诺特纳皮株式会社 用具有儿茶酚基团和氧化的儿茶酚基团的交联的壳聚糖涂布的止血注射针
CN112587715A (zh) * 2021-01-08 2021-04-02 成都煌泓亢环保科技有限公司 一种高黏结医用复合胶黏剂的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011038A1 (en) * 1998-08-21 2000-03-02 Guneet Kumar Modified chitosan polymers and enzymatic methods for the production thereof
US20030232198A1 (en) * 2002-02-21 2003-12-18 Encelle, Inc. Immobilized bioactive hydrogel matrices as surface coatings
CN101773683A (zh) * 2010-03-03 2010-07-14 天津大学 壳聚糖修饰的海藻酸盐水凝胶三维多孔支架及其制备方法
US20140193360A1 (en) * 2011-11-21 2014-07-10 Innotherapy Inc. Hydrogel comprising catechol group-coupled chitosan or polyamine and poloxamer comprising thiol group coupled to end thereof, preparation method thereof, and hemostat using same
CN111603617A (zh) * 2015-04-03 2020-09-01 伊诺特纳皮株式会社 用具有儿茶酚基团和氧化的儿茶酚基团的交联的壳聚糖涂布的止血注射针
WO2018065450A1 (en) * 2016-10-04 2018-04-12 Aarhus Universitet Flexible and multi-functional coacervates and hydrogel materials
CN106693078A (zh) * 2016-11-24 2017-05-24 西南交通大学 一种载药层层自组装涂层的制备方法
KR20180110312A (ko) * 2017-03-28 2018-10-10 울산대학교 산학협력단 광학 온열 입자로 코팅된 스텐트 및 이의 제조방법
CN107118357A (zh) * 2017-05-15 2017-09-01 哈尔滨工业大学 一种儿茶酚壳聚糖自愈合水凝胶材料及其制备方法
CN110343264A (zh) * 2018-04-03 2019-10-18 中国科学院苏州纳米技术与纳米仿生研究所 壳聚糖水凝胶及其制备方法与应用
CN109381738A (zh) * 2018-07-20 2019-02-26 中国海洋大学 一种壳聚糖基水凝胶及其制备方法和应用
CN112587715A (zh) * 2021-01-08 2021-04-02 成都煌泓亢环保科技有限公司 一种高黏结医用复合胶黏剂的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JINKE XU,等: "Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery", 《BIOMATERIALS》 *
JINMAO ZHANG,等: "Fe3+-induced bioinspired chitosan hydrogels for the sustained and controlled release of doxorubicin", 《RSC ADVANCES》 *
KYURI KIM,等: "Chitosan-catechol: A polymer with long-lasting mucoadhesive properties", 《BIOMATERIALS》 *
WANG FANG,等: "Redox-responsive blend hydrogel films based on carboxymethyl cellulose/chitosan microspheres as dual delivery carrier", 《 INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES》 *
奚林,等: "具有pH和还原双重敏感性壳聚糖纳米微凝胶的制备及其控释性能", 《功能高分子学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113842495A (zh) * 2021-09-13 2021-12-28 东华大学 一种可按需剥离的粘性纳米纤维水凝胶敷料及其制备方法
CN113698539A (zh) * 2021-09-22 2021-11-26 四川大学 氧气调控力学性能的生物封闭材料及其制备方法
CN115337470A (zh) * 2022-07-20 2022-11-15 淮阴工学院 一种内皮细胞友好型抗内膜增生涂覆层的制备方法
CN115337470B (zh) * 2022-07-20 2023-06-30 淮阴工学院 一种内皮细胞友好型抗内膜增生涂覆层的制备方法

Also Published As

Publication number Publication date
CN113101264B (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
CN113101264B (zh) 一种具有ros响应的水凝胶及其制备方法和应用
Huang et al. An overview of dynamic covalent bonds in polymer material and their applications
Najafi et al. Preparation and characterization of acetylated starch nanoparticles as drug carrier: Ciprofloxacin as a model
US6514522B2 (en) Polymer constructs
EP0272300B1 (en) Material of polysaccharides containing carboxyl groups, and a process for producing such polysaccharides
RU2230752C2 (ru) Поперечносшитые гиалуроновые кислоты и их применение в медицине
Liu et al. Gelatin-based hydrogels with β-cyclodextrin as a dual functional component for enhanced drug loading and controlled release
Uliniuc et al. New approaches in hydrogel synthesis—Click chemistry: A review
Haroun et al. Encapsulation of bovine serum albumin within β-cyclodextrin/gelatin-based polymeric hydrogel for controlled protein drug release
Zhao et al. Preparation and physical/chemical modification of galactomannan film for food packaging
Yan et al. Controlled release of curcumin from gelatin hydrogels by the molecular-weight modulation of an oxidized dextran cross-linker
CN114524950B (zh) 一种疏水药物载体水凝胶及其制备方法和应用
US6476204B1 (en) Dextran-maleic acid monoesters and hydrogels based thereon
JPS6157335B2 (zh)
Sen et al. Modification of gums by periodate oxidation: a natural cross-linker
Kolahdoozan et al. Preparation of new hydrogels by visible light cross-linking of dextran methacrylate and poly (ethylene glycol)-maleic acid copolymer
JP4321007B2 (ja) 多糖類複合体及びその製造方法
Bukhari et al. Development and characterization of photo-responsive cinnamoly modified alginate
CN113599507A (zh) 葡萄糖触发的活性氧响应注射型复合水凝胶的制备方法
CN113197843A (zh) 一种多巴胺涂覆的纤维素纳米晶-琼脂糖载药水凝胶及其制备方法
CN109337098B (zh) 一种酶响应型结肠靶向载药凝胶的制备方法
Farion et al. Unsaturated and thiolated derivatives of polysaccharides as functional matrixes for tissue engineering and pharmacology: A review
Luo et al. Modification and crosslinking strategies for hyaluronic acid‐based hydrogel biomaterials
CN111592618A (zh) 一种透明质酸水凝胶及其制备方法和应用
Falsafi et al. Dialdehyde carbohydrates–Advanced functional materials for biomedical applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant